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ENAC, Université de Toulouse, Toulouse, France

pierre-loic.garoche@enac.fr

December 21, 2020

Abstract

Abstract model-checking methods are efficient to prove properties on
systems with infinite state-space dimension. When considering continuous-
time dynamical systems, adequate temporal logic has to be used to express
specifications of systems. In this short paper, we present our current work
on designing a subset of signal temporal logic (STL) amenable to bounded
abstract model-checking methods. The proposed approach uses set-based
operations as atomic proposition of STL. Set-based approach is more suit-
able to applied abstract model-checking methods as it allows to consider
set of system trajectories instead of only one trajectory of the system.
Interval analysis methods are used to give a computable counter-part ver-
sion of this set-based STL and to compute sets of trajectories of dynamical
systems. The correctness of the presented framework is asserted using an
abstract interpretation framework.

Keywords: Abstract Interpretation theory, Interval Analysis, Validated
Numerical Integration

Consider the study of cyber-physical systems modeled as dynamical sys-
tems. At early stage of the design, system-under-study is modeled either by
differential equations or by a discrete-time dynamical system. Current means
of studying these kinds of systems include the following approaches: (1) classi-
cal control system analyses, such as frequency domain analysis, unfortunately
these approaches are restricted to limited class of systems such as linear ones.
(2) reachability analysis which ensures that all reachable states belong to a safe
set; either as a unique set denoting all states, or as a flow-pipe of time-dependent
reachable states, as performed by hybrid system analysis tool such as Flow* or
SpaceEx or DynIbex; (3) numerical simulation which evaluates of the system’s
behaviors for a set of given input vectors. These input vectors can be randomly
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generated, as in the Monte Carlo approach, providing a reasonable yet non ex-
haustive, idea of the system’s behaviors. Reachability analysis is considered in
this article.

A key difficulty when it comes to formal verification is to be able to formally
specify the requirements. Historically, in theoretical Computer Science, the
set of functional properties of a system could be partitioned between safety
properties, properties expressed over states, and liveness properties, properties
expressed over traces. Safety properties are easier to express since they can
usually be characterized by a safe or unsafe set of states. The verification
amounts to show that the set of reachable states belong to the first set or has
no shared states with the latter. Liveness properties are richer since they can
express a notion of sequence of events, even in the case of infinite behaviors.
These algorithms are complex and not yet well developed when it comes to such
numerical systems. However checking a liveness property on a bounded horizon
can be proved to expressible as a safety property. This enables the evaluation
a limited temporal properties to finite horizon systems.

Last, recent tools, such as FRET [1] – the Formal Requirement Elicitaton
Toolbox –, help the user to design its specification, providing an underlying for-
mal logic based on future-time or past-time metric LTL. While existing tools,
as S-TaLiRo [2], allow to observe the validity of such requirements for a given
trace or trajectory, very few methods exist [3, 4] for bounded-horizon exhaus-
tive analysis of such requirements for dynamical systems, either ODE-based or
discrete time.

This paper describes our on-going work. We present a way to formally verify
bounded horizon properties of an STL formula for dynamical system. Our goal
is to lift the approach of STL observers proposed in [5] to sets of trajectories,
using the abstract interpretation framework. Our proposal intends to be more
generic than existing works [4, 3] while providing computable abstractions.

1 Setting 1: System Requirements with STL

Temporal logic [6] is an important formalism when it comes to specify the behav-
ior of systems and to prove their functional properties. It was first introduced
in the context of discrete-time systems – where traces are denoted as sequences
of values – and has since been extended to deal with continuous-time or hybrid
systems with a dense-time representation [5, 7] such as Signal temporal logic
(STL). While STL is strictly less expressive than LTL since it considers finite
time properties, it relies on similar temporal operators with bounded time hori-
zon. As an example the until U operator has to be associated to a time interval
within which it should hold U[t1,t2]. STL has become a well accepted formalism
to design continuous-time system requirements [8].

We recall the syntax of STL formula [9]: ϕ ::= true | σ | ¬ϕ | ϕ1 ∨ ϕ2 |
ϕ1U[a,b]ϕ2 | ϕ1R[a,b]ϕ2. The time interval [a, b] is such that a < b and a, b in Q.
σ is an atomic proposition of the form g(x) 6 0. As usual, constant false can be
defined as false ≡ ¬true and ϕ1∧ϕ2 ≡ ¬(¬ϕ1∨¬ϕ2). Other temporal operators
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y(t), ti |= true

y(t), ti |= σ ≡ σ (y(ti)) = true

y(t), ti |= ¬ϕ ≡ y(t) 6|= ϕ

y(t), ti |= ϕ1 ∨ ϕ2 ≡ y(t), ti |= ϕ1 ∨ y(t), ti |= ϕ2

y(t), ti |= ϕ1U[a,b]ϕ2 ≡ ∃t′ ∈ ti + [a, b], y(t), t′ |= ϕ2 ∧ ∀t′′ ∈ [ti, t
′], y(t), t′′ |= ϕ1

y(t), ti |= ϕ1R[a,b]ϕ2 ≡ ∀t′ ∈ ti + [a, b], y(t), t′ |= ϕ2 ∨ ∃t′′ ∈ [ti, t
′], y(t), t′′ |= ϕ1

Figure 1: Overview of the semantics of a Signal Temporal Logic (STL) formula.

as always �, eventually ♦ can be defined such that ♦[a,b]ϕ ≡ true U[a,b]ϕ and
�[a,b]ϕ ≡ ¬♦[a,b]¬ϕ. Assuming that a system trajectory is denoted by y(t), the
semantics of a STL formula ϕ is defined inductively in Figure 1. Current tools
for requirement elicitation or property checking based on STL formula mainly
work by considering one trajectory at a time, acting as a monitor. In order to
cover a wide range of system behaviors, one need to generate a large sample of
trajectories, typically using simulation tools such as Simulink [2]. For example,
the algorithm for monitoring STL formulas [5] provides an efficient checking
algorithm to assert that a trajectory is a model of an STL formula.

2 Setting 2: Reachability Analysis of Dynamical
Systems

We consider continuous-time systems defined as the solution of initial value
problem of ordinary differential equations (IVP-ODE) defined by ẏ = f(y) with
y(0) = y0. The non-linear function f : Rn → Rn is the dynamic of the system,
with n the dimension of the state vector y. Function f is assumed to be smooth
enough to ensure existence and uniqueness of the solution. The exact solution
y(t;y0) is usually not computable except for special cases, e.g., linear systems.
In consequence, numerical integration methods are used to produce an approx-
imated solution. In abstract model-checking context, reachability methods [10,
11] or guaranteed numerical integration methods [12, 13] are used to produce an
over-approximation of the set of trajectories Y(t;Y0) = {y(t;y0) : ∀y0 ∈ Y0}
starting from a set of initial conditions Y0. Note that in some cases, bounded
parameters are also considered in the dynamic f which also induce a set of
possible trajectories of the system.

Guaranteed numerical integration methods are interval counterpart of nu-
merical integration methods. A validated numerical integration of a differen-
tial equation consists in a discretization of time, such that t0 6 · · · 6 tend,
and a computation of enclosures of the set of states of the system y0, . . . ,
yend, by the help of a guaranteed integration scheme. In details, it is made
of (i) an integration method Φ(f,yj , tj , h), starting from an initial value yj

at time tj and a finite time horizon h (the step-size), producing an approx-
imation yj+1 at time tj+1 = tj + h, of the exact solution y(tj+1;yj), i.e.,
y(tj+1;yj) ≈ Φ(f,yj , tj , h); and (ii) a truncation error function lteΦ(f,yj , tj , h),
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such that y(tj+1;yj) = Φ(f,yj , tj , h) + lteΦ(f,yj , tj , h). A validated numerical
integration method is a two step method starting at time tj and for which i)
it computes an enclosure [ỹj ] of the solution of IVP-ODE over the time inter-
val [tj , tj+1] to bound lteΦ(f,yj , tj , h); ii) it computes a tight enclosure of the
solution of IVP-ODE for the particular time instant tj+1. There are many meth-
ods for these two steps among Taylor series and Runge-Kutta methods see [12,
13] and the references therein for more details. Usually guaranteed numerical
integration methods are based on intervals or zonotopes abstractions.

Remark 1. In context of abstract model checking where reachability methods
can be used, checking the validity of atomic proposition of the form y(ti;y0) = 0
for a particular time instant ti is not relevant as Y(t,Y0) is over-approximated
by a thick function even if Y0 is a singleton. That is one of the main motivations
of defining a set-based temporal logic formula, i.e., temporal logic formula based
on set-based atomic propositions.

3 Setting 3: Abstract Interpretation of Tempo-
ral Logic

While Abstract Interpretation theory has been mainly known for the static
analysis of safety properties for imperative programs, mainly using numerical
abstract domains such as interval or convex polyhedra, the theory is more gen-
eral and could be applied to a wide range of semantics analyses.

An interesting line of work by Cousot and Cousot [14] and Ranzato et
al. [15] characterizes temporal logics (µ-calculus and LTL, respectively) within
this framework. The semantics of a temporal logic formula is described by its
model, i.e., the set of traces that verify the formula. This approach is devel-
oped by induction on the operators of the logic and, as an example, the nega-
tion operator computes the complement of the considered set of traces with
respect to the full set of traces. We recall the basic definitions of those papers.
JφK denotes the semantics of formula φ. For an atomic proposition p, JpK =
{τ ∈ Trace(Σ) | ` ∈ `(τ(0))} where Σ is the set of states and `(τ(0)) the set of
atomic propositions associated to the first state of trace π. J¬pK = Trace(Σ)\JpK,
Jφ1 ∨ φ2K = Jφ1K ∪ Jφ2K, Jφ1U[a,b]φ2K = {τ ∈ Trace(Σ) | ∃k ∈ N, τk ∈ Jφ2K and

∀j ∈ [0, k), τ j ∈ Jφ1K} where σk is the suffix of trace σ that begins at index k.
These framework provides interesting connections between logics, model-

checking and static analysis, but they lack concrete implementations. In other
words, they provide a sound and strong theoretical framework able to compare
the respective expressiveness of different formalisms but are not well suited for
effective computations. An obvious limitation is the need to rely on a Boolean
lattice with a ¬ completion operator which is rarely available in most numerical
domains. Despite this lack of practical applications, we believe that is the proper
framework to both express and apply set-based verification of STL formulas.
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4 Motivation for Set-based STL Reasoning

We propose to restrict STL formulas to a logic where atomic propositions are
based on set operations. Set-based predicates are appropriate when considering
dynamical systems and their specifications. First, most specification are sub-
ject to uncertainties and typically express as distances or bounds over norms,
which naturally translate to sets. Second, the model dynamics as an ODE is an
approximation of the actual physical dynamics of the system. A sound way to
address this is to provided sets for parameters, denoting a family of systems at
once.

In terms of verification, we recall that the basic principle being model-
checking is to check that the models of the systems belong to the models of
the specification, which is also a set inclusion relation. Regarding precision of
the analysis, most equality and inequality constraints are hardly representable
in abstract domains. For example when computing with intervals, it is difficult
to have a precise ¬ operator in the abstract. This lack of precision to represent
equalities and their negation is a good motivation to restrict their uses.

5 Set-based atomic propositions

We propose to restrict STL to formulas with two kinds of atomic predicates.
In the original definition, atomic predicates over system states are arbitrary
real-valued functions g(x) ≤ 0, which could be used to denote inequality and
therefore equality. We rather propose to restrict atomic predicates to the fol-
lowing ones: σ ::= g(Y) ⊆ A | g(Y) ∩=∅ A , with A ⊆ Rn a constant set and
g : Rn → Rn a non-linear function. The lifting of functions g over set X is such
that g(X ) = {g(x) : ∀x ∈ X}.

While, with these two predicates, we cannot exactly characterize the nega-
tion of each of them, one can remark that g(Y) ∩=∅ A =⇒ ¬(g(Y) ⊆ A) and,
respectively, g(Y) ⊆ A =⇒ ¬(g(Y) ∩=∅ A). We can then use them soundly
when over-approximating sets with an abstract negation or complement opera-
tor ¬, as for example in [16, 17].

Remark 2. Set-based atomic proposition subsumes inequalities such as cons-
traints of the form g(x) > 0 can be encoded as g(x) ⊂ [0,+∞[.

6 Set-based STL monitors

Previous work [4, 3] have also considered STL formula for the verification of
continuous or hybrid dynamical systems. Indeed, [4] introduced a new Reachset
Temporal Logic (RTL) in order to express temporal properties on set of tra-
jectories. This RTL relies on the computation of reachable tube, discretized
in time, and provides a convenient way to express RTL into conjunctive nor-
mal form of propositional formula. In [3], a direct interval-based extension of
the STL monitoring algorithm proposed by [18] is defined. This work follows
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(a) Drone’s altitude with uncertainty
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(b) Boolean abstraction

Figure 2: Altitude control example

the same philosophy, proving that a set of trajectories fulfills a given tempo-
ral specification. Nonetheless, the embedding in abstract interpretation theory
can provide a new look on these previous works as a way to merge them into a
common generic framework and provide insights to define new abstract domains
(relational or not) for reachable tubes or STL formula.

In particular, following [18], monitoring STL formula is defined inductively
on the syntax of the formula as most common static analyses by abstract inter-
pretation. Moreover, this monitoring formula is based on a Boolean abstraction
of continuous trajectories in order to use a temporal logic monitoring algorithm.

As an illustration of the benefit of set-based STL, a simple altitude control

algorithm of a drone is defined by: ż = vz and v̇z =
Kp(1−z)−Kdvz+3.2373

[0.33,0.34] − g
where g is the g-force equals to 9.81m.s−2. Note that we consider an unknown
but bounded mass of a drone equals to [0.33, 0.34]kg. The gains of the controller
are Kp = 5 and Kd = 1.25. The goal of the mission is to put the control to pose
(0.0, 0.0) to pose (1.0, 0.0) and hovers at this last pose. A simulation result is
given in Figure 2a.

A property of interest is given by the set-based STL formula

�[0,3]

(
Z(t) ⊆ [1, 1.2] =⇒

(
♦[0.5,1]Z(t) ⊆ [0.95, 1.05] ∧ Vz(t) ⊆ [−10−3, 10−3]

))
.

A first idea to define monitoring algorithm of set-based STL formula is to adapt
the monitoring algorithm of [3] to use set-based atomic propositions. It should
be straightforward to adapt it to our formalism since the Boolean abstraction
of set-based predicate (cf Figure 2b) can be embedded in algorithm defined in
[3].

7 Perspectives

Manipulating abstractions and reasoning about them could easily leads to false
statements. We believe that this abstract interpretation-based reasoning over
our restriction of STL formulas could lead to both sound and precise analyses. In
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addition, we identified a need for a tool able to reason exhaustively on computed
reachable tubes.

We are currently designing a modular instantiation of the temporal logic
abstract interpretation frameworks mentioned above, able to effectively compute
an over-approximation of both the models of a formula and the models of its
negation. Our approach is to first design a simple abstraction that propagates
abstract Boolean in {True,False,>} along Boolean operators (as in [3]), then to
propagate models, and, finally, design time-dependent relational abstractions.
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[7] Alexandre Donzé and Oded Maler. “Robust Satisfaction of Temporal
Logic over Real-Valued Signals”. In: Formal Modeling and Analysis of
Timed Systems. Vol. 6246. LNCS. Springer, 2010, pp. 92–106.

[8] Ezio Bartocci et al. “Specification-Based Monitoring of Cyber-Physical
Systems: A Survey on Theory, Tools and Applications”. In: Lectures on
Runtime Verification - Introductory and Advanced Topics. Vol. 10457.
LNCS. Springer, 2018, pp. 135–175.

[9] Ron Koymans. “Specifying real-time properties with metric temporal logic”.
In: Real-time systems 2.4 (1990), pp. 255–299.

7



[10] Goran Frehse et al. “SpaceEx: Scalable Verification of Hybrid Systems”.
In: Proc. of Computer Aided Verification. Vol. 6806. LNCS. Springer. 2011,
pp. 379–395.

[11] Xin Chen, Erika Abraham, and Sriram Sankaranarayanan. “Taylor Model
Flowpipe Construction for Non-linear Hybrid Systems”. In: Proc. of IEEE
Real-Time Systems Symposium. 2012, pp. 183–192.

[12] Nedialko S. Nedialkov, Kenneth Jackson, and Georges Corliss. “Validated
solutions of initial value problems for ordinary differential equations”. In:
Applied Mathematics and Computation 105.1 (1999), pp. 21–68.

[13] Julien Alexandre dit Sandretto and Alexandre Chapoutot. “Validated Ex-
plicit and Implicit Runge-Kutta Methods”. In: Reliable Computing 22
(2016).

[14] P. Cousot and R. Cousot. “Temporal Abstract Interpretation”. In: Con-
ference Record of the Twentyseventh Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages. Jan. 2000, pp. 12–
25.

[15] Francesco Ranzato and Francesco Tapparo. “An Abstract Interpretation
Perspective on Linear vs. Branching Time”. In: Programming Languages
and Systems. Springer Berlin Heidelberg, 2005, pp. 69–85. isbn: 978-3-
540-32247-4.

[16] Julien Alexandre Dit Sandretto, Alexandre Chapoutot, and Olivier Mul-
lier. “Constraint-Based Framework for Reasoning with Differential Equa-
tions”. In: Cyber-Physical Systems Security. Ed. by Çetin Kaya Koç. Springer,
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