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Abstract

Reachability analysis consists in computing the set of states that are reachable by a dy-
namical system from all initial states and for all admissible inputs and parameters. It is a
fundamental problem motivated by many applications in formal verification, controller synthe-
sis, and estimation, to name only a few. This paper focuses on a class of methods for computing
a guaranteed over-approximation of the reachable set of continuous and hybrid systems, rely-
ing predominantly on set propagation: starting from the set of initial states, these techniques
iteratively propagate a sequence of sets according to the system dynamics. After a review on
set representation and computation, the paper presents the state of the art on set propagation
techniques for reachability analysis of linear, nonlinear, and hybrid systems. The paper ends
with a discussion on successful applications of reachability analysis to real world-problems.
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1 INTRODUCTION

Historically, analysis of dynamical systems has been done analytically through the use of math-
ematical notions such as transfer functions, Lyapunov functions, etc. As the complexity of engi-
neered systems has grown considerably over the past decades, there has been a need to complement
these analytical tools by computer-based techniques, which are able to deal for instance with high-
dimensional state spaces or with hybrid (discrete/continuous) dynamics. The current industrial
practice mostly relies on simulation and testing, which makes it possible to explore the behavior of
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a system under various scenarios. While this approach is useful to detect undesirable unforeseen
behaviors that need to be corrected, it suffers from the limitation that it is not possible to explore
exhaustively all possible scenarios and that therefore it does not provide any formal guarantee that
the system is correct.

In the early 1980s, research on model checking of discrete state dynamical systems [1, 2] was
initiated with the objective of proving automatically that a system satisfies some requirements. The
domain has had a great impact with many industrial successes, and is today extensively used in the
hardware industry. Many algorithms used in model checking rely heavily on reachability analysis,
which consists in computing the set of states that are reachable by the system, from a given set of
initial states under all possible inputs. The extension of model checking and of reachability analysis
to continuous [3] and hybrid systems [4] gained traction in the 1990s with the first tools being able
to deal with nontrivial continuous dynamics, such as Checkmate [5] or d/dt [6], being released in
the early 2000s. Since then, there has been continuous progresses in that research area with the
development of more accurate and more scalable algorithms. The goal of this paper is to present
the state of the art on reachability analysis of continuous and hybrid systems with an emphasis on
a family of techniques based on propagation of sets.

1.1 Reachability Analysis of Continuous Systems

We first introduce the problem of reachability analysis in the context of continuous systems. The
case of hybrid systems will be treated specifically in Section 5. In this paper, we use calligraphic
capital letters to denote sets and bold letters to denote functions of time. Let us consider a
continuous dynamical system modeled by a differential equation of the form:

ẋ(t) = f(x(t),w(t)), x(t) ∈ Rn, w(t) ∈ W (1)

where x(t) denotes the state of the system and w(t) is an external input, considered in the following
as a disturbance. The input values are assumed to belong to a given compact set W ⊆ Rp. We
make the standing assumption that for a given initial state x0 ∈ Rn, for a given measurable input
signal w : R+

0 → W, the system (1) admits a unique trajectory defined on R+
0 , denoted in the

following by ξ(., x0,w).
The reachable set of (1) at time t ∈ R+

0 , from a set of initial states X0 ⊆ Rn is

Reacht(X0) = {ξ(t, x0,w) | x0 ∈ X0, w(s) ∈ W,∀s ∈ [0, t]}. (2)

The reachable set (or reachable tube) of (1) over a time interval [0, T ] ⊆ R+
0 is then defined as

Reach[0,T ](X0) =
⋃

t∈[0,T ]

Reachs(X0). (3)

In words, the reachable set consist of all states that can be reached at time t or on the time interval
[0, T ], from any initial state in X0, for any admissible external input. Reachability analysis consists
in computing the reachable set of a dynamical system.

1.2 Difficulty and Usefulness

The question whether a state can be reached by a dynamical system is known to be tricky. In
fact, for many types of systems one can show that there can be no algorithm that decides the
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question in a finite number of steps – this kind of problem is called undecidable. The decidability
of reachability depends on the kind of dynamics and on the constraints on inputs and initial states.
For instance, reachability is decidable for a discrete-time linear time-invariant system if the set of
inputs is unconstrained. However, if the inputs are constrained to a finite union of affine subspaces
the problem becomes undecidable [7]. In the case of hybrid automata, reachability is undecidable
even for classes with very simple dynamics, such as systems with piecewise constant derivatives [8].
In some cases, the problem becomes decidable if one restricts the analysis to a finite time horizon
[9]. For this reason, one usually resorts to approximation methods. However, in order to be able
to reason formally on the system using these approximations, one needs these approximation to
present some guarantees. For instance, we can request that the computed approximation contains,
or is contained by, the true reachable set. In that case, we talk about over-approximations and
under-approximations, respectively. The focus of the present paper is on the computation of over-
approximations, which are more often used in practice, but several works on under-approximations
exist, see e.g. [10] and the references therein. Computing approximations of reachable sets can be
useful for many purposes:

• Formal verification: If an over-approximative reachable set does not intersect an unsafe set,
one can prove that it cannot be entered by any trajectory. If more complicated properties such
as liveness or fairness are formulated, e.g., in temporal logics, one can sometimes synthesize
a corresponding monitor automaton. By using parallel composition, the monitor and the
system to be verified result in a hybrid automaton for which one has to check whether a bad
state of the monitor can be reached. Thus, the verification problem can be translated into a
reachability problem.

• Computation of invariant sets and regions of attractions: If a state starts in an
invariant set, it will remain in it indefinitely [11]. For instance, invariant sets are useful
to ensure stability of model predictive control. While one can obtain invariant sets from
Lyapunov functions, in many cases one obtains better results when using reachable sets [12].
The region of attraction of a steady state contains all states that asymptotically converge to
it. Similarly as for invariance sets, one often obtains better results when using reachability
analysis compared to using Lyapunov functions [13].

• Robust control: Reachability analysis can be incorporated in controllers to ensure that a
goal region is reached while unsafe regions are avoided and input and state constraints are
respected. Especially for model predictive control, robust variants using reachability analysis
have emerged [14, 15, 16].

• Set-based observers and fault detection: In safety-critical systems, it does not suffice to
estimate the internal state using a standard approach, such as a Kalman filter. One rather
requires a set of states in which the true state is guaranteed to be found. Many set-based
observers propagate the set of states using reachability analysis and then constrain these sets
using new sensor information [17]. Sets of estimated states are also used to reduce the false
alarm rate in fault detection [18, 19].

• Set-based prediction: Prediction algorithms are often used by autonomous systems to avoid
conflicts with surrounding entities. To ensure safety, one has to predict all possible behaviors
of these entities using reachable sets, which serve as time-varying unsafe sets for verification
purposes [20, 21].
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• Controller synthesis: Reachability analysis is often used as a building block for synthesizing
controllers from formal specifications. One application is to compute discrete abstractions of
continuous and hybrid systems so that synthesis methods for discrete systems can be applied
[22]. To avoid the state-explosion problem, one can also directly synthesize controllers in the
continuous space using reachable sets [23].

• Conformance checking: For the above methods, it is often crucial that all behaviors of a
real system are captured by its corresponding model, ensuring that obtained results also hold
in reality. This requires non-deterministic models with potentially uncertain inputs, initial
states, and parameters. A special form of conformance checking—called reachset conformance
checking—ensures that all recorded behaviors of a real system are captured by the abstract
non-deterministic model [24, 25].

1.3 Scope of the Paper

There exist several types of approaches to reachability analysis. Some approaches rely on optimal
control theory to show that the reachable set of a system corresponds to the zero sublevel set of the
solution of a Hamilton-Jacobi partial differential equation [26, 27]. Approximations of the reachable
set can then be obtained by solving this equation numerically. While this approach allows to cope
with complex nonlinear dynamics with inputs, their computational cost increases sharply with the
state dimensions, since partial differential equations are usually solved through discretizing the
state space. Barrier certificates can also be used to provide an over-approximation of the reachable
set using the zero sublevel set of a function [28]. Intuitively, a function is a barrier certificate if
no trajectory of the system can evolve from negative to positive values of the function. It follows
that if the zero sublevel set of a barrier certificate contains the initial states of the system, it also
contains the reachable set. Barrier certificates can be a powerful tool for showing safety if the
reachable states can be separated from the unsafe states by a suitable barrier function. Intuitively
speaking, this depends on both the distance to the unsafe states and the geometric complexity of
the reachable set. Since a single barrier certificate is typically insufficient to accurately represent a
reachable set, a sequence of piecewise barrier functions for different time intervals is presented in
[29]. Another class of methods rely on simulation and trajectory sensitivity analysis to cover the
reachable set using a finite number of neighborhoods of individual trajectories [30, 31, 32, 33, 34].
Trajectory-based techniques have been successfully applied to complex nonlinear systems. However,
in cases of event-based switching (hybrid systems) the trajectory branches into a tree whose size
can grow rapidly with time. Decrease in complexity of this tree, by detecting redundant states,
can be easier with set-propagation techniques. Another perspective on reachability analysis is to
construct a logic formula that encodes whether a state is reachable [35, 36]. Expressing reachability
as the satisfiability of a set of constraints can be advantageous in particular over a bounded time
horizon. However, it requires bounding the reachable states with a finite number of constraints
(each one geometrically simple), which is difficult if the reachable states are geometrically complex.

In this paper, we will not elaborate further on these approaches and we will focus on a class
of methods that rely on set propagation. Starting from the set of initial states, these approaches
compute iteratively a sequence of sets which correspond to propagations of the initial set according
to the system dynamics. Set-propagation techniques can be seen as an extension of numerically
solving the ordinary differential equations of the system, where the solution is expressed in terms
of sets rather than numbers. The error is generally a function of the time step and of the size of
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the initial states. In principle, both can be made arbitrarily small, possibly by splitting the initial
states, so that the approximation can be made arbitrarily precise. The set-propagation techniques
presented in this paper are by design conservative, i.e., they cover all possible solutions of the
system. Set-propagation techniques can benefit from techniques that reduce the complexity, such
as detecting previously explored states through containment checks, accelerating cycles through
widening, and merging sets through hull operations. These properties have made set-propagation
techniques popular in both academic research and industrial case studies.

The paper is organized as follows. In Section 2, we present several classes of sets that are
suitable for computer representation and have favorable properties for reachability analysis. Then,
Sections 3, 4, 5 will present set propagation techniques for over-approximation of the reachable sets
for linear, nonlinear and hybrid systems. In Section 6, we review a number of applications where
such techniques have shown useful.

Several software tools and packages are available for computing reachable states, most of them
are specialized to a particular class of systems. Since a comprehensive listing would go beyond
the scope of this paper, we refer the reader to the proceedings of the yearly ARCH verification
competition, which provides an up-to-date overview [37].

2 SET REPRESENTATIONS

To efficiently and accurately compute over-approximations of the reachable sets, one important
question is the representation of sets. We provide below a taxonomy of sets (see Figure 1). At the
coarser level, we distinguish between convex and non-convex sets. In this section, we discuss how
these sets are represented on a computer and which types of operations can be effectively computed.
We use C(·,i) to denote the ith column vector of a matrix C.

Support functions
Zonotope bundles &

Constrained zonotopes

Polytopes Zonotopes

Taylor models

Polynomial zonotopesConstrained
polynomial
zonotopes

Non-convex
Sets

Convex Sets

Sublevel sets

Star sets

Intervals

Ellipsoids

Figure 1: Visualization of the relations between the different set representations, where A → B
denotes that B contains A.

2.1 Convex Sets

Convex sets are attractive for their geometric simplicity and computational efficiency of many
subclasses. Moreover, they are particularly suitable for reachability analysis of linear systems, since
convexity of reachable sets at any instant is preserved under linear dynamics. In that case, one
usually chooses to work with a subclass of compact convex sets, which can be easily represented
on a computer, and for which elementary set operations can be effectively computed. The most
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common set operations that are needed in that respect are linear transformations, Minkowski sum,
and convex hull.

2.1.1 Ellipsoids, Polytopes and Zonotopes

Definition 1 (Ellipsoid). Given a center c ∈ Rn and a positive definite symmetric matrix Q ∈
Rn×n, an ellipsoid is

E =

{
x ∈ Rn

∣∣∣∣ (x− c)>Q(x− c) ≤ 1

}
.

Definition 2 (Polytope). Given a matrix A ∈ Rm×n and a vector d ∈ Rm, a H-polyhedron is

P =
{
x ∈ Rn

∣∣∣ Ax ≤ b}.
A H-polytope is a bounded polyhedron. Given a finite set of vertices {v1, . . . , vr} ⊆ Rn, a V-polytope
is P = conv({v1, . . . , vr}).

Definition 3 (Zonotope). Given a center c ∈ Rn and a generator matrix G ∈ Rn×p, a zonotope is

Z :=

{
c+

p∑
i=1

αiG(·,i)

∣∣∣∣ αi ∈ [−1, 1]

}
. (4)

Ellipsoids can be represented by n× (n+ 3)/2 real numbers. A H-polytope can be represented
by m× (n+ 1) real numbers. A V-polytope can be represented by r× n real numbers. It is always
possible to go from a H-polytope to a V-polytope, and conversely. The representation of a H-
polytope is usually more compact than its equivalent representation as a V-polytope. A zonotope
can be represented by n × (p + 1) real numbers. In addition, it is always possible to go from a
zonotope to an equivalent H-polytope or V-polytope, though the zonotope representation is usually
much more compact.

2.1.2 Zonotope Bundles and Constrained Zonotopes

A major disadvantage of polytopes is that the Minkowski sum is computationally expensive. Since
Minkowski sum is an essential operation in reachability analysis, alternative set representations
based on zonotopes have been developed that can also represent polytopes, but are computationally
cheaper for certain operations.

Definition 4 (Zonotope Bundle (see Def. 4 in [38])). Given a finite set of zonotopes Z∩, a zonotope
bundle is Z∩ =

⋂s
i=1Zi, i.e. the intersection of zonotopes Zi. Note that the intersection is not

computed, but the zonotopes Zi are stored in a list, which we write as Z∩ = {Z1, . . . ,Zs}∩.

Due to the lazy representation of polytopes as a set of intersecting zonotopes, Minkowski sum
cannot be computed exactly, but can be tightly over-approximated in the sense that the result is
always better than facet lifting [38, Prop. 2-4]. Also, convex hulls have to be over-approximated.
An alternative to zonotope bundles are constrained zonotopes, which are computationally more
demanding, but operations on them are exact for Minkowski sum and convex hull [18].
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Definition 5 (Constrained Zonotope (see Def. 3 in [18]). Given a center vector c ∈ Rn, a generator
matrix G ∈ Rn×p, a constraint matrix A ∈ Rm×p, and a constraint vector b ∈ Rm, a constrained
zonotope CZ ⊂ Rn is

CZ :=

{
c+

p∑
i=1

αiG(·,i)

∣∣∣∣ p∑
i=1

αiA(·,i) = b, αi ∈ [−1, 1]

}
. (5)

For a concise notation we use the shorthand CZ = 〈c,G,A, b〉CZ .

2.1.3 Support Functions

The support function of a compact convex set is determined by the position of the supporting
hyperplane in a given direction.

Definition 6 (Support function). Given a compact convex set S ⊆ Rn, the support function is
defined for all ` ∈ Rn as ρS(`) = maxx∈S `

>x

Tight polyhedral over-approximations of S can be obtained by sampling its support function in
a finite number of directions L ⊆ Rn:

S ⊆
⋂
`∈L

{
x ∈ Rn

∣∣ `>x ≤ ρS(`)
}
.

Moreover, S is uniquely determined by its support function since the above inclusion becomes an
equality when L = Rn. The evaluation of the support function in a given direction requires to solve
a convex optimization problem. Closed form solutions exist for ellipsoids and zonotopes, while for
polytopes one needs to solve a linear program.

2.2 Non-convex Sets

Convexity of reachable sets for points in time is preserved for linear systems. However, reachable
sets are in general no longer convex for nonlinear systems [39] so that non-convex set representations
provide tighter over-approximations, see e.g. [40, 41].

2.2.1 Polynomial Zonotopes and Constrained Polynomial Zonotopes

We first present the more general class of constrained polynomial zonotopes.

Definition 7 (Constrained Polynomial Zonotope (see Def. 4) in [42]). Given a starting point

c ∈ Rn, a generator matrix G ∈ Rn×h, an exponent matrix E ∈ Zp×h≥0 , factors αk, a constraint

matrix A ∈ Rm×q, a constraint vector b ∈ Rm, and a constraint exponent matrix R ∈ Zp×q≥0 , a
constrained polynomial zonotope is defined as

CPZ :=

{
c+

h∑
i=1

(
p∏
k=1

α
E(k,i)

k

)
G(·,i)

∣∣∣∣∣
q∑
i=1

(
p∏
k=1

α
R(k,i)

k

)
A(·,i) = b, αk ∈ [−1, 1]

}
. (6)
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Polynomial zonotopes are a special case of constrained polynomial zonotopes without con-
straints, except that αk ∈ [−1, 1]. Even though polynomial zonotopes are a special case, they
can represent polytopes since 1) they are closed under convex hull (see Tab. 1), 2) a point is ob-
viously a special case of a polynomial zonotope, and 3) the convex hull of points is a polytope.
Polynomial zonotopes have first been introduced in [41] and later extended to the above-presented
sparse representation [43].

2.2.2 Taylor Models

Taylor models are essentially n-dimensional Taylor polynomials enlarged by an n-dimensional in-
terval [x] := [x, x], ∀i : xi ≤ xi, x, x ∈ Rn.

Definition 8 (Taylor polynomial (see Sec. 3 in [44])). Let us first introduce the multi-index set

Lq =
{

(l1, l2, . . . , ln)
∣∣∣ li ∈ N,

∑n

i=1
li ≤ q

}
.

We define P q(x, x0, p) as the q-th order Taylor polynomial of f(x, p) : Rn×Rp̃ → Rm parameterized
by p ∈ P ⊂ Rp̃ around x0 (x, x0 ∈ Rn):

P q(x, x0, p) =
∑
l∈Lq

(x1 − x0,1)l1 . . . (xn − x0,n)ln

l1! . . . ln!

(
∂l1+...+lnf(x, p)

∂xl11 . . . ∂x
ln
n

)∣∣∣∣∣
x=x0

. (7)

Next, we define Taylor models and show how they can enclose arbitrary multi-dimensional
functions.

Definition 9 (Taylor model (see Def. 1 in [45])). Let f(x, p) : Rn × Rp̃ → Rm be a function that
is (q + 1) times continuously differentiable in an open set containing the n-dimensional interval
[x]. Using the q-th order Taylor polynomial P q(x, x0, p) of f(x, p) around x0 ∈ [x], we choose an
m-dimensional interval [I] such that

∀x ∈ [x], p ∈ P : f(x, p) ∈ P q(x, x0, p)⊕ [I]. (8)

The tuple T = (P q(x, x0, p), [I], [x],P) fully specifies a qth order Taylor model of f(x, p) around
x0. In Sec. 4.1, Taylor models T = (P q(t, t0, x0), [I], [t],X0) are obtained with respect to t and
parameterized by the initial state x0 to enclose a reachable set starting in x0 ∈ X0 for a given
time interval [t]. Taylor models are per se not sets, but are used in Sec. 4.1 to obtain reachable
sets through {P q(t, t0, x0)|t ∈ [t], x0 ∈ X0} ⊕ [I]. When replacing αk in Def. 7 by xk ∈ [−1, 1],
one can easily see that Taylor models and polynomial zonotopes are equally expressive. However,
Taylor models are only closed under linear map, convex hull, and quadratic maps if the interval [I]
is reduced to a point. Also, many operations, such as Minkowski sum, require renaming variables,
which is not required when using polynomial zonotopes.

2.2.3 Sublevel Sets and Star Sets

Sublevel sets are a general concept used for various problems:

Definition 10 (Sublevel Set). Given a real valued function µ(x) : Rn → R, a sublevel set is defined
as

LS := {x |µ(x) ≤ 0} , (9)

where any constraint µ̃(x) ≤ c, c ∈ R can be transformed to the above form.
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Sublevel sets are very general since µ(x) can be arbitrarily chosen. However, due to their general
structure, it is hard to reduce their representation size. Star sets have a little bit more structure:

Definition 11 (Generalized Star Set (see Def. 1 in [46])). Given the center x0 ∈ Rn, q vectors
v1, v2, . . . , vq (Def. 1 in [46] restricted q, but later publications removed this restriction) forming the
basis, and a predicate P : Rn → >,⊥, a generalized star set is defined as

SS :=

{
x

∣∣∣∣∣x = x0 +

q∑
i=1

αivi, P (α) = >

}
. (10)

Since the predicate can be arbitrarily chosen, closed-form solutions for many set operations do not
exist.

2.3 Comparison

In Table 1, we summarize the different set representations and their property regarding some geo-
metrical transformations. For closed-form expression of operations, complexity results are provided
with respect to the system dimension n. The computational complexity is obtained assuming that
the resulting sets are not reduced to their minimum representation, e.g., redundant vertices of
V-polytopes and redundant halfspaces of H-polytopes are not removed. Also, we only consider
the number of required binary operations (i.e. operations where two operands are required). The
computational effort of unary operations like concatenations of lists can be safely neglected. Please
note that we do not assume special numerical tricks that have been developed for large matrices and
consider the “schoolbook method”. The linear map is defined by M ∈ Rm×n while the quadratic
map is defined as {[xTQ1x]× . . .× [xTQnx]|x ∈ S}, Q ∈ Rn×n×n.

From Table 1, one can see that for reachability analysis of linear systems that relies heavily on
linear maps and Minkowski sum, convex representations such as zonotopes or support functions
possess interesting computational features. However, when the dynamics present strong nonlineari-
ties, the accuracy provided by convex representations may not be sufficient anymore and non-convex
alternatives such as (constrained) polynomial zonotopes can be considered.

3 LINEAR SYSTEMS

In this section, we focus on reachability analysis of continuous dynamical systems with linear
dynamics:

ẋ(t) = Ax(t) +Bw(t), x(t) ∈ Rn, w(t) ∈ W ⊆ Rm (11)

It is common to assume that the set of inputs W and of initial states X0 ⊆ Rn are compact convex
sets. Then, for all t ∈ R+

0 , the reachable set Reacht(X0) is also a compact convex subset of Rn.
For this reason, it is generally sufficient, for linear systems such as (11) to over-approximate the set
Reach[0,T ](X0) by a union of convex sets. One usually uses one of the class of convex sets presented in

1Number of halfspaces only bounded by
(2n
n

)
[56].

2Intersection has to be performed by facet and vertex enumeration.
3Requires coordinate transformation as for H-polytopes.
4µ([x1, x2]) = max(µ1(x1), µ2(x2)) (µ(x) as in Def. 10)
5µ(x) = max(µ1(x), µ2(x)) (µ(x) as in Def. 10)
6µ(x) = min(µ1(x), µ2(x)) (µ(x) as in Def. 10)

10



Table 1: Comparison of set representations for unreduced results (−: closed under set operation,
but no closed-form expression; x: not closed under set operation; †: only if M is square and full
rank).

Class Linear
map

Minkow-
ski sum

Cartesian
product

Convex
hull

Quadratic
map

Inter-
section

Union

Intervals x O(n)
[47, (2.67)]

O(1)
[47, (2.59)]

x x O(n)
[47, (2.63)]

x

Ellipsoids O(max(mn2,
m2n))
[48, Sec. 2.2.1]

x x x x x x

H-polytopes
(spanned by n gener-

ators)

O(n3) †
[49, Tab. 1]

O(2n)
[49, Tab. 1]

O(1)
[50, Sec. 2]

super-
polynomial 1

[51, Thm. 2]

x O(1)
Def. 2

x

V-polytopes
(spanned by n gener-

ators)

O(mn2n)
[49, Tab. 1]

O(n22n)
[49, Tab. 1]

O(1)
Def. 2

O(1)
[50, Sec. 2]

x super-
polynomial 2

[52, Ch. 6.1]

x

Zonotopes
(n generators)

O(mn2)
[53, Tab. I]

O(n)
[53, Tab. I]

O(1)
Def. 3

x x x x

Zonotope Bundles
(n generators)

O(n3) †
[38, Prop. 1]

- O(1)
Def. 4

- x O(1)
[38, Def. 4]

x

Constrained Zono-
topes
(n generators)

O(mn2)
[18, (11)]

O(n)
[18, (12)]

O(1)
Def. 5

- x O(n)
[18, (13)]

x

Support Functions
(n directions)

O(mn2)
[53, Tab. II]

O(n)
[53, Tab. II]

O(n)
[49, Sec. 2.1]

O(n)
[53, Tab. II]

x - x

Polynomial Zono-
topes/Taylor Mod-
els

O(mn2)
[43, Sec. 2.4]

O(n)
[42, Prop. 7]

O(1)
[42, Prop. 8]

O(n2)
[42, Prop. 9]

O(n4)
[43, Sec. 2.4]

x x

Constrained Poly-
nomial Zonotopes

O(mn2)
[42, Prop. 6]

O(n)
[42, Prop. 7]

O(1)
[42, Prop. 8]

O(n2)
[42, Prop. 9]

O(n4)
[42, Prop. 10]

O(n)
[42, Prop. 11]

O(n)
[42, Thm. 1]

Sublevel Sets O(n3) † 3

Def. 10

- O(1) 4

Def. 10

- - O(1) 5

Def. 10

O(1) 6

Def. 10

Star Sets
(n generators)

O(mn2)
[54, Prop. 3.2]

O(n)
[55, Sec. 3.1]

O(1)
[55, Def. 3]

- - - -

Section 2.1: ellipsoids [57, 58], polytopes [59, 60], zonotopes [61, 62] or support functions [63, 64]. In
the following we focus on time-invariant systems but similar techniques exist for linear time-varying
or uncertain systems [65]

3.1 Time Discretization

Most of the approaches for computing over-approximations of the reachable set of (11) are based
on time discretization. Let N ∈ N, and τ = T/N , from the semi-group property of differential
equation (11), it follows that:

Reach[0,T ](X0) =

N−1⋃
k=0

Reachkτ (Reach[0,τ ](X0)).

The main idea is to compute a sequence of compact convex sets (Sk)N−1
k=0 such that for all k, Sk

contains Reachkτ (Reach[0,τ ](X0)). Several approximation schemes exist, we briefly describe the one

11



from [63]. To initialize the sequence, one can use

S0 = conv
(
X0 ∪ (eAτX0 ⊕ τW ⊕ α(τ,A,B,X0,W)B)

)
where α(τ,A,B,X0,W) = O(τ) is a positive scalar and B is the unit ball for a norm of Rn.
Then, the remaining elements of the sequence can be obtained using the recurrence equation for
k = 1, . . . , N − 1:

Sk = eAτSk−1 ⊕ τW ⊕ β(τ,A,B,W)B (12)

where β(τ,A,B,W) = O(τ2) is a positive scalar. The analytic expressions of α and β can be found
in [63]. Then, we obtain the following result where dH denotes the Hausdorff distance between sets:

Reach[0,T ](X0) ⊆ RN and dH(Reach[0,T ](X0),RN ) = O(τ), where RN =

N−1⋃
k=0

Sk. (13)

One should remark that computing the sequence (Sk)N−1
k=0 and thus the over-approximation RN

of the reachable set involves computing one convex hull, N linear transformations and N Minkowski
sums whose computation has been discussed in the previous section for ellipsoids, polytopes, zono-
topes, and support functions. However, one should note that the complexity of the representation
of Sk increases as k grows. For instance, if one uses a zonotope to represent Sk, the size of the
generator matrix increases linearly with k. Then, the algorithm to compute RN has memory and
time complexity that is quadratic with respect to N .

A way to impose linear memory and time complexity is to add a reduction step at each iteration
(see e.g. [61]). In that case, the recurrence equation (12) becomes for k = 1, . . . , N − 1:

Sk = reduce
(
eAτSk−1 ⊕ τW ⊕ β(τ,A,B,W)B

)
(14)

where reduce is a function which over-approximates a convex set (e.g. a zonotope) by a convex set
of given complexity (e.g. a zonotope with a generator matrix of given size). With this approach,
the complexity becomes linear with respect to N but at the expense of additional conservatism. In
particular, the approximation estimate in the Hausdorff distance provided in (13) is not valid any
more. Moreover, while with recurrence equation (13), the approximation error can be reduced by
increasing N , it is generally not the case any more with recurrence equation (14). This phenomenon
is referred to as the wrapping effect [66].

3.2 Computing without the Wrapping Effect

For linear time-invariant systems such as (11), it is actually possible to reschedule the computations
of the sequence (Sk)N−1

k=0 given by (12) to reduce the complexity without additional conservatism,

as presented in [67]. For that purpose, let us introduce auxiliary sequences (Xk)N−1
k=0 , (Wk)N−1

k=0 ,

(Yk)N−1
k=0 given by

Z0 = conv
(
X0 ∪ (eAτX0 ⊕ τW ⊕ α(τ,A,B,X0,W)B)

)
, V0 = τW ⊕ β(τ,A,B,W)B, Y0 = {0},

and the recurrence equation for k = 1, . . . , N − 1:

Zk = eAτZk−1, Vk = eAτVk−1, Yk = Yk−1 ⊕ Vk−1.
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Then, one can verify that for k = 0, . . . , N−1, Sk = Zk⊕Yk. The main advantage of this approach
is that contrarily to (12), the complexity of the sets to which the linear maps are applied does not
increase with k. By computing these sequences with zonotopes [67] or with support functions [63],
it is actually possible to compute the over-approximation RN of the reachable set with memory
and time complexity that is linear with respect to N .

3.3 High-dimensional Systems

In order to scale reachability analysis for linear systems for systems beyond 1000 state variables,
the methods presented above typically do not suffice. Mainly two methods for scaling to larger
systems have been investigated: reduction methods and methods based on decomposing the system
dynamics. The first work using order reduction techniques for reachability analysis is probably [68].
The same authors later used Krylov subspace reduction methods [69], which preserve the entire
reachable set in contrast to [68]. While non-Krylov order reduction techniques are still explored
for reachability analysis [70], Krylov methods have been most successful [55, 71]. Recently, Krylov
methods for reachability analysis have been extended such that arbitrarily varying inputs can be
considered [72].

In decomposition techniques, the system is divided up into subsystems. For each subsystem,
the reach tube is computed by treating variables from the other subsystems as bounded inputs
[73]. Finally, the reach tubes of the subsystems are combined, e.g., embedded back into full-
dimensional space and intersected. For linear systems, one can use a coordinate transform to bring
the system to a block-triangular form (Schur form) and the transformation matrix can be chosen
to minimize the coupling terms [74]. However, the back-transformation into the full-dimensional
space can amplify approximation errors. A decomposition without fully decoupling can be achieved
by computing successor states in the subsystems and using the resulting state sets at each time
step [49]. Taken to the extreme, decomposing the system into 1-dimensional subsystems, this is
equivalent to computing the reachable states via interval arithmetic. For nonlinear systems, related
projection techniques have been applied to level sets [75] and using two-dimensional polygonal
projections [76]. To improve the accuracy, one can treat the computed reach tubes of subsystems
as time-varying interval-shaped inputs in order to recompute the reach tubes with higher accuracy
[77].

4 NONLINEAR SYSTEMS

The analysis of nonlinear systems is much more complicated since many valuable properties are no
longer valid, such as the superposition principle and that the homogeneous solution can be computed
by a linear map. We consider general nonlinear continuous systems with Lipschitz continuity. Using
the same notation as for linear systems, the evolution of the state x is defined by the following
differential equation:

ẋ(t) = f(x(t),w(t)), x(0) ∈ X0 ⊂ Rn, w(t) ∈ W ⊂ Rm. (15)

As for linear systems, all subsequent approaches compute reachable sets for consecutive time in-
tervals. Due to the difficulty of computing reachable sets of nonlinear systems, most approaches
resort to abstraction techniques—either in the solution space or the state space; other techniques
exploit specific system properties such as monotonicity. Finally, we briefly discuss the extension to
differential-algebraic systems.
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4.1 Abstraction in Solution Space

Abstractions in solution space approximate solutions of (15) by a Taylor polynomial (see Def. 8) with
respect to time. Taylor polynomials approximating initial value problems of ordinary differential
equations can be obtained by using the Picard iteration or by a truncated Lie series [40]. While
the Taylor polynomial is most accurate for initial value problems with the initial state chosen as
the expansion point, the solution is often well approximated for other initial states in its vicinity.
To enclose the solution for a set of possible initial states and inputs, intervals are added to the
Taylor series, resulting in Taylor models as presented in Def. 9. Taylor models have been originally
developed by Makino and Berz [78, 79, 45]. An earlier development equivalent to Taylor models
can be found in [80]. A common technique to obtain the interval [I] for reachability problems is to
guess [I] so that evaluating the Picard operator for (P q(x, x0), [I]) yields a contractive Taylor model
(P q(x, x0), [I]post) with [I]post ⊆ [I] [40, Sec. III]. If the guess is not successful, [I] is iteratively
increased. These techniques have been further developed in [40] where Taylor models are not only
computed from the initial point in time, but also from later points in time by obtaining the set of
states of intermediate time points using standard set representations, such as polytopes or zonotopes
[40].

4.2 Abstraction in State Space

Another abstraction technique is to abstract the system dynamics rather than its solution. In order
to write subsequent abstractions in a compact way, we introduce z = [xT , wT ]T ∈ Ro (o = n+m)
and the Nabla symbol ∇ =

∑o
i=1 e

(i) ∂
∂zi

, where e(i) are orthogonal unit vectors. The nonlinear
system in (15) can be abstracted by a Taylor expansion of order κ at point z∗ with Lagrange
remainder L (see [78]):

ẋi(t) ∈ Pκ(z(t), z∗)⊕ Li(t), (16)

Li(t) =

{(
(z(t)− z∗)T∇

)κ+1
fi(z̃(t))

(κ+ 1)!

∣∣∣∣∣z̃(t) = z∗ + α(z(t)− z∗), α ∈ [0, 1]

}
.

In many cases, only first-order terms are considered so that the system is conservatively linearized.
In a few cases, it is even possible to obtain a polynomial system without any abstraction error by
a change-of-bases transformation [81, 82].

4.2.1 Time-Invariant Regions

The abstraction in (16) is only tight in the vicinity of the expansion point z∗. To expand the scope
of tight abstractions, several works have split the state space into regions with different expansion
points, resulting in hybrid systems as described in Sec. 5. In [83], nonlinear dynamics is abstracted
by a constant value plus the abstraction error using polyhedral regions. A more precise abstraction
is performed in [84, 85], where the original dynamics in linearized and the state space is decomposed
into polyhedral regions; the abstraction error is determined either by the Lipschitz constant or by
a bounded second derivative.

One disadvantage of static regions is that the number of required regions scales exponentially
with the system dimension. This can be alleviated by only computing reachable regions on-the-fly
[86]. Another disadvantage is that static regions require two expensive operations: intersections
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with guards and unifications of sets to avoid computing too many instances of reachable sets; this
is addressed in Sec. 5.

4.2.2 Time-Variant Regions

To avoid computing intersections and unifications when using time-invariant regions, one can con-
struct time-variant regions moving along with the reachable set of the current time interval. The
simplest form of abstraction is to only consider the linear part of (16), see, e.g., [87, 88]. Several
methods to obtain the abstraction error exist. One possibility is to evaluate the Lagrange remain-
der in (16) over-approximatively using interval arithmetic [87]. Another example is to obtain the
abstraction error from linear interpolation at the vertices of simplicies [89, 88], requiring simpli-
cies as a set representation. One can also obtain an abstraction error from a scalar error dynamics
[90]; however, a scalar error dynamics over-approximating a multi-dimensional dynamics introduces
substantial conservatism.

The disadvantage of linear abstractions is that their abstraction error becomes too large when
the reachable set is not sufficiently contracting. Obviously, using a higher-order Taylor expansion
reduces the abstraction error at the cost of having to compute the reachable set for polynomial
differential equations. Since no analytical solution is known for polynomial differential equations,
over-approximative conversions to non-deterministic polynomial difference equations have been pro-
posed [91, 41]. Since the resulting sets are no longer convex, polynomial zonotopes are used in [41],
while the earlier approach in [91] uses convex simplices. Another difference is that the nonlinear part
of the polynomial is solved as a linear function of time in [91]. Thus, a solution space abstraction
is integrated in a state-space abstraction, while [41] only relies on a state-space abstraction.

4.3 Computing Bounds

Instead of computing the whole set of reachable states, one can compute the bound of the reachable
set. One of the earliest technique using this method is face lifting, where facets are pushed outwards
to obtain reachable sets [92]. This is typically not beneficial when using the techniques from Sec. 4.1
and Sec. 4.2 since one only converts a n-dimensional problem to a n − 1 dimensional problem at
the expense of propagating many regions of the surface, such as facets of a polytope. However, this
idea makes it possible to use different methods summarized below.

4.3.1 Optimization-based Techniques

By parameterizing the bound of a reachable set, one can solve an optimization problem minimizing
a performance criterium (e.g., volume) under the constraint that all solutions have to be enclosed.
This has been performed for general nonlinear systems in [59] for bounds modeled as halfspaces.
Also in [93], halfspaces are used, but a more tailored approach for polynomial differential equations
is presented, where the optimization problem is abstracted to linear programming using Bernstein
polynomials.

4.3.2 Bounds from Monotonicity

When the system dynamics is monotone, it is particularly easy to obtain the bounds of the reachable
set.

15



Definition 12 (Monotone dynamics; see [94, Def. II.1]). The system dynamics is monotone with
respect to the initial state x0 and input trajectories w when the following property holds for the
solution ξ(t, x0,w):

∀i, j, t ≥ 0 : x0,i ≤ x0,i,wj(t) ≤ wj(t) =⇒ ∀i, t ≥ 0 : ξi(t;x0,w) ≤ ξi(t;x0,w).

A constructive method to prove monotonicity is presented in [94, Prop. III.2]. From the def-
inition follows directly that the upper bound of each state can be computed by ξi(t;x0,w) while
analogously the lower bound can be computed by ξi(t;x0,w)—however, exact solutions of those
do not exist. For this reason, one can provide upper bounds of ξi(t;x0,w) and lower bounds of
ξi(t;x0,w), using validated integration methods, such as interval Taylor methods [95]. These can be
seen as a form of reachability computation when only a single initial state is provided. An extension
for piecewise monotone systems is presented in [96] and for mixed monotone systems in [97]. If a
system is not piecewise monotone or mixed monotone, one can generate monotone dynamics whose
upper and lower bound enclose the reachable set [96, 98]; results can be further tightened by known
constraints on states as shown in [98].

4.4 Nonlinear Differential Algebraic Systems

Besides nonlinear systems, there are also extensions for nonlinear differential algebraic equations.
Most of the current literature on reachability analysis for nonlinear differential algebraic systems
focuses on index-1 systems. While some work exists for methods solving Hamilton-Jacobi partial
differential equations [99, 100], which are not particularly scalable, only few works use set propa-
gation techniques. The work in [101] presented an approach using polyhedral set representations,
which requires computationally expensive projections of the reachable set onto the constraint man-
ifold. A scalable approach that does not require intersections is based on abstracting differential
algebraic systems to linear differential inclusions [102].

5 HYBRID SYSTEMS

Hybrid systems are systems with both discrete states and continuous state variables. Various for-
malisms have been proposed to describe hybrid systems. Typically, the evolution of the continuous
state variables is described through differential equations. The changes between discrete states can
be described, e.g., by a finite state automaton [103]. Alternatively, changes in dynamics can be
encoded through difference equations involving integer variables [104] or the continuous variables
themselves [105]. The continuous dynamics in a hybrid system depend on its discrete state. Since
the timing of transitions between the discrete states is a priori unknown, this is called event-based
switching. The interaction between events and differential equations may lead to very complex
behavior, even if the dynamics of the ODEs themselves are simple or even constant. In the follow-
ing subsections, we briefly describe the formalism of hybrid automata and a high-level reachability
algorithm. Then we present the major subclasses of hybrid automata, which are distinguished by
their continuous dynamics, and discuss their particularities in more detail.

5.1 Hybrid Automata

Hybrid automata are the result of combining finite state automata with differential equations [4,
106]. The discrete states are represented by an automaton (finite state machine) and are referred
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to as locations Loc = {`1, . . . , `m}. A state (`, x) of the hybrid automaton consists of a location `
and a continuous state x ∈ Rn. The state space is Loc×Rn. The states must at all time lie within
a given subset of the state space called invariant or staying condition Inv ⊆ Loc× Rn.

We first describe the changes between discrete states, which can instantaneously modify the
continuous variables. Changes between locations are described by transitions Edg ⊆ Loc×Lab×Loc,
where each transition is associated with a label from a finite set Lab. The labels can be used to
synchronize transitions when several automata are connected in parallel; for lack of space we refer
the reader to [4]. For a given transition, a state x can jump instantaneously to any other state x′ for
which (x, x′) satisfies the jump relation of the transition e ∈ Edg, denoted as Jump(e) ⊆ Rn × Rn.
For convenience, the jump relation is often described by a guard set Ge and a set-valued reset map
Re: any state x ∈ Ge can take the transition and can jump to any x′ ∈ Re(x).

The continuous variables evolve with time according to a flow relation Flow, where for each
location `, Flow(`) ⊆ Rn × Rn. A state x can evolve with derivative ẋ if (ẋ, x) ∈ Flow(`). Often,
the flow relation is described by an ODE ẋ = f(x) or by a differential inclusion. A solution ξ(t) to
the above ODE describes a (local) trajectory of the continuous state as long as its remains inside
the invariant, i.e., for all 0 ≤ τ ≤ t, ξ(τ) ∈ Inv(`).

Run Semantics: All behaviors of the system originate in a given set of initial states Init. Starting
from a state (`0, x0) ∈ Init, a run of the hybrid automaton is an alternating sequence of trajectories
and jumps. Denoting at the i-th step the trajectory with ξi(t) and the time on this trajectory with
δi, a run of length N is the sequence

(`0, x0)
δ0,ξ0−−−→ (`0, ξ0(δ0))

α0−→ (`1, x1)
δ1,ξ1−−−→ (`1, ξ1(δ1)) . . .

δN ,ξN−−−−→ (`N , ξN (δN )),

with (`0, x0) ∈ Init, αi ∈ Lab, that satisfies for i = 0, 1, . . . , N :

1. Trajectories: (ξ̇i(t), ξi(t)) ∈ Flow(`) and ξi(t) ∈ Inv(`i) for all t ∈ [0, δi], δi ≥ 0.

2. Jumps: (ξi(δi), xi+1) ∈ Jump(ei), ei = (`i, αi, `i+1) ∈ Edg, and xi+1 ∈ Inv(`i+1).

A state (`, x) is called reachable if it is a state of a run of any length. The above definition of the
behaviors of a hybrid automaton is inherently nondeterministic. The automaton may change the
location if it enters the guard set of a transition, but it may also continue in the same location
provided that it keeps satisfying the invariant. This is called may semantics. An alternative is
called must semantics, in which a transition must be taken as soon as possible, e.g., as soon as
the system enters a guard set. Note that most simulation tools apply must semantics, while most
reachability tools use may semantics. Some models can be translated from must to may semantics
[107].

5.2 Reachability for Hybrid Automata

The set of reachable states of a hybrid automaton can be computed by executing the runs on sets of
states [106, 4]. We show a simple but widely used algorithm that applies it to symbolic states (`,P),
which is a set of states that share the same location `, with P ⊆ Rn being the set of continuous
states. Let W be a waiting list for the symbolic states to still be explored and let R be a list of
symbolic states that are reachable. Let PostC(`,P) be the one-step successors by time elapse and
PostD(`, α, `′,P) be the one-step successors of a jump with transition (`, α, `′):

PostC(`,P) =
{
ξ(δ)

∣∣ ∃x ∈ P : (`, x)
δ,ξ−−→ (`, ξ(δ))

}
,

PostD(`, α, `′,P) =
{
x′
∣∣ ∃x ∈ P : (`, x)

α−→ (`′, x′)
}
.
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To check whether a successor state has already been explored, we need an operator visited(R, `,P)
that returns true if all the states in (`,P) are already contained in the passed list R (more details
below). The reachability algorithm proceeds as follows:

1. Let Q(`) :=
{
x
∣∣ (`, x) ∈ Init

}
. Compute W :=

{
PostC(`,Q(`))

∣∣ ` ∈ Loc
}

and let R := W .

2. Pop (`,P) from W .

3. For each α ∈ Lab, `′ ∈ Loc, compute P ′ = PostD(`, α, `′,P). If P ′ 6= ∅ and visited(R, `′,P ′) is
false, compute P ′′ = PostC(`′,P ′) and add (`′,P ′′) to the waiting list.

4. If W = ∅, terminate and return R. Otherwise, go to step 2.

The containment check using visited(R, `′,P ′) avoids adding the same states over and over. An
exact computation of this containment relationship is costly, since it requires checking whether P
is in the union of all symbolic states in R that involve location `. A simple heuristic is to to apply a
pairwise check: Let visited(R, `′,P ′) return true if there is some (`′,P) in R such that P ′ ⊆ P and
return false otherwise. This may of course create a situation where the algorithm iterates forever
while an exact containment check would terminate, but in practice this seems to be a minor problem.
The main bottleneck is the computational complexity of the one-step successor operations, PostC
and PostD. In the next sections we will discuss how they can be computed efficiently, depending
on the dynamics.

5.3 Piecewise Constant Dynamics

In a hybrid automaton with piecewise constant dynamics (PCD), the relationships between contin-
uous variables are given by linear constraints and the derivatives are independent of the continuous
state [106] (for brevity, we give a slightly simplified definition). Despite having relatively simple
flow relations, PCD can exhibit complex, even chaotic, behavior. For instance, they can model
discrete-time LTI systems by setting all derivatives to zero and placing the LTI state update in
a transition. PCD automata stand out since one-step successor computations can be computed
exactly (assuming infinite precision arithmetic), which is not the case for most other classes in the
literature.

In a PCD, all continuous sets and relations (Inv(`), Init(`), Jump(e)) are polyhedra, which can
be given by strict or non-strict linear inequalities. Flow(`) is of the form ẋ ∈ P, where P is a
polyhedron. If we restrict the invariants to closed constraints, we can construct an equivalent
automaton for which all sets are convex polyhedra. Writing out PostD as a predicate, we obtain

PostD(`, α, `′,P) =
{
x′
∣∣ ∃x ∈ P : (x, x′) ∈ Jump(`, α, `′) ∧ x′ ∈ Inv(`′)

}
.

Since Inv(`) is convex, the time elapse operator PostC can be written as

PostC(`,P) = P ∪
{
x′
∣∣ ∃x ∈ P, ẋ ∈ Flow(`), t > 0 : x′ = x+ tẋ ∧ x′ ∈ Inv(`)

}
.

Looking at PostD and PostC from the point of view of geometric operations, the quantifier elimina-
tion can be seen as a projection (an irreversible linear map) and conjunction as intersection. Both
can be implemented using the operations discussed in Sect. 2.1. For efficiency, a dual representation
for polyhedra combines both H-polyhedra and V-polyhedra (V-polytopes extended with rays to rep-
resent unbounded sets) [108]. Further improvements in representation and targeted algorithms for
both PostD and PostC can lead to significant speed-ups [109].
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Termination: Computing the reachable states using the above operators frequently does not
terminate, even in cases where the computed set of states converge to a fixed point. To induce
termination, one can resort to overapproximations in the hope that the enlarged set is either already
a fixed point or converges more rapidly towards one [110]. In widening [111], one looks at subsequent
iterations and removes constraints that are relaxed from one iteration to the next. Alternatively,
one can modify constraints by quantizing their coefficients, or remove them based on other criteria
[112].

5.4 Piecewise Affine Dynamics

In a hybrid automaton with piecewise affine dynamics (PWA), the flow relation Flow(`) defines
affine dynamics as in (11) 7 :

ẋ = A`x +B`w`, w` ∈ W` ⊆ Rm` . (17)

The jump relation for transition e is given by a guard set Ge and an affine reset map with nonde-
terministic inputs :

x′ = Rex + Sewe, x ∈ Ge, we ∈ We ⊆ Rme .

Note that the constraints w` ∈ W` and we ∈ We can be encoded as part of the invariant by
including w`, we in the variables of the hybrid automaton [113]. Invariants and initial states are
given by linear constraints, as in PCD automata. The jump operator is

PostD(`, α, `′,P) =
(
R`,α,`′(P ∩ G)⊕ S`,α,`′W`,α,`′

)
∩ Inv(`′).

The time elapse operator can be approximated with a sequence of sets as described in Sect. 3,
but with the added difficulty that the invariant Inv(`) must be taken into account [114]. For
now we assume a finite time horizon and later present the extension to infinite time in Sect. 5.6.
Intersecting the invariant at each step of the reach tube approximation (12), we get the sequence
Sk for k = 0, . . . , N − 1 as

S0 = conv
(
X0 ∪ (eAτX0 ⊕ τW ⊕ α(τ,A,B,X0,W)B)

)
∩ Inv(`),

Sk =
(
eAτSk−1 ⊕ τW ⊕ β(τ,A,B,W)B

)
∩ Inv(`).

(18)

The time elapse operator is PostC(`, P ) =
⋃N−1
k=0 Sk. Since the intersection in (18) is incompatible

with several of the scalability improvements in Sect. 3, one often resorts to computing Sk using (12)
and afterwards intersecting with the invariant. For set representations that are not closed under
intersection, the time elapse operator under invariant constraints introduces an approximation error
that can not be decreased by taking smaller time steps. Instead, the set of initial states can be split
into smaller pieces, but this leads to state explosion.

State Explosion and Clustering: Thanks to the methods in Sect. 3, computing successor states
with (12) scales fairly well. However, in the fixed point computation from Sect. 5.2, this approach
can lead to severe state explosion. Recall that the input to PostC is a single set, while its output is
a possibly long sequence of convex sets. PostD maps each one of these usually to another convex
set, usually filtering out a number of them that do not overlap with the guard set. Repeating this

7Affine dynamics ẋ = Ax + B̂ŵ + ĉ, ŵ ∈ Ŵ can be brought to the form of (17) by taking B = I,W = B̂Ŵ ⊕ ĉ.
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process produces an exponentially increasing number of sets, unless PostD happens to filter out all
but one set in the sequence.

A common remedy for state explosion is to force PostD to return a single set, e.g., by taking
the convex hull or a bounding box of its image. This is referred to as clustering. Clustering can
reduce the state explosion problem, but it introduces a wrapping effect that may quickly lead to
an exploding approximation error. As a remedy, optimal clustering has been proposed in [115].
The approximated reach sets are clustered such that the overapproximation error can be measured.
Finding the minimal number and exact time intervals over which to cluster sets are reduced to a
graph coloring problem [115].

5.5 Nonlinear Dynamics

For nonlinear dynamics, the time elapse operator is computed using one of the methods described
in Sect. 4. The central problems outlined for piecewise affine systems remain: intersecting with
the invariant may induce overapproximation and clustering is required to fight state explosion,
adding to the wrapping effect. Complex dynamics can be abstracted by simpler dynamics over a
given region of the state space, as described in Sect. 4.2.1. The abstraction error depends on the
diameter of the region and can be made arbitrarily small by dividing the state space into small
enough pieces [83]. This technique is readily applied to hybrid systems, by representing each piece
as a discrete state and connecting adjacent pieces by transitions. The technique is therefore referred
to as hybridization.

5.6 Unbounded vs Bounded Time

There is a subtle but fundamental difference between the reachability computations in the sections
3 and 4 and this section on hybrid systems: The set propagation techniques for continuous systems
cover a finite time horizon, while our definition of the time elapse operator PostC , as well as the
definition of the reachable states for hybrid automata, range over an infinite time horizon. Even
if the hybrid system only spends a finite time in each location, it may not be easy to estimate an
upper bound that is not overly conservative. One solution is to extend the time elapse operator to
infinite time through widening or abstract acceleration as in [116].

We briefly sketch out another solution, which exploits the fixed point computation of the reach-
ability algorithm from Sect. 5.2 to lift the operation from bounded to infinite time. The system
is augmented with a clock variable and transitions that reset the clock every δ > 0 time units.
The time elapse operator can be limited to a time horizon of δ in the augmented system, since the
system can not remain longer in any location without taking a transition. The reachable states
of the augmented system are identical to those of the original system if one projects away the
clock. This augmentation can be applied to purely continuous systems by considering them as a
hybrid automata with a single location. It follows that infinite-time reachability can be reduced to
bounded-time reachability with an unbounded number of jumps.

6 APPLICATIONS

Reachability analysis has been applied across many application areas. A small selection of appli-
cations is provided in Tab. 2 covering aerospace, analg/mixed-signal circuits, automotive, power
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systems, robotics, and system biology. The table also identifies the main purposes, such as veri-
fication, stability analysis, planning, prediction, and conformance checking. We also list whether
reachability is predominantly used in an offline setting (i.e., reachability analysis is performed before
deployment) or in an online setting (i.e., reachability analysis is continuously performed during op-
eration considering updated environment models). Each application area makes use of all purposes
of reachability analysis even though the list is not exhaustive.

Table 2: Examples of applications of reachability analysis across several application domains.
Paper Main purpose System type Offline vs. online

Aerospace

[117] planning nonlinear online (simulation)
[118] prediction nonlinear online (simulation)

Analog/Mixed-signal circuits

[101] verification differential algebraic equations, hybrid offline
[119] verification nonlinear, hybrid offline
[120] verification, stability nonlinear, hybrid offline
[121] verification, stability linear, hybrid offline
[86] verification nonlinear offline

Automotive

[122] verification linear, hybrid offline
[123] verification nonlinear online (simulation)
[124] verification nonlinear online (simulation)
[125] verification nonlinear online (real system)
[20] prediction nonlinear online (simulation)
[126] planning linear online (simulation)

Power systems

[127] prediction linear offline
[128] verification nonlinear offline
[129] verification differential algebraic equations online (simulation)
[130] conformance checking, verification nonlinear online (real system)
[131] stability nonlinear offline

Robotics

[132] planning nonlinear online (real system)
[133] conformance checking, planning linear online (simulation)
[134] verification linear online (real system)

System biology

[135] conformance checking nonlinear offline
[136] conformance checking nonlinear offline
[137] verification linear offline
[138] conformance checking nonlinear offline

Nevertheless, one can see some trends in each application area. Systems developed or analyzed
in analog/mixed-signal circuits and system biology are less autonomous in the sense that they do
not explore an environment that is unknown during design time and thus rather use reachability
analysis in an offline setting. A difference between analog/mixed-signal circuits and system biology
is that reachability is mainly used for verification in analog/mixed-signal circuits since modeling is
fairly well understood, whereas in system biology, reachability analysis is primarily used for finding
conformant models since underlying mechanisms are not yet well understood.

The aerospace, automotive, and robotics sectors are similar in the sense that the safety-critical
applications are those where decisions are made autonomously in constantly changing environments.
Thus, these sectors require online methods , mainly for predicting the environment in a set-based
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A CB

Figure 2: Examples of applications in which our methods are already used. (A) Provably safe
human-robot interaction. (B) Guaranteeing safety in autonomous driving. (C) Office robot whose
safety is certifiable due to our approach; image provided by courtesy of Bosch Research.

fashion and for verifying whether these decisions are safe. The search space for these safe decisions
can be efficiently pruned using reachability analysis.

The power sector is very diverse, since it is the world’s most complex interconnected man-made
system. While some decisions are made on a day to day basis, such as planning of energy production
schedules, some control actions have to be made within milliseconds to ensure transient stability of
parts of the grid. Thus, one finds a mix of online and offline techniques, as well as a mix of purposes
and considered system types—even systems described by differential algebraic equations.

In particular, reachability analysis has been successfully applied to online verification; a selection
is shown in Fig. 2. Illustration A in Fig. 2 shows a modular robot that can be reconfigured. After
each reconfiguration, the robot reprograms its online verification based on reachability analysis itself
[134]. It is the presumably the first robot that provably avoids collisions when humans interact with
it. Illustration B in Fig. 2 displays a scene during a test drive of a BMW vehicle that uses set-based
motion planning and online verification to guarantee safety [20]. The last example shown in Fig. 2
is an office robot that can be certified using reachability analysis. It can be shown that the robot is
provably safe, but also that the robot reaches its goal around 1.4-3.5 time faster than the navigation
according to the ISO 13855 and 13482 standards [133].

7 CONCLUSIONS

After more than two decades of research, reachability analysis for continuous and hybrid systems
has become an effective tool for model-based design of complex engineered systems. During that
period, there has been tremendous improvement on scalability and accuracy of algorithms for
approximating the reachable set of continuous and hybrid systems, making it possible to use these
techniques on real-world problems. Several challenging research problems remain to be addressed
in the field, such as handling large initial sets for nonlinear systems and many guard intersections
in hybrid systems. Both aspects are especially relevant when verifying systems involving neural
networks. Also, new methods are required to be able to perform online verification (aka real-time
verification) to verify autonomous systems in (partially) unknown environments.
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