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Abstract

We consider the effect of an array of plates or beams over a semi-infinite elastic ground on the
propagation of elastic waves hitting the interface. The plates/beams are slender bodies with fle-
xural resonances at low frequencies able to perturb significantly the propagation of waves in
the ground. An effective model is obtained using asymptotic analysis and homogenization tech-
niques, which can be expressed in terms of the ground alone with effective dynamic (frequency-
dependent) boundary conditions of the Robin’s type. For an incident plane wave at oblique
incidence, the displacement fields and the reflection coefficients are obtained in closed forms and
their validity is inspected by comparison with direct numerics in a two-dimensional setting.

Keywords: asymptotic analysis; elastic waves; metamaterials; metasurfaces; multimodal
method
2010 MSC: 00-01, 99-00

1 1. Introduction

2 We are interested in wave propagation in a semi-infinite elastic substrate supporting a perio-
s dic and dense array of thin or slender bodies. This is the canonic idealized configuration used
4+ to illustrate the problem of “site-city interaction”. Such a problem, recent on the seismology
s history scale, aims to account for the urban environment as a factor modifying the seismic ground
s motion. Starting in the 19" century, the interest was primarily focused on the motion of the soil
7 elicited by static or dynamic sources being concentrated or distributed on the free surface in the
s absence of buildings. These studies have led to important results as the Lamb’s problem [1, 2].
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Figure 1: Geometry of the actual problems: (a) Array of parallel plates infinite along x3 atop an isotropic substrate; (b)
Doubly periodic array of cylindrical beams atop an isotropic substrate. The scalings are chosen to capture the bending
resonances only; with ky the wavenumber in the substrate, krh = n and krl = 0(172).

Then, more realistic configurations have been considered using approximate models to predict
the effect of complex soils, including the presence of buried foundations, on the displacements
in structures on the ground, see e.g. [3, 4, 5] and [6] for a review. In the classical two-step
model, the displacements in the soil without structures above, so-called free fields, were firstly
calculated and they were subsequently used as input data to determine the motion within the
structure [4, 6]. This means that the interaction, refereed to as the soil-structure interaction, was
restricted to the effect of the soil on the structure. In the mid-1970s, Luco and Contesse [7] and
Wong and Trifunac [8] studied the interaction between nearby buildings and they evidenced the
resulting modification on the ground motion. They termed this mutual interaction the structure-
soil-structure interaction, which has been later renamed soil-structure-soil interaction. On the
basis of these pioneering works the idea took root that several structures may interact with each
other and modify the ground motion, supplied by numerical simulations and direct observations
during earthquakes [9, 10, 11, 12, 13, 14, 15, 16]. At the scale of a city with the specificity of
the presence of a sedimentary basin, the soil-structure-soil interaction has been called site-city
interaction, a term first coined by Guéguen [10]. From a theoretical point of view, most of the
models encapsulate the response of a building with a single or multi-degree of freedom system
[17, 10, 18, 19, 20, 16]. On the basis of this model, Boutin, Roussillon and co-workers have
developed homogenized models where the multiple interactions between periodically located
oscillators are accounted for from a macroscopic city-scale point of view [19, 21, 22, 23, 24]. In
the low frequency limit, that is when the incident wavelength is large compared to the resonator
spacing, the effect of the resonators can be encapsulated in effective boundary conditions of
the Robin type for the soil, a result that we shall recover in the present study. Such a mass-
spring model has been used in physics for randomly distributed oscillators [25] and periodically
distributed oscillators [26, 27, 28] for their influence on surface Love and Rayleigh waves. The
ability of arrays of resonators to block Love and Rayleigh waves has been exploited to envision
new devices of seismic metasurfaces [29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39] in analogy with
metasurfaces in acoustics [40, 41] and in electromagnetism [42, 43].

In this study, we use asymptotic analysis and homogenization techniques to revisit the pro-
blem of the interaction of a periodic array of plates or beams on the propagation of seismic
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waves in three dimensions. We consider slender bodies in the low frequency limit which means
two things. Firstly, the typical wavelength 1/k is much larger than the array spacing ¢, which is
a classical hypothesis. Second, we focus on the lowest resonances of the bodies being flexural
resonances. The first flexural resonances correspond to ki ~ €,/h, with £, the body thickness, %
the body height and %/, the slenderness (in comparison the first longitudinal resonance appears
at kh ~ 1). Now, we consider dense arrays, which means that £, ~ ¢, and ¢ = {,/¢ € (0,1)
(Figure 1). Hence the asymptotic analysis is conducted considering that

the wavelength 1/k is large compared to / which is itself large compared to ¢, ~ €.

It is worth noting that assuming ¢ = O(1") with n > 1 would allow a reduction of the model in a
first step, resulting in concentrated force problems, as implicitly considered in [19, 21, 36]. Here
on the contrary, the implementation of the asymptotic method will require that we reconstruct the
asymptotic theory of plates and beams in a low frequency regime, as previously done for a single
body in solid mechanics, see e.g. [44, 45] for plates and [46, 47, 48, 49] for beams. However,
this classical theory has to be complemented with matched asymptotic expansions to link the
behavior in the periodic set of bodies with that in the substrate. This “soil-structure” coupling
requires a specific treatment as used in interface homogenization [50, 51, 52, 53], see also [54]
for a resonant case. In the present case, we shall derive effective boundary and transmission
conditions in a homogenized region which replaces the actual array; and in this effective region
the wave equation for flexural waves applies. This problem can be further simplified in effective
boundary conditions of the Robin type on the surface of the soil, namely

o -n = K(w)u, (D

where the frequency-dependent rigidity matrix K depends explicitly on the flexural frequencies of
the plates/beams. The rigidity matrix is diagonal as soon as the bodies have sufficient symmetry,
resulting in effective impedance conditions which ressemble those obtained in [22] in the same
settings.

The paper is organized as follows. In §2, we summarize the result of the asymptotic ana-
lysis in the case of an array of plates, whose detailed derivation is given in §3. The resulting
“complete” formulation (3)-(5) is equivalent to that in (6)-(7) thanks to a partial resolution of
the problem. In §4, the accuracy of the effective model is inspected by comparison with direct
numerics based on multimodal method [55] for an in-plane incident wave. The strong coupling
of the array with the ground at the flexural resonances is exemplified and the agreement between
the actual and effective problems is discussed. We finish the study in §5 with concluding remarks
and perspectives. A short comment on the solution in the region of the plates is given in Appendix
A. We provide in Appendix B the effective problem for the an array of beams which is merely
identical to the case of the plates with some specificities which are addressed.

2. The actual problem and the effective problem

We consider in this section the asymptotic analysis of an array of parallel plates atop an
isotropic elastic substrate. We note that the problem splits in the in-plane and out-of-plane po-
larizations. The latter case has been already addressed in [37]. We focus in this section on the
former, in-plane, vector elastic case. We further note that the asymptotic analysis of a doubly
periodic array of cylinders atop an isotropic substrate is a fully coupled elastodynamic wave
problem, which is thus slightly more involved and addressed in Appendix B.
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2.1. The physical problem

We consider the equation of elastodynamics for the displacement vector u, the stress tensor
o and the strain tensor &

in the substrate, x; € (=0,0) : divo + pw’u=0, o =2ue+Atr(e)l, &= %(Vu + 'Vu),

in the plates, x; € (0, h) : divo + ppw2u =0, o =2us+AuE)l,

2
with the Lamé coeflicients (4, 1,) of the plates and (A, i) of the substrate, w the angular fre-
quency and [ stands for the identity matrix. In three dimensions with x = (xy, x», x3), stress free
conditions o - n = 0 apply at each boundary between an elastic medium (the plates or the sub-
strate) and air, with n the normal to the interface. Eventually, the continuity of the displacement
and of the normal stress apply at each boundary between the parallel plates and the substrate.
This problem can be solved once the source u™ has been defined and accounting for the radia-
tion condition when x; — —oco which applies to the scattered field (u — u™).

2.2. The effective problem

Below we summarize the main results of the analysis developed in the §3, which provides the
so-called “complete formulation” where the array of parallel plates is replaced by an equivalent
layer associated with effective boundary and transmission conditions (Figure 2(a)). Owing to a
partial resolution, this formulation can be simplified to an equivalent “impedance formulation”
set on the substrate on its own (Figure 2(b)).

2.2.1. Complete formulation
The effective problem reads as follow

In the substrate, x; € (—o0,0) : divo + pbw2u =0, o =2ue+ Atr(e)l,
64 25 1/4
In the region of the plates, x; € (0, h) : 3 L:z —i* u =0, k= (ppw ") , )
Xi b

u(x,x") =u(0,x),  uz(xy,x") =u3(0,x),

with X’ = (xp, x3),
E,_ ¢
D= —"— L @)
(1-v)12
the flexural rigidity of the plates (p, the mass density, E, the Young’s modulus and v, the Pois-
son’s ratio). It is complemented with boundary conditions at x; = 0 and x; = & of the form

D, &
o11(07.X) = paloh 1 (0,X),  op(07,x) = —= Z2(0%,x),
l ébc?
- o aZu - o - o
o13(0 ,X)=¢h(Epg23(0 .X) + p,wuz(0 ,X)),
3

ou )
ur(0%,X') = 1y(07,X'), =—(0",x) =0,
(9)(31
62142 631/[2
—2(h,x') = —=(h,x') = 0.
(9x%( x) (9x?( x)
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These effective conditions express (i) at x; = 0 a balance of the stress, prescribed displacements
and vanishing rotation and (ii) at x; = h, free end conditions with vanishing bending moment
and shearing force.

T T
x5 T3
h 04 3 O/ b
(a) (b)

Figure 2: Geometry in the effective problems for an array of plates. (a) In the complete formulation, the region of the
array is replaced by an equivalent layer where (3) applies, complemented by the transmission conditions in (5). (b) In
the impedance formulation, the problem is reduced to effective boundary conditions (6) which hold at x; = 0. The same
holds for the array of beams, with (a) (B.1)-(B.3) and (b) (B.5).

2.2.2. Impedance formulation

From (3), the problem in x; € (0, &) can be solved owing to the linearity of the problem with
respect to u>(07, x), see Appendix A. Doing so, the problem can be thought in the substrate on
its own along with the boundary conditions of the Robin’s type, namely

divo + pw*u=0, o =2ue+Atr(e), x € (—,0),

o11(0,x) = Zuy(0,x"), 01200,X") =Z f(kh) u»(0,X), ©)
El, (92143

2 2
Pyw™ Ox;

0'13(0, X/) = Z( (0, X/) + M3(O, X,)),

with the following impedance parameters

shkh cos kh + chkh sin kh
Z = p,w*¢h, h) = , 7
P phs ) = A e cos k) @

(we have used that Dx* = p,w?(,). The conditions on (o1, 012) encapsulate the effects of the
in-plane bending of the plates while the condition on o713 can be viewed as the linear momentum
of an axially loaded bar (in the absence of substrate, we recover the wave equation for quasi-
longitudinal waves). It is worth noting that for out-of-plane displacements, u3(x1, x») and u; =
uy = 0, the boundary conditions simplify to o13(0,x2) = p,w’@hus(0, x2). This corresponds
to the impedance condition 013(0, x2) = W +/p,/1, tan(wh \/p,/1,)u3(0, x2) used in [37] and
obtained here in the low-frequency limit wh \/p,/u, < 1.



s 3. Derivation of the effective problem

As previously said, the asymptotic analysis is conducted considering that the typical wave-
length 1/k is large compared to the plate height ~# which is itself large compared to the array

spacing { ~ {,. Hence, with k; = w+/p,/u, and k. = w+/p,/(A, + 2u,) of the same order of
magnitude, we define the small non-dimensional parameter 77 as

n= vVkt, and kh=0(@),

(note that to excite both the bending and the longitudinal modes another scaling is required with
kh = O(1), and this is a higher frequency regime studied in [36]). Accordingly, the asymptotic
analysis is conducted using the rescaled height £ of the plates and array’s spacing ¢ defined by

I h ¢
(h,0) = (—, —2),
nn
which models an array of densely packed thin plates. We also define the associated rescaled
spatial coordinates

X1 (x1, x2)
y=, g=tnn) ®)
n n
s 3.1. Effective wave equation in the region of the plates
e 3.1.1. Notations
In the region of the array of plates, the displacements and the stresses vary in the horizontal
direction over small distances dictated by ¢, and over large distances dictated by the incoming
waves; these two scales are accounted for by the two-scale coordinates (x’, z5), with X’ = (x, x3).
In the vertical direction, the variations are dictated by 4 only and this is accounted for by the
rescaled coordinate y;. It follows that the fields (u, ) are written in the form

u= Z Unwn()’I,Zz, X,)’ g = Z nnﬂn(yl,ZZ’ X,), (9)

n=0 n>0

with the three-scale differential operator reading
- ——+ = — +V,, (10)
2

where e; = (1,0,0) and e, = (0, 1, 0). Now, we introduce the strain tensor with respect to x’

0 axZI/tl c')x3u1
, 1
&t (ll) = E 6X2u1 28xZu2 (8x3u2 + 6xZu3) s (11)
ax;”l (ax3u2 + a)@”}) 2(9)63143

and the strain tensors with respect to the rescaled coordinates y; and z,,

2(9y1 Wi 6),] up 6),1 usz 0 6Z2 up 0
1 1
&) = 5 Oy, 0 0 [, &= 5 Onur 20,uy  Onuz|. (12)
(9),1143 0 0 0 6Z2M3 0



86

The system in the region of the plates reads, from (2),
1 1 )
(E») 7 0,012 + 1—73”0'11 +0:,010 + p,0°u; =0,

1 1
(Eo) ; 0,000 + an]()'m + 0y, 00p + ,Opa)21/la =0, (13)

1 1 , , ,
©) o= 7 (2,62 + A,tr()) + E(zﬂpa" + 4,tr(8™)) + (21,8 + A,tr(sY))

where repeated indices means summation, and with the convention on the Greek letters a,8 =
2,3. In the above relation, & stands for £(u). We shall use the stress-strain relation written in the
inverse form

1 1 , 1+v v,
@ Loyl 20X Yoy, (14)
1 n E, E,
Eventually, the boundary conditions read
0,=0, i=1,2,3, atzZzJ_rgoZ’/l (15)

and are complemented by boundary conditions at y; = 0, 7 assumed to be known (they will be
justified later). We seek to establish the effective behaviour in the region of the array in terms of
macroscopic averaged fields which do not depend anymore on the rapid coordinate z, associated
with the small scale £ as the following averages taken along rescaled variable z,. These averaged
fields are defined at any order n as

——y ’ 1 n ’ py ’ 1 n ’
W”(yl,X)=—Afw O1,22,X") dza, 7r"(y1,X)=:f7r(y1,Zz,X)de,
ot Jy tJy

withY = {z, € (—g02/2, 902/2)} the segment shown in figure 3.

Y1

212

>

Figure 3: Analysis of a single plate in rescaled coordinates, (9) with Y = {z, € (—go? /2, cpf’ /2)}; the analysis holds within
the plate far from its boundaries at y; = 0, /.
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3.1.2. Sequence of resolution and main results of the analysis
We shall derive the equation satisfied in the region of the array, and additional results on the

stresses (ﬂ?i, n}i ), i =1,2,3, required to establish the effective boundary conditions at y; = 0, h.
The main results will be obtained following the procedure :

1. We establish the following properties on °

0 =0, n,=0,i=1,23, 2% =0. (16)

2. Then we derive the dependence of (w%, w!) on z, which have the form

=Wi(x), w)=W)y,x), wi=W)x),

Lo A, WY WY 17
wy =W1(X) 2(/1—4-/1)(9 ( ) 1——0’1,X)Zz, W —W(yl,X)
P
and
21170
= E_oW 2(0,X) 22, 7Y = @E %(X')- (18)
NI g O T TR Gy

3. Eventually, we identify the form of 7r_'1i, i = 1,2,3, and the Euler -Bernoulli equation
governing the bending Wg. Specifically

7 01,X) = p,wte W) (h - y1),

E,_gPOW
a-v) 12 ay 01, %), (19)
P

F%Z(ylv X/) = -

— O*W?

1 A 3 ’ 270 (o’ 7

n13(y1,x)—so(Ep—ax2 (X') + P, Wi (x >)(h—y1),
3

and R
E, P d'w)

2 1170
— p,w W5 = 0 20
(1- Vf) 12 (3)/‘1t ’ (20)

In the remainder of this section, we shall establish the above results. We shall denote (E;)", (E,)"
and (C)" the equations which correspond to terms in (13) factor of 7".

3.1.3. First step: properties of n° in (16)

From (E;)~? and (E,)"? in (13), we have that (’)Zzn?z = 0,7 = 1,2,3, which along with the
boundary conditions at z; = =¢h/2 leave us with 73, = 0. Next from (E;)~! and (E;)~!, we
also have that 8,79, + 0,7}, = 0 and 8}17r‘])3 + 8177753 = 0; by averaging these relations over Y

and accounting for 7r2l| oy = = 0, we get that 7T11 and 7r13 do not depend on y;. We now anticipate
the boundary condltlon ﬂ“(h X') = 7r13(h x’) = 0 that we shall prove later on (see forthcoming

(54)), we get 71” = 7r13 = 0 in Y. We have the properties announced in (16).

8
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3.1.4. Second step: (w°,w") in (17) and (71(1)1, 7123 ) in (18)

Some of the announced results are trivially obtained. From (C’)‘2 in (14) along with &2 in
(12), we get that 3ZZW? =0,i=1,2,3. From (C] 1)‘ and (C| 3)‘ along with &% and &" in (12),
we also get that 0y1 w! = d,,w) = 0. This leaves us w1th the form of w” in (17). Next (C,,,)™!
tells us that 8,,w, = 0, in agreement with the form of w}, in (17). We have yet to derive the form

2"a
of wl, which is more demanding. From (C’lz)‘l, HZZW} = -0y, wg and thus
’ an ’
w, =W1@1,X)—H—(Y1,X)Z2, (21)
V1

but we can say more on W. Let us consider the system provided by (C;;)? and (C»,)°, specifically

{ ﬂ(l)l = (/l +2/'lp)a}1wl +4 (ax" Wa +(9 Wz)’ (22)

0= (A, +2u,) (6X2w2 + 612w2) +4, (8x3w3 + (9),1w}) ,

where we have used that ), = 0. After elimination of d,,w3 and owing to the form of w) in (16)
and that of wi in (21) (at this stage), we get ﬂ?l =a(y;,x")zp + b(y;,x’) with

0

E, W) 2u, , aws -,
@l,X)+ﬂp7(X) , (23)

w
Ty g 0¥ b= :

0
e N Y5 W idia
up+2up>((‘ )G,

(we have used that E, /(1 — vf) =4u,(u, + 4,)/(4, + 2u,)). It is sufficient to remark that 71'_(1)1 =0
imposes b = 0 which provides 7r(1)1 = az, as annouced in (18). We also get

’ 1/’ /l aW
Wi, X) = W (X)) = =————(x) yi, (24)

2(A, + u,) Ox3
which along with (21) leaves us with the form of w{ in (17). The same procedure is used to get

79, which, from (Cs3)°, reads

195 = (4, + 2u,)0, w3 + 4, (8).lw} + O, W) + 6Z2w§) . (25)
Using that ﬂgz = 0 to eliminate d,, w%, we get

oWy 24,2, WY

”33_Ep_( )_/l 2, 0y —201.X) 22, (26)

which after integration over Y leaves us with 7r33 = t,DE awy ——(x’) as announced in (18). Inciden-

P dx3
tally, w2 can be determined from (22) and we find

A, WY 12
+ W51, X)). 27

2__8_Wg( x') + Lai(x) _r
"2 = 0xy It /l + 2u, 6yl 2

2(/1 +/,lp) Ox X3

3.1.5. Third step: the ﬂ_il in (19) and the Euler-Bernoulli equation in (20).
We start with (E;)° and (E,)° in (13) integrated over Y, specifically,

on',
—lll+ppwzgoW?=0, Wllz+ppw2<pW0=0, —13+—+ w2W§)=0, (28)
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where we have used E = 0 from (16) and 7 - gy = 0. Since W9 and WY depend on x’ only,

1 0 —
and accounting for 7r23(x’) = (,DEP%(X/) from (18), we get by integration the forms of ”}1 and
7?3 announced in (19). Note that we have anticipated the boundary conditions Jr_}l =0aty, =h,
see forthcoming (54).

The equation on ”}2 in (28) will provide the Euler-Bernoulli equation once n}z has been
determined (the integration is not possible since Wg depends on y;). To do so, we use, that

2 /0
5 7% (y1,X) 25 from (18). After

1-v} ay

integration and using the boundary condition of vanishing ﬂ}z at zp = +¢f/2, we get that

Gy]n(l)l + azzn}Z = 0, from (E;)~! in (13), along with ”(1)1 =

63 0 222

1 P 1 ’ 2 14

__ B IW o (2-£8), 29
Ty 231 _V]?) 6y? O1,x) (Zg 4 ) (29)

hence the form of 7@ in (19). It is now sufficient to use n}z in (28) to get the Euler-Bernoulli
announced in (20).

3.2. Effective boundary conditions at the top of the array

To derive the transmission conditions at the top of the array, we perform a zoom by substi-
tuting y; used in (9) by z; = y;/n, see Figure 4a. Accordingly, the expansions of the fields are
sought of the form

u= Z n'v'(z,x), o= Z 't (z,x'), (30)
n>0 n>0
where we denote z = (z1,22). The coordinate z; € (—o0,0) accounts for small scale variations
of the evanescent fields at the top of the plates. Next, the boundary conditions will be obtained
by matching the solution in (30) for z; — —co with that in (9), valid far from the boundary, for
y; — h. This means that we ask the two expansions to satisfy

V@2, X) + v (21, 20, X) + T wo(h +nz1,20,X) + qw' (h + nz1, 22, X) + -+
o

(and the same for the stress tensors); note that we have used that y; = nz;. It results that

~ owd . o
lim vz, x") = w'(h, 20, X)), lim (VI(Z, x) -z al(h,zz,x’)) =w'(h,2,X)),
] —™—00 Z]‘)*OO
| o G31)
lim 7%z, x) = 7°(h, 25, X"), lim (Tl(z, x) -z Bi(iz, 2, X')) =7l (h,z,X).
7] —>— 7] —™>—00 yl

According to the dependence of the fields in (30) on (z, x), the differential operator reads as
follows

1
V- ? Vi + Vy, (32)
and we shall need only the first equation of (2), which reads

1
(e) ? div, o + divy o + ppwz u=0, (33)

10
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Figure 4: Analysis of the effective conditions at the top and at the bottom of the array. (a) Half strip at the top of the array
in z = (z1,z2) coordinate with z; € (—c0,0), (b) Strip at the bottoonf t}Ale array with z; € (—o0, +0); for z; € (—00,0),
the terms in the expansions (30) are periodic with respect to zp € (=£/2,£/2).

where div, and divy mean the divergence with respect to the coordinate z and X’ respectively.
In (33), (¢)™% and (e)”! tell us that div,7° = div,7' = 0, that we integrate over Z = {z; €
(=zm,0),22 € Y} to get faz . .nds= ff)z 7! .nds = 0. On 3Z (see figure 4(a)), 7° -nand 7! - n
vanish except on the bottom edge Y of 9Z at z; = —z,, where n = —e;. It follows, from (31) along
with ﬂ?i = 0in (16), that

0= limfro-ndsz—fﬂ_(l)i(il,x’)e,-, 0= lim Tl-ndsz—én_}i(il,x’)e,», (34)
oz

In— In— Jo7

which provides the boundary conditions

(X)) = (hx)=0, i=123. (35)

The conditions on 7%,

in the previous section, see (19). Eventually, the condition ﬂ_}z(iz, x) = 0 along with the form of

are consistent with (16). The conditions on ”11 and ﬂi 5 are those anticipated

ﬂ}z in (19) leads to the condition of zero shear force

*wy
3
1

(h,x') = 0. (36)

We have yet to derive the condition of zero bending moment. First, integrating div,7° over
Z, we get 0 = faz T?jl’l i dz = fy T?l T dzp. Next, integrating over Z the scalar quantity
a - div,70 = aiﬁzjr?j = 0 (since div,7° = 0) with a = 2, e; — 71e;, and further integrating by parts,
we get that

_ 0 a. 0 _ 0 _ 0
0= f ai Tjjhj ds = f 22Tl =—, dz me 1202122, dza = f 2Tl =—, dz2, 37)
0z Y 11 Y Y
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(the integral on 9Z reduces to thaton Y at z = —z,,). From (31), when z,, — +co, fY 2 T?l =z
_ 2
zyr?l (h,x’) and, with Jr?l = —% %(yl ,X’) 7o from (18), we obtain the boundary condition
P 1
21170
2 /7 o1
(h,x") = 0. (38)
2
oy,

3.3. Effective transmission conditions between the substrate and the region of the array

To begin with, we shall need the solution valid in the substrate far from the interface at y; = 0;
this solution is expanded as

u= Y v, ox =) i1'e"®, (39)

n>0 n>0

with no dependence on the rapid coordinates, while in the array it is given by (9). As in the
previous section, a zoom is performed in the vicinity of the interface between the substrate and
the region of the array, owing to the substitution y; — z;. In the intermediate region, the fields
are expanded as in (30) with the interface at z; = 0 and z; € (—o0, +00), see Figure 4(b). It is
worth noting that for z; € (—o0,0) the terms in the expansion (30) are assumed to be periodic
with respect to z € (—2/2, 2/2) while for z; € (0, 0) we have 7, € (—(,02/2, 902/2). Note that
in principle we should use different notations for the expansions and for z; since their meaning
is different; for simplicity, we keep the same notations. The transmission conditions will be
obtained by matching the solution in (30) for z; — +co with that in (9) for x; — 0%, and for
z1 — —oo with that in (39) for x; — 0~. Matching the solutions hence means (with z = (z1,22)
and X" = (x2, x3)),

V@ x)+ v @ x) +- ~ w00z, x) Pz, X))+
71—

VO(Z’ X’) + T]VI(Z, X/) oo Z :+oo WO(TIZI 7Z27X/) + UWI(UZI’ Z2’ X/) +oe ?
1

where we have used that x; = n’z; and y; = nz;. It results that

lim v(z,x)=u’07,x), lim vl(z,x)=u'(0",x),
21——00

Zr?—w> 0 ’ 0N . 1 ’ 10— <« (40)
lim 7°(z,x") =0"(07,x), lim 7'(z,x") =0 (07,x),
[ hmdniss] 7] —>—00
and that
: 0 ’ 0/n+ ’ : 1 ’ 6W0 + ’ L0t ’
llm V(Z’X):W(O ,Z2’X)’ llm V(Z’X)_ZI (O 5Z27X) ZW(O 7Z27X)7
Z]1—+00 Z1—+00 ayl
: 0 ’ 0/t ’ : 1 ’ aﬂﬂ + ’ 10+ ’
lim 77(z,x") =7 (07, 22,X), lim |7(z,x") =21 7—(0",22,X) | =7 (07, 22, X).
Z]1—+00 Z1—+00 ayl

(4D
In the intermediate region, and with the differential operator in (32), we shall use that the equi-
librium (e) in (33) applies. Also, we shall use that from (2), the constitutive relations read

1 ) ,
(©) o== (2u, & + A (M) + <2ya &% + A tr(s" )I),

| 1+
() &+ =g = d+v) o- = tr(o) 1.
n E, E,
12

(42)




(& stands for £(u)) which apply in the substrate, a=s, and in the plate, a=p. We have defined

26211/{1 ((’Lzul + BZ, Mz) (921 us
1
&) = 3 (O, u1 + 0;u2) 20, us O, us . (43)
821 us azzu3 0

The continuity of the displacement is easily deduced. From (c’)~2 in (42) along with (43),
v does not depend on z, and (), v)) correspond to a rigid body motion, i.e. W) = Q)(x')z; +
V) (x') and v) = —Q(x)z; + V3 (x'). The periodic boundary conditions in the substrate im-
pose Q¥ = 0; next, the continuity of the displacement at z; = 0 imposes Qg = Q% = 0and
v = VO(x’) = VO(x’). Eventually, the matching conditions (40)-(41) at order 0 impose that
u’(07,x) = VO(x') = wo(0*, 2, X’), and making use of (17)

u)(07,x) = W), ud(07,x') = W(O",x)). (44)

For the same reasons, v! = V!(x’) is a constant displacement, which from the matching condi-
tions (40)-(41) at the order 1 lead to the relations V'(x’) = u' (0™, x’) and

1.0+ ’ 1/’ . awo + ’
w (07,22,x) -V (X)= lim z;—(07, z5,X"). 45)
Z1—+00 (9)’1

As the left hand side of the above relation does not depend on z;, we deduce that V!(x’)
u'(07,x") = w!'(0%,23,x") and 8, w’(0*,2,x’) = 0. From (17), we already know that 8, w!
dy,w§ = 0 but the condition for w) = W(y;,x’) is not obvious and it provides the boundary
condition for WY of the form

0
—20*,x") =0. (46)

Ay
We now turn to the effective conditions on the force. From (e)2 in (33), we have div,7° = 0
that we integrate over Z = {z; € (0,2,),220 € Y} U {21 € (=2, 0),20 € (=£/2,£/2)}. Accounting
fori) 7°-n continuous at z; = 0, i) 7°-n = 0 between the plates and the air, iii) 70 periodic at z, =

”

-2 -
limit z,, — +oco and the matching conditions (40) - (41) along with ﬂ(l)i = 0 from (16), we get

+0 /2 in the substrate, we get that T(l’l.(—zm, 22,X')dz, = fy T(l)l.(zm, 22,X") dz,. Considering the

of(07,x)=0, =123, (47)

which tells us that the plates do not couple to the substrate at the dominant order. The coupling
appears at the next order, starting with div,7' = 0 from (e)™" in (33). As for 7° and using again
that 7, = 0, we get that o7},(07,X') = 71} (0%, x'); eventually, using x|, in (19), we get

- 7 ’ - o E ¢322 63WO
o1, (07,X) = p,0*eh WAX), ol (07,x) = — — 2

(0%, x"),
(1-v) 12 4y

2 1/0 (48)
1 - o 7 9 W3 ’ 21170 (o

0-13(0 ’X):Sah Ep 6)62 (X)+ppw W3(X) .

3
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3.4. The final problem

The effective problem (3) is obtained for (u = u’, o = 0 + o) in the substrate for x; < 0
and (u = W% o = 7% + x!) in the region of the array for x; > 0. Remembering that y; = x; /5
and h = h/n, {=¢ /1%, it is easy to see that (i) the Euler-Bernoulli equation in (3) is obtained
from (20), (ii) the effective boundary conditions announced in (5) from (36), (38), (44), (46) and
(47)-(B.35).

0

4. Numerical validation of the effective problem for a two-dimensional problem

In this section, we inspect the validity of the effective problem in a two-dimensional setting
for in-plane elastic waves (u3 = 0, d,, = 0). We solve numerically the actual problem of an
incident plane wave coming from x; — —oo at oblique incidence on the free surface supporting
the array of plates, and Lamb waves are excited in the plates. This is done using a multimodal
method with pseudo-periodic solutions in the soil and Lamb modes in the plates; the method is
detailed in [55]. In the effective problem, the solution is explicit, from (3) - (5) or equivalently

(©)-(7).

We set the material properties for the elastic substrate: v, = 0.2, E, = 2 GPa, p, = 1000
Kg.m™3, and for the plates : v, = 0.3, E, = 2 GPa, p, = 500 Kg.m™>. We choose ¢ = 1 m,
@ = 0.5, and we set 7 = Vi = 037 (w = 124 rad.s™!), hence x = 0.64 m~'. We shall
consider 4 € (0,30) m resulting in k2 € (0,20) which includes the first 6 bending modes for
h=hy,n=1,---,6: h ~3m, h ~73m, h3 ~ 123 m, hy = 172 m, hs = 22.1 m,
he = 27.0 m. The first resonance of the quasi-longitudinal wave along x; appears for 1 =

m/Qw) |E,/((1 - Vf)pp) ~ 26.5 m, hence it will be visible in our results.

4.1. Reflection of elastic waves - the solution of the effective problem
We define the potentials (¢, ¥) using the Helmholtz decomposition, withu = Vg +V X (¥ e3).
The incident wave in the substrate is defined in terms of the incident potentials

¢mc()C1, -x2) — ALeiaLxleiﬁXZ, l!/i"C(XI, -x2) — ATeiaTxleiﬁXZ,
(49)
with (a,,8) = k. (cosb,,sin6,), (ar,B) = k; (cosby,sinb;),

T
011 = Zuy,012 = Z f(Kkh) ug ‘ o

RLTAEII‘“:; RLLAi]:‘C

L

Figure 5: The effective (partial) problem — Reflection of an elastic wave on the surface x; = 0 where effective boundary
conditions (6) apply. The incident wave is defined by (49) and the solution by (50). The arrows show the wavevectors.
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withk, = /7 fszﬂ_ w and k; = % w. The solution in the substrate reads

(50)

d(x1,x2) = ¢inc(x1, x2) + (R AL+ Rip Ar) e eiﬁxZ’
lﬁ(xl 5 x2) = lﬁim(xl s Xz) + (RTL AL + RTT AT) eimel eiﬂxz .

The effective problem can be solved explicitly. Accounting for the boundary conditions (6),
it is easy to show that

1
R, = D [sin 20 sin 26, — §2 cos? 20, — ita(cosb, —Ef cosOr) — fazf cos(f, + GT)] ,

1
R, = D [sin 26, sin 26, — ‘52 cos? 20; + ifa(cos @, — Ef cosbr) — .fazf cos(6, + HT)] ,

2 5in 26 sin 26,
R = —é# (2 cos 26; + azf), Ry = D = (2 cos 26; + azf),
where D = sin26;sin 26, + §2 cos® 26, — ita(cos B, + Ef cosOr) — faz fcos(6, — 6y),
in @ 2(1 — v,
£ stands for f(xh)in (7 and & = 500 = [2LZV) Py
sin O; 1-=2v, Ps

(51D

In the above expressions a = Z/(uk;) (and Z in (7)) measures the strength of the coupling

between the plates and the substrate. Expectedly for a = 0 in (51), we recover the reflection

coeflicients for a flat interface, see e.g. [56]. Itis worth noting that the same reflection coefficients
are obtained by solving the complete problem (3)-(5).

As previously done, the displacement fields in the region of the plates x; € (0, k) are ob-
tained owing to the linearity of u;(x, x,) with respect to u;(0, x5), i = 1,2, and the continuity of
u;(0, xp) between the plates and the substrate, see Appendix A. The displacements u;(0, x,) can
be calculated from the reflection coefficients in (51), resulting in

u1(x1, x2) = u1(0,x2), ua(x1,x2) = uz(0, x2)V(x1),

. 2k .
u1(0,x;) = % [2cos 6, (cos 20, — icos by af) A, +sin26; (2cos 6, — ié af) A;] P,

" '
(0, x5) = IBT [sin 26, (2 cos 6; — ia)A, — 2& cos O;(£ cos 260, — iacos 6,)A,] €™,
_ Vilkh) [cha(x; — h) + cos k(x; — h)] + Va(kh) [sha(x) — h) + sink(x; — h)]
- 2 (1 + chkh cos kh) ’
with  Vi(kh) = (chkh + coskh), V,(kh) = (shkh — sin kh).

V(x1)

(52)
As a reference case, typical displacement fields (i, u,) for a surface on its own (4 = 0) are
reported in figure 6 for three incident angles 6,. The incident wave is of the form (49) with
A, =1/(2B),Ar = —1/(2a;) producing an incident horizontal displacement equal to one meter at
X1 = 0.
15
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g T

Q

&

=

.. SR

< :

= M b - 25
5 =

| — S

o] 2.5
Q

2 — - -

5}

g

k| ‘
g’

2 - -

o B

“‘-‘An =

Figure 6: Reference case — Vertical u; and horizontal u, displacement fields inside the substrate in the absence of array
of plates (linear colorscale in m) for three different angles 6; . The fields are shown for x; € (—=100,0) m and x, € (0, 120)
m.

4.2. Weak and strong interactions between plates and substrate

The effect of the array of plates is encapsulated in the impedance parameters (a, f), or equiv-
alently (Z = pk:a, f), whose variations versus k;h are reported in figure 7. The parameter
Z = p,w*¢h tells us that heavier plates and higher frequencies produce higher coupling with
the substrate, which is not surprising. The parameter f encapsulates the effects of the bending
resonances and it diverges when approaching them. This occurs at the frequencies such that
chkh cos kh = —1 which correspond to a clamped- free single plate (#2(0, x;) = 0 from (6) im-
posed by Z — o).

}1,3 15 h4 }L5 h/()' 30

Figure 7: Variations of the impedance parameters a = Z/(uskr) in (51), and f in (7), versus h. The parameter f diverges
at the resonances of the clamped - free plates for chkhcosxkh = —1.

4.2.1. Weak interaction

Between two successive resonances, the interaction between the substrate and the plates is
weak. Indeed, from (6), with Z being small and f(«h) of the order of unity, the wave impinging
the surface sees essentially a flat surface, with 011 =~ o015 = 0 at x; = 0. The resulting patterns,
not reported, are indeed similar to those obtained for 4 = 0 in figure 6. Since there is not much
to be said on the field in the substrate, we focus on the capability of the complete effective
solution to reproduce the actual displacement in the plates. Figures 8 show a small region of
the displacement fields near the interface ( 6, = 45° and 2 = 5 m resulting in kh = 0.7).
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Figure 8: Meaning of the homogenization process — Displacement fields (actual and homogenized) for x; € (=10, 5) m
and x € (0, 20) m (h = 5 m, 6, = 45°).

From what we have said (the interaction is weak), the displacements in the substrate are neatly
reproduced. More interestingly, the displacements in the plates are also accurately reproduced
in an “averaged” sense which clearly appears for the displacement u; : in the actual problem, u;
varies linearly with x, within a single plate, in agreement with (21); this variation at the small
scale is superimposed to a variation, at large scale, from one plate to the other. The small scale
variations do not appear in the homogenized solution; it is the scale which aims to disappear in
the homogenization procedure. It remains that the large scale variations are neatly captured. The
same occurs for u; but in this case, the small scale variations are less visible because they appears

at the order 2 (see (17) and (27)).

4.2.2. Strong coupling near the resonances
Strong coupling in the vicinity of the bending resonances can be measured by the amplitudes

of the displacements in the plates. We report in figure 9 the amplitudes of the horizontal displace-

horizontal displacement

40

o

mean(|uz(h, 2)|) $
id

<)

g
o
o
o]
o

S
&

Figure 9: Amplitude of u, at x; = 0 and x| = & against &, from direct numerics (symbols) and from the effective solution
(52) (plain line); 6; = 45°. Shifts in the resonances & — h — hy, with hyp = 0.22 m are compensated (dashed line). The
inset shows the actual variation of us(h, xp) within a single plate with variations as small as about 10~* with respect to
the mean value.
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176

ment u, against A, at the bottom and at the top of a single plate. In the actual problem these am-
plitudes are calculated by averaging over x, € (=¢,/2,¢,/2) the profiles |u»(0, x,)| and |u(h, x7)|
obtained numerically. In the homogenized problem |u,(0, x;)| and [uz(h, x2)| = |V(h)u,(0, x,)| are
given in closed-forms from (52).

For h € (0, 15) m, the first three bending resonances are visible by means of high displace-
ments at the top of the plates (up to 40 times the amplitude of the incident wave in the reported
case). It is also visible by means of vanishing amplitude at the bottom of the plate, in agreement
with (52) for f — oo. Hence, near the bending resonances, the plates, with clamped-free bound-
ary conditions, impose a vanishing horizontal displacement at the interface with the substrate,
a fact already mentioned in [22]. In the substrate, the resulting displacements are significantly
impacted. Large values of f(«h) produce

.2 .
. cos o, . sin“ @ . sin @, cos 6, Lo
R, ~—-1-2ia 5, Ry =~1+2ia L, Ry ~2ia———"—""= Ry ~ —2iasinf;. (53)
& cos 0, &cos b,
(91_ = 200: }7,1 9;‘ = 450, hg 0;‘ = 800, ]7,3

IR

Uy
direct numerics

effective problem

i
L

direct numerics

U2

effective problem
v

Figure 10: Strong coupling between the substrate and the array of plates near the three first bending resonances — The
values of h,, n = 1,2,3 have been taken from figure 9 at the maximum displacements in the direct numerics and in the
homogenized solution (h; =~ 3 m, hy ~ 7.3 m, h3 ~ 12.3 m). Same representation as in figure 6.
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from (51), hence

uy(x1, x2) = 2ik, (A, cos 6, cos @, x| + Ay sin 6, cos arx;) €% + O(a),
‘ (54)
ua(x1, x2) = =2k (A, sin @, sin @, x; — Ar cos 0y sin arx;) 2% + O(a),

corresponding essentially to a superposition of standing waves. Examples of resulting patterns
are shown in figure 10 for the first three bending resonances to be compared with those obtained
for a flat interface in figure 6. It is worth noting that in figure 10 we have accounted for the shift
in h,, n = 1,2,3 in the homogenized solution from figure 9 (h; ~ 3 m, hy =~ 7.3 m, hz =~ 12.3
m), where a systematic shift of the effective solution 4 — h — hg, with iy = 0.22 m in the present
case.

4.3. Occurence of the first longitudinal resonance

To go further in the analysis, we report in figure 11 the reflection coefficients against & €
(0,25) m and 6 € (0,90°). We represent the real and imaginary parts of the 4 reflection coeffi-
cients. As previously said, our analysis does not hold at and above the first longitudinal reso-

Ry, Ry Ry Ryy
(" real part )
) Ll bl b b B b b b b
g
=]
= —~
B e
g £
5
0
,QQ 90 L AL AL ALALA L "I"ETETET T
2 —
+ o
g s B I I
()
§ 0 g
( . . A
imaginary part
90 ‘ ‘ N N “{‘ d ~ Ty
E: ‘
EREED
= Y
o
8 ‘
s 0
90 B It o Tt Tl T
. ‘ ‘ | N
[
S
s 5
=
()
0 3
0 h(m) 25 0 0 h(m) 25
1 0.5 1 1
.0 .2
- J

Figure 11: Accuracy of the effective model on the reflection coefficients — Real and imaginary parts of the reflection
coeflicients versus 4 and 6. The effective coefficients (51) (second row) reproduce accurately the actual ones (first row)
up to the first longitudinal resonance for 7 =~ 26.5 m.
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nance, which appears for 7 =~ 26.5 m; expectedly, the effective model indeed breaks down when
approaching this high value but it remains surprisingly accurate up to 2 ~ 15 m (hence ki ~ 2).

The occurence of this resonance is visible by means of the amplitude of the vertical displace-
ment u;(0, x,), which is reported in figure 12 against 4. We observe the same trends as for the
bending modes. Far from the resonance, the displacement is essentially the same as for a surface
on its own; at the longitudinal resonance, it tends to zero resulting in clamped- free conditions
for the plates. However, it is also visible that rapid variations of the displacements due to mul-
tiple bending resonances superimpose to the smooth variations of the displacement due to the
longitudinal resonance.

vertical displacement
0.6 T

T T
?ﬁéﬂ_ooo

mean(|u; (0, z2)]) S 8

0 I I I I
h(m)

Figure 12: Occurence of the first resonance in reflection — Variation of the amplitude of the vertical displacement u; (0, x2)
at the bottom of the plates. The bending resonances are superimposed to the longitudinal resonance which produces an
almost clamped condition 1 (0, x2) = 0 for 7 ~ 26.5 m.

4.4. Comment on a mass-spring model used in [22]

As previously said, impedance conditions implying a simple mass-spring resonator have been
used previously in the literature. It was pointed out in [22] that “for practical applications, these
simple cases can be extended to more complex cases, for instance slender beam or plate res-
onators”, and this is the subject of the present study. For the sake of completeness, we report
here the results from [22] in the case of mass-spring resonators forming an “isotropic horizon-
tally resonant surface” as a simplified version of an array of beams with flexural resonances. In
the absence of damping and adapting the notations, the reflection coefficients given in §4 of [22]
(see after (12)) read

1
R = Do [sin 26, sin 26, — §2 cos® 20, + ig-‘zaf'“’s cos GT] ,

m-s

1
R = Do [sin 26, sin 26, — &* cos® 260, — i€*af™ cos GT] ’

2 4in 26 in 26
2 gcos2,, Ry = B2 20520,

m-s __
RLT -

-1
where D™ = sin 26, sin 26, + &* cos® 20, — i&?af™ cosb,, [f™ = (1 - (i) ] ,

erS
(55)
where m-s stands for mass-spring and w,, is one resonance frequency. There are two noticeable

differences between (55) and (51). The most obvious is that f is approximated locally with
20
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f™. However the capability of f™ to reproduce the variation of f is limited; besides a simple
summation of f™ for the succession of resonances is not satisfactory. Next, there are missing
terms in the reflection coefficients. This is attributable to the implicit assumption o; = O far
from the longitudinal resonance (instead of our expression in (5)) which is not true for real
plate/beam resonators. The consequence is illustrated in figure 13 where we report the reflection
coefficient R, against 4 from our model (51) and from [22] (55) together with the numerical
result. Expectedly, the mass-spring model reasonably captures the physics of the interaction but

—0.5 ‘ 0.2

real(R; ;) 0 \j’

-0.8 .
15 0 5 10 15

(b)

Figure 13: Reflection coefficient against / for 6, = 20° — Ry, (green dashed lines) from (51) and R/}* (yellow dashed
lines) from (55) for mass-spring resonators considered in [22]; (a) real part and (b) imaginary part. The results from
direct numerics are shown in symbols (the same shift 7 — h — hg, with iy = 0.22 m as in figure 9 have been used for
readability).

it clearly fails in a quantitative prediction. One the one hand the sharpnesses of the successive
resonances is not reproduced. More visible is the fact that the slow variation of R, with &
is missed; notably, the reflexion at flexural resonances significantly departs from the simple
prediction R, = —1 given by (55), see (53) !.

5. Conclusion

We have studied the interaction of an array of plates or beams with an elastic half-space u-
sing asymptotic analysis and homogenization techniques. The resulting models (3)-(5) for plates
and (B.1)-(B.3) for beams provide one-dimensional propagation problems which in their simpler
form consist in effective boundary conditions at the surface of the ground, (6) for plates and (B.5)
for beams. The exception for plates in the boundary condition 013 in (5) is incidental for in-plane
incidence but it is interesting since it provides non trivial coupling for arbitrary incidence. For
in-plane incidence, the model has been validated by comparison with direct numerical simula-
tions thanks to the multimodal method which show an overall good agreement. In particular,

't is worth noting that this discrepancy is attributable to the contribution of the longitudinal motions; it does not
impact the condition of vanishing horizontal velocity at the free surface. Specifically, in (54), we have
sin 26 . _iag x —i
T (cos@ AL +sinf A7) (e ALY _ p7laTA ) R
T

£cos 6

ur(x1, x2) = =2k (AL sin 6, sin ap.x; — Ay cos Oy sin arx)) €2 — kra

hence u>(0, x2) = 0 as imposed by (6) when f — oo.
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the displacement fields obtained in a closed-form accurately reproduce the actual ones; this is
of practical importance for applications to site-city interaction where the displacements at the
bottom and at the top of buildings are relevant quantities to measure the risk of building damage.

Our models have been obtained owing to a deductive approach which can be applied to a
wide variety of problems. An important point is that the analysis does not assume a preliminary
model reduction for the resonator on its own and as such, it can be conducted at any order. Higher
order models would involve enriched transmission and boundary conditions able to capture more
subtle effects as the shift in the resonance frequencies visible in the figure 9 or the presence
of heterogeneity at the roots and at the top of the bodies as it has been done in [37]. Next,
we have considered bodies with sufficient symmetry resulting in a diagonal rigidity matrices
and which greatly simplify calculations. When symmetries are lost, and the simplest case is
that of beams with rectangular cross-sections, the calculations are similar; they will produce
couplings for incidences as soon as the horizontal component does not coincide with one of
the two principal directions. Additional complexities can be accounted for straightforwardly, as
orthotropic anisotropy along x; or slow variations in the cross-section. Eventually, the models
are restricted to the low frequency regime where only the flexural resonances take place. At the
onset of the first longitudinal resonance, they fail as illustrated in figure 12. Extension of the
present work consists in adapting the present homogenization procedure in order to capture both
flexural and longitudinal resonances and their interplay at higher frequencies.
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Appendix A. Remark on the solution in the region of the plates
From the boundary conditions (5), 2% (h, x,) = 22(h, x,) = 0 and (0%, x2) = u2(0", x2),
O Xl X]

%(OJ’, x;) = 0, the general solution for x; € (0, k) reads as follows

(9)(1
uy(x1, x2) = A(xp) {a(kh) [chk(x; — h) + cos k(x; — h)] + b(kh) [shk(x; — h) + sink(x; — h)]},

with  a(xh) = (chkh + coskh), b(kh) = (shkh — sin kh).
(A.1)
The displacement u, is continuous at x; = 0 and we have 2A(x,)(1 + chkh cos kh) = u(0, x),
hence

uz(x1, x2) = uz(0, x2)V(x1),
(A.2)

Vix) = a(kh) [chk(x; — h) + cos k(x; — h)] + b(kh) [shk(x; — h) + sin k(x; — h)]
P 2(1 + chkh cos kh) '
Obviously, this holds except at the resonance frequencies of the plates for chk.h cosk.h = —1

which imposes u,(0, x;) = 0 (and eigenmodes in the region of the plates). It follows that the
22



26 relation on 02(07,x’) in (5) becomes o 12(07,x") = —(D,/O)V"(0) u2(0, x»), with V'’ (0) =
2er —k*hf(kh), with f(kh) in (6). With 02(07,x’) = (&*D,h/)f(kh) u(0, x2) and ¥*D, = p,w?¢t,
we recover the form announced in (6).

(14 chkhcos kh)/chkh

™~
10.9955

0 4 8 12 16 20

Figure A.14: Bending resonances in the region of the plates (clamped/stress free conditions).
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29 Appendix B. Main steps of the derivation for an array of beams of circular section

Let us derive in this Appendix the effective model for beams of circular section with radius
r,, for which all the derivations are analytical; the circular beams are periodically located in an
array whose unit cell has a section area S (figure 1(b)). In this case, the complete formulation of
the problem reads

In the substrate, x; € (—00,0) : divo + pwu=0, o =2ue+Atr(&)l,
1/4
*u, w3nr?
In the region of the beams, x; € (0, k) : o _ Ku, =0, a=2,3, «k= s ,
6)641‘ Dp
(B.1)
where
71'7';t
D,=E, —*, (B.2)
4
is the flexural rigidity of the beams, complemented by the boundary conditions
o11(07,X) = p,w’eh (0, x2),
0 x)= -2 Ptage
Ol s = - s X2),
1 S o 7
Aty (B.3)
u(l(0+9xl) = M(Y(O_’X,)7 _(O+9X,) = 07
(9x1
62 a 63 @
%Xy = 22X =0, a=23.
Oxy X
where ¢ = ﬂrf /S . It follows that the problem can be thought in the substrate only, with
dive + pw*u=0, o =2ue+Atr(e)l, x; € (—,0), (B.4)
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along with the boundary conditions of the Robin’s type

o11(0,x") = Zu1(0,x),
(B.5)
012(0,X") = Z f(kh) ue(0,X"),

where Z and f(xh) are defined in (7) (we used that DPK4 = ppw2nrp2).

Appendix B.1. Effective wave equation in the region of the beams

Appendix B.1.1. Notations

We shall use the same expansions as in (9) but now, the terms w” and x” depend on z' =
(22, z3) (and not only on z;) and we seek to establish the effective behaviour in the region of the
array in terms of macroscopic averaged fields

_ 1 — 1
W"(yl,X/) = — fw"(yl,z’,x') dZ,, ﬂn(yl,X’) = — fﬂ"’(yl,z’,x’) dZ,, (B6)
oS Jy S Jr

where X’ = (x, x3) and Y represents the circular section of the beam Y = { A /z% + z% < f’}, with

7= rp/n2 and § = S/774. It is worth noting that it is sufficient to replace z, by z’ in (10) to (15);
in particular, we have

0 1
Vol v, 4V, (B.7)
noyi n
and
0 6ZZW1 6Z3W1
, 1
& (w) = 3 0, w1 20,w» (O w2 + 0,w3) |- (B.8)
613W1 (613 wa + 612 W3) 2613 w3

Appendix B.1.2. Sequence of resolution and main results of the analysis
The analysis becomes more involved since the problem is two-dimensional in the rescaled
coordinate z’. The procedure is thus more complex. It is as follows:

1. We establish that

9, =0, (B.9)
and the dependence of w” on (25, z3), specifically
W= W), wy = Woon,x), (B.10)

2. We deduce the form of #° and of w!
2
) = —E,— S 01X 2 Wy =5 =0,
oy

1 _ lre’\ BWg ’ 1 _ 1 ’
wy =W X)) - —=—00LX)20 W, = W,(1,X).
Iy

(B.11)
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3. eventually the form of n_{l and the Euler-Bernoulli equation for the bending W0, a = 2, 3.
Specifically
mh o1,x) = pwle W(x') (h - y1),
T oux) = -, EEOWa 12
ﬂayhx = - __y17X s
1 P 4 ay?
and 2 4410
P 0w,
VT gt P Wa =0 (B.13)
1

Appendix B.1.3. First step: 77_(1)1 in (B.9) and w° in (B.10)

This step is not very demanding. From (E\)™! in (13), 8,79, + 0,7, = 0, which after
integration over Y leaves us with (%,E = 0; anticipating 71'_(1)1 = 0 at the top of the beams (as we
did for the plates), we get 71_(1’1 = 0 everywhere, as announced in (B.9).

Now, from (C},)"% in (14), 8.,w! = 0 and from (C},)™" d,,wY = 0. It follows that w depends
only on x’, in agreement with (B.10). From (C;ﬁ)‘z, wg is a rigid body motion i.e.

wd = Wy, x) + Q°(y1, X' )(e1, 7, e,), (B.14)

with (e1,7’,e,) = e; - (z X e,) being the triple product, and we shall establish that Q° = 0. To do
so we infer, from (C},)™", that

Doy + Oyl =0, = 8y, (9,18 - dwd) = 0. (B.15)
Inserting (B.14) in (B.15) tells us that Q0 does not depend on y; and anticipating the matching
condition with the displacement in the substrate which imposes that Q° = 0 at y; = 0 (see

forthcoming (B.41)), we deduce that Q° = 0 everywhere, and (B.14) reduces to the form of w’
announced in (B.10).

Appendix B.1.4. Second step: (r°,w') in (B.11)
We start by determining w' incompletely (compared to what is announced in (B.10)). For
w}, we come back to Bzaw} + 0y, w2 = 0in (B.15), and w® in (B.10) provides us with

1 _ ’ an ’
wp = Wi, X)) = — 1, X) Za, (B.16)
o

and it remains for us to show that W; does not depend on y;; this will be done after ”(1)1 has been
determined. Next, from (C;ﬁ)“, w) is a rigid body motion, hence

wh = W, x) + Q' (1, X )er1, 7, e,). (B.17)

Now, we shall prove that Q! = 0; this will be done once ﬂ?a have been determined. For the

time being, we pursue the calculations by setting the boundary value problem set in Y for the
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unknowns (ngﬁ, w(zl). From (E,)? and (Caﬁ)0 in (13), it reads

{ 0ym0s =0, 10, = 241, (855(W0) + &2, (W) + 4, (D), w] + 85, (W) + 82, (W?)) 6, In ¥,

ﬂ'gﬁl’lﬁ =0 on dY,
(B.18)
with w known from (B.10) and w} from (B.16) at this stage. It is easy to check that the solution
of this boundary value problem is

ngﬁ =0,
, A ow A
: LX) + s——gq + W21, X)) + Q2(y1, X )(e1, 7, e4),

2 X 0
wy, = —e, s (W)ig— ————Zo——
B 2, + 2) ™ 2, + 4,) 5,19
where

2 2\ 210 21170 2 2\ 20 21170

5 z5)0°W; 0"W; 5 ) 0°W; oW,
-1 -2 + 777 s == - = + 707 . B.20
8 (2 2J6y% ot T2 2) e T o (20

The above form of w3, along with wY, in (B.10) can now be used to find 79, = (2, + 2,) 9y, w} +
(0 wl+a, w ) and we get

Xo "M Za

aw, O*W?
”(1)1 =F, (

()’I’X)_ yZQ (YI»X/)Za), (le)
1

where we used that E, = 1,(2u, + 34,)/ (i, + 4,). It is now sufficient to remember that ”_(1)1 =0to
get that 9, W; = 0, hence the above expression of 71'(1)1 simplifies to the form announced in (B.11)
and w] in (B.16) simplifies to to that in (B.11).

We now use the boundary value problem set in ¥ for the unknowns (x9 , w?). From (E;)~?
and (C},)° in (13), it reads as follows

0 _ 0 _ 1 0 2 :
{ 0,m, =0, ml =pu, (6yl Wy + 0, Wi + 3qu1> , InY, (B.22)

n‘l’an(,:o, on oY,

with w? known from (B.10) and w), from (B.17) at this stage. The solution is found to be of the
form

), ,upa (yl,X)(el,Z e,),
(B.23)
ow W
2= Wiy, X) — 24 ( (Yl,X)+ (X)]

and we see that Q' = 0 implies 7 = 0. To show that Q' = 0, we use 9,7 + Bzﬁﬂaﬁ 0

which we infer from (E,)~'. Multiplying by v = v,e, with the triple product v, = (e}, 7', e,) and
integrating over Y, we find that

fv(,('iylﬂ?a dz’ + f vaﬂfwnﬂ dl - f@zﬁvaﬂ;ﬁ dz’ = 0. (B.24)
Y oy Y
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Since &' is symmetric and Vv is anti-symmetric, we have 6Zﬁv(y7r(1yﬂ =0, and ﬂ(lyﬁn’g = Oon Y.
Hence, (B.24) reduces to

0ﬂ? aZgzl 5
fva—" dz’ =0, hence —(1,X) f(el,z’,ew) dz’ =0. (B.25)
y  On Oy; Y

Next, with (e1,2’,e,)* = |z/|* whose integral does not vanish, we obtain that d,, Q' does not
depend on y;; anticipating that d,, Ql(h,x') = 0 (see forthcoming (B.35)) and Q'(0,x’) = 0 (see
forthcoming (B.41)), we deduce that Q=0 everywhere. It follows that "?a = 0, from (B.23),
and that w} = W!(y;, x’), from (B.17), in agreement with (B.11).

Appendix B.1.5. Third step: ﬂ_{l in (B.12) and the Euler-Bernoulli equations in (B.13)
This starts with (E)? in (13) integrated over Y, specifically

omly ey M

— +p,w W, =0, <

ay T ! I

+p,wle WY =0, (B.26)

where we have used that 70 = 0 from (B.9) and (B.11) and n’n;5y = 0. Since W? depends only

on x’ and anticipating that n_}l(ﬁ, x’) = 0 we obtain the form of ﬂ_il in (B.12) by integration of
(B.26).

To get n_ia, we multiply (E;)~! (which reads 6),171(1)1 + Bzﬁn}ﬁ = 0, with "(1)1 in (B.11)) by z,
and integrate over Y to find that

FwW
E,——(1.x) f Zazp ds + f 75 0ap ds = 0, (B.27)
oy, Y Y

where we have used that ﬂi 5 nﬁmY = (. For the circular cross-section of the beams, fY 2pz3dz’ =0
and f},zgdz' = fyzgdz’ = ni* /4. Tt follows that
it P WY

Sa k) = T OWa B.28
7,01, X)) T oy 01,x") ( )

in agreement with (B.12) (with oS = ni?). Coming back to (B.26) with the above form of E,
we deduce that
x# GWO
"4 ay;*

—p,w*eSW? =0, (B.29)
in agreement with (B.13).

Appendix B.2. Effective boundary conditions at the top of the array of beams

As we have done in (30), we consider the following expansions for the displacement and
stress

u= Z "V'(z,X), o= Z 7' (z, X)), (B.30)

n=0 n=0
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with now z = (z1, 22, z3). We use (e) in (33) which provides us with div,7° = div,7' = 0, and this
makes the calculations identical to those conducted in §3.2 for the plates when integrating over
Z = {z1 € (—00,0),z’ € Y}. We thus obtain

(2 X) =l (2 ,X)=0, =123, (B.31)

(see (54)). The conditions on ﬂ(l),.

that anticipated to find (B.12). Eventually, the condition on
the conditions of zero shear force

are consistent with (B.9) and (B.11). The condition on E is

1 combined with (B.12) provides

31170

wo .
25 (h,x') = 0. (B.32)
1

To derive the condition of zero bending moment, we proceed in the same way as we have done in
(B.24); with v = v,e, and v, = (e}, z, e, ), we consider the vanishing integral fz vaaz,.T?a dv =0,
hence

f vo,T?ani =0, (B.33)
oz
where we have used that 9, var?a = 0 by construction. Because 7° - n vanishes on 0Z except at
the bottom face z; = —z,, and passing to the limit z,, — +oo, this integral reduces to
f vo ' (b7 ,x') ds = 0. (B.34)
Y

Making use of (B.23) leads to the anticipated boundary condition

Q.
%(h,x’) =0, (B.35)

that we have used to get 7r; , = 0. It remains to derive the condition of zero bending moment. By
considering a = z, e; — z1€, and integrating over Z the scalar a - div,7° (since div,7° = 0), we

found that
“_—f a'Tij J CLS - fZ(yzll‘7 dS—me r10|1— : dsv (B.36)

_ . . .. _ 0., . _ 0
for @ = 2,3. Since we have in addition 0 = faz T ds = fy Tlafey =z, ds, we can pass to the

limit z,, — oo, and get 0 = fy z(,‘r(l)l - z(,ﬂ(l)l(fz, x’). Now accounting for ﬂ(l)l in (B.21), we obtain
the expected boundary condition
;WO .
55 (h,x') = 0. (B.37)
1

Appendix B.3. Effective transmission conditions between the substrate and the array of beams

In the vicinity of the interface between the substrate and the array of beams, we consider the
same expansions as in (B.30), and at the dominant order, we still have div,7° = div,7! = 0. The
calculations are identical to that conducted in §3.3 when integrating over Z = {z; € (0, +0),Z’ €
Y}U{z € (=0,0),2" € (=£/2,/2)*}, and we find

ot (07,x)=0, i=1,273, (B.38)
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which are consistent with (B.9) and (B.11). Next, using ”_}z in (B.12), we find

att PWY

o1 (07.X) = pw’ 9 hW)(X), ,(07,X) = —E, 5= —=2(0.X)). (B.39)
45 dy,

We have yet to establish the continuity of the displacement. From the counterpart of (c’) in (42)

(with z” — z), it is easily seen that we have at the dominant orders

&) =& =0. (B.40)

Therefore v* and v' are piecewise rigid body motions, namely v/ = Q/(x’) x z + V/(x'), i = 0, 1.
Invoking the periodicity of v/, i = 0, 1 with respect to z, and z3 for z; < 0 and the continuity of
v! at z; = 0, these rigid body motions reduce to a single translation over Z, hence Q' = 0. Using
the matching conditions on the displacements, we obtain the conditions that we have anticipated
(see (B.15) and (B.25)), namely

QO0,x)=0"-¢,=0, i=0,1, (B.41)

and the boundary conditions
OW?
W07, x) = W), ud07,x) = W2(0*,x), 8—“(0+,x') =0. (B.42)
Z1

Appendix B.4. The final problem
0

The effective problem (B.1) is obtained for (u = u’,0 = 0 + no') in the substrate for
x1 <0, (m =W’ 0 =a°+na') and in the region of the array for x; > 0. Remembering that
y1 = x1/n and h= hin, 7 =r,/ 772, it is easy to see that (i) the Euler-Bernoulli equation in (B.1)
is obtained from (B.13), (ii) the effective boundary conditions announced in (B.3) from (B.32),
(B.37)-(B.39) and (B.42).
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