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Abstract
Delayed cavity-free forward lasing at the wavelengths of 391 and 428 nm was observed in recent
experiments in air or pure nitrogen pumped with an intense femtosecond laser pulse at wavelength
of 800 nm. The mechanism responsible for the lasing is highly controversial. In this article we
propose a model explaining the delayed lasing, which contains two parts: (i) ionization of neutral
nitrogen molecules and subsequent excitation of nitrogen ions in a strong pump laser pulse, and
(ii) coherent emission of excited ions due to the presence of long-lived polarizations maintained by
a weak laser post-pulse and coupling simultaneously ground state X2Σ+

g to states A2Πu and B2Σ+
u

of singly ionized nitrogen molecules N+
2 . Two regimes of signal amplification are identified: a

signal of a few picosecond duration at low gas pressures and a short (sub-picosecond) signal at
high gas pressures. The theoretical model compares favorably with results obtained by different
experimental groups.

1. Introduction: lasing without inversion

Several experiments on the interaction of a strong ultra-short laser pulse at 800 nm with molecular nitrogen
[1–7] report on a robust cavity-free lasing in the forward direction at the wavelengths 391 or 428 nm,
corresponding to transitions from the excited state B2Σ+

u to the ground state X2Σ+
g of N+

2 with vibrational
levels 0 or 1, respectively. It was observed that a femtosecond seed signal at 391 or 428 nm, injected a few
picoseconds after the pump pulse, is amplified by two-three orders of magnitude. Furthermore, the lasing
emission is delayed from the seed pulse by a few picoseconds. All these processes take place on the time
scale smaller than the electron collision time and they cannot be related to the population inversion due to
the collisions as in the case of lasing of neutral nitrogen [8, 9].

Several explanations for this lasing have been proposed so far. Fast population inversion between B and
X due to depletion of X by the pump pulse inducing a transfer of population from X to the intermediate
third level A2Πu has been discussed in references [5, 6]. However, this scheme does not offer an explanation
for the retarded emission, which is much longer that the pump pulse duration. It also assumes an inversion
between the X and A levels, which is not evidenced experimentally. Increase of the population at the upper
level by multiple electron recollisions was suggested in [10]. However, it was shown later that this process
itself cannot produce an inversion between X and B states needed for lasing with a high optical gain [11].
Excitation of rotational levels of N+

2 ions was also suggested as a possible mechanism of population
inversion between B and X states with different rotational quantum numbers [12, 13]. This is explained by a
periodic alignment of the coherent rotational wave packets excited by the pump laser pulse. However, recent
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analysis shows that such an inversion exists only for short time periods of molecular alignment, the
predicted gain is too small and incompatible with the observations [14, 15].

It is known that lasing without population inversion is possible in a V-scheme, which involves a third
level resonantly driven by the pump and coupled to the excited state by a quantum interference [16–18].
Such a V-scheme, studied in references [19–21] and more recently in reference [22], can be applied to the
interpretation of lasing of nitrogen molecular ions N+

2 driven by an ultrashort laser pulse with peak
intensity in the range of a few 1014 W cm−2, but one needs to explain how the third level is driven, what are
the populations at the excited levels and what are the conditions for obtaining optical amplification. A
theoretical model that is capable of describing the delayed lasing without creating the population inversion
between B and X levels has been proposed in reference [23]. The theoretical results are in agreement with
experimental data about the temporal shape of the amplified signal and the gas pressure dependence of the
gain. The present paper provides a detailed description of this theoretical model and a comparison with
experimental results obtained by different groups. The signal amplification in the B–X transition of
nitrogen molecular ions is described by a two-step process: (i) the interaction of a short and intense pump
laser pulse at the wavelength 800 nm with a nitrogen gas leads to partial ionization of the nitrogen
molecules and partial excitation of the molecular ions to the upper states A and B. However, it cannot create
the population inversion for the laser intensities used in the experiments; (ii) the coherent cross-coupling
between excited ion states A and B maintained by a weak 800 nm post-pulse of a few picosecond duration
opens the possibility of retarded signal amplification if the population at level B is larger than at level A but
smaller than at level X. This is much softer condition compared to the population inversion between B and
X levels needed to lasing in a two-level scheme.

The paper is organized as follows. Section 2 addresses the problem of ionization of nitrogen molecules
and excitation of the ions by the main laser pulse. While direct ionization into excited ionic states has a low
probability, population transfer to these excited states can be quite efficient if the transition frequencies are
of the same order of magnitude as the corresponding Rabi frequencies. The calculations show that in the
range of intensities around 1014 W cm−2 population at level B is always lower than that at level X(0) when
averaged over the random orientation of N2 molecules before the interaction. Nevertheless, as we show in
section 3, signal amplification after the end of the laser pulse is possible provided that the main laser pulse is
followed by a weak coherent post-pulse of a few ps duration, which maintains the coherent A–X
polarization. The presence of a post-pulse is consistent with experimental observations [23]. The temporal
evolution of populations in these three resonantly coupled levels and the evolution of electromagnetic fields
is described by a system of Maxwell–Bloch equations enveloped over the transition frequencies. This
long-lived mutual coherence makes the system unstable: it may generate an emission corresponding to the
B–X transition or amplify a seed injected at the corresponding wavelength in the absence of population
inversion between B and X. Depending on the post-pulse fluence and gas pressure, this amplification may
proceed in two regimes: either parametric signal amplification at low pressures generating a few
picosecond-long signal, or formation of an intense sub-picosecond spike (soliton) at high pressures.
Section 4 presents an analysis of numerical simulations with a particular emphasis on the dependence of the
amplification process on gas pressure and laser post-pulse amplitude. In section 5 we compare theoretical
results with experiments performed by different groups. Section 6 presents our conclusions.

2. Ion excitation in a strong laser field

Here we consider the interaction of the main laser pulse at 800 nm with a homogeneous nitrogen gas. The
laser pulse intensity, on the order of 1014 W cm−2, is sufficiently strong to create a plasma column, and it is
assumed that it is not appreciably modified by the gas ionization and ion excitation. Therefore, we consider
the interaction of a given laser field with a single nitrogen molecule. The physical processes that we are
interested in are: (i) ionization of the neutral nitrogen molecule from the neutral ground state to the ionic
ground X and excited A and B states and (ii) subsequent transitions during the laser pulse between the
ground and excited ionic states.

Figure 1 shows the V-scheme of energy levels of N+
2 containing the ground levels X2Σ+

g (0, 1), the

excited level B2Σ+
u (0) and a series of A2Πu(v) levels with different vibrational quantum numbers varying

from v = 0 to 3. The resonant couplings considered in what follows correspond to transitions X(0)–A(2)
and X(1)–A(3).

Ionization of the nitrogen molecules is described by the Perelomov–Popov–Terent’ev (PPT) model
[24, 25] adapted for molecular systems by Tong et al [26]. The ionization probability wPPT(Ui, Emas)g(θn)
depends on the ionization potential Ui, instantaneous laser electric field Elas(t), and angle θn between its
direction and molecule axis. The angular dependence is interpolated, according to [27], by a function
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Figure 1. Scheme of the electronic levels in the molecule N+
2 . Numbers near the lines indicate the vibrational mode, rotational

splitting is neglected. Energy gap for transition B(0)–X(0) is 3.20 eV, energy gap for transition A(2)–X(0) is 1.58 eV, energy
splitting between vibrational X levels is 0.27 eV, energy splitting between the vibrational A levels 2 and 3 is 0.25 eV. Resonant
couplings to the laser corresponding to transitions X(0)–A(2)–B(0) and X(1)–A(3)–B(0) are shown with thick arrows.
Polarization cross-coupling between A and B levels is shown with dashed arrows.

g(θn) = 0.45 + 0.95 cos2 θn + 1.17 cos4 θn, which decreases from the maximum value 2.57 for the parallel
orientation, θ = 0◦, to 0.45 for the perpendicular orientation, θ = 90◦, with an average value of 1. The
ionization energy of level X(0) UX0 = 15.57 eV is comparable to that of level X(1), UX1 = 15.84 eV, so that
both levels have to be considered, but the ionization probability to X(1) level is suppressed because of a
small Franck–Condon factor [28]. As the probability of tunnel ionization decreases exponentially with the
transition energy, direct ionization into excited states A and B, separated by the energy gap of 1.5 and 3 eV,
respectively, is small, but we account for it for completeness.

The dipolar moments μax � 0.25eaB and μbx � 0.75eaB, where e is the unitary charge and aB is the Bohr
radius, of A–X and B–X transitions [29, 30] correspond to the coupling energy μE on the order of a few eV
for a laser intensity of 1014 W cm−2. This value is comparable to the energies of transitions. Therefore,
several levels can be excited simultaneously irrespectively of the resonance conditions. Non-resonant
excitation of two- and three-level systems in a strong laser field was considered in references [5–7]. Here we
extend this approach by considering excitation in three states: B(0), A(2) and A(3) and by averaging the
results over the random initial orientation of the molecules. Triplet X(0)–A(2)–B(0) with transition
energies 1.58 and 3.20 eV, corresponds to the lasing signal observed at 391 nm, another triplet
X(1)–A(3)–B(0) with transition energies of 1.55 and 2.93 eV, lying nearby, corresponds to lasing at 428 nm.
The scheme of level couplings is shown in figure 1.

The temporal evolution of this five-level system in a given laser electric field is described by a system of
Bloch equations for the density matrix involving five diagonal elements representing the corresponding
population of states A(2), A(3), B(0), X(0) and X(1), and six off-diagonal elements accounting for
polarization couplings between A–X, B–X and A–B states as shown in figure 1. The governing equations
are presented in appendix A.

Equations (A.1)–(A.11) were solved numerically for a given laser pulse maximum intensity Ilas and pulse
duration tlas. The ion state probabilities were evaluated at the end of the laser pulse, t = tlas. Figure 2 shows
an example of temporal evolution of the state probabilities for the triplets X(0)–A(2)–B(0) (solid lines) and
X(1)–A(3)–B(0) (dashed lines) for the molecule orientation of 18◦ with respect to the laser polarization.
Steps in the ionization curve correspond to the maxima of laser electric field and oscillations in the
population levels are due to the polarization coupling. Ionization to the ground level X(0) is the dominant
channel, the population at level X(1) is much smaller than at X(0). Direct ionization in excited states is also
a minor effect. The excited states A and B are populated essentially from the level X(0) by the strong-field
Rabi coupling.

The calculations were performed for different angles θn of orientation of the molecular axis with respect
to the laser field direction, and the results were averaged over angles by taking into account the angular
dependence of the ionization probability g(θn) and the polarization couplings. We assume an isotropic
(random) distribution of molecules in the gas before the laser pulse arrival. Figure 3 shows the dependence
of the populations on laser intensity for laser pulse duration of 20, 40 and 60 fs. The fraction of ionized
nitrogen molecules shown with purple lines increases with the laser pulse duration and intensity. Partition
of ions between the excited levels depends essentially on the laser intensity. At the lowest intensities,
excitation to the level A(2) has the highest probability while excitation to the upper level B has the lowest
probability. However, with the increase of laser intensity above ∼ 2 × 1014 W cm−2 the population ratio
between the levels A and B inverses: population at level B increases with laser intensity, while populations at
levels A remain at an approximately constant level of 10%–15%.

This general trend presented in figure 3 is rather similar for the three pulse durations in panels a, b, and
c. Population at level X(0) is always the largest, albeit decreasing, but no inversion between states B and
X(0) occurs in the considered range of laser intensities � 4 × 1014 W cm−2. The inversion between levels
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Figure 2. Time dependence of the ionization and excitation probabilities of nitrogen molecular ions created in a laser pulse with
maximum intensity Ilas = 1.5 × 1014 W cm−2, wavelength 800 nm and duration tlas = 40 fs for the molecule orientation at angle
θn = 18◦ with respect to the laser electric field, Tlas = 2π/ω0 = 2.67 fs is the laser period: the total ionization fraction—pink
line, population at X levels—green lines, population at B level—blue line, and population at A levels—red lines. Solid lines
correspond to the vibrational levels X(0) and A(2), dashed lines—to the vibrational levels X(1) and A(3).

Figure 3. Dependence of the populations at levels A(2) (red), A(3) (red dashed), B(0) (blue), X(0) (green) and X(1) (green
dashed) normalized to the total ion density, ni on the laser intensity for laser pulse duration 20 fs (a), 40 fs (b) and 60 fs (c). The
total ionization probability ni/n0 is shown with purple line.

B(0) and A(2) occurs at a laser intensity less than 2 × 1014 W cm−2, and the inversion point slightly varies
with the pulse duration. By increasing the laser intensity beyond 4 × 1014 W cm−2 one may also achieve a
population inversion between B(0) and X(0) levels, but it is unlikely that such high intensities may be
achieved in laser filaments [31].

The ionization–excitation model of nitrogen molecules with a short and intense laser pulse presented in
this section is quite robust. The population levels do not change notable if other allowed transitions
between X and A vibrational states are taken into account. The calculated populations depend rather weakly
on exact values of the frequencies of B–X and A–X transitions and their detuning with respect to the laser
frequency. Coupling is strong and it is controlled essentially by the large values of the Rabi frequencies
μaxElas/� and μbxElas/�, where � is the Planck constant, comparable to the corresponding transition
frequencies ωax and ωbx. Direct ionization to the excited states A(2) and A(3) accounted for in
equations (A.3) and (A.4) makes a relatively small contribution of less than 10% to the population in the
excited states. Contribution of the direct ionization to the level B(0) is even smaller, it is less than 1% in the
considered cases.

In the next section we investigate the evolution of the excited molecules in a gas after the end of the
main laser pulse, assuming that the polarization corresponding to the selected A–X transition is maintained
by a weak laser post-pulse. It is supposed that such a post-pulse cannot affect the population distribution
between the levels, but it is sufficiently strong and resonant for maintaining one of polarizations da2x0 or
da3x1 for a time of a few picoseconds, much longer than the main laser pulse duration. Due to the
polarization coupling, the laser post-pulse may induce a delayed emission from the level B(0). It is shown
below in section 4.2 that amplification takes place if the detuning between the post-pulse wavelength and
the wavelength of corresponding A–X transition does not exceed a few nanometers. This is much smaller
than the wavelength difference between A(2)–X(0) and A(3)–X(1) transition, which is about 30 nm. So the
processes of amplification at the wavelengths 391 and 428 nm can be considered separately.

3. Temporal evolution of the ion populations and seed amplification in the three-level
interaction

3.1. Maxwell–Bloch equations
We consider the temporal and spatial evolution of the triplet X(0)–A(2)–B(0). A similar analysis can
performed for the triplet X(1)–A(3)–B(0). Here, one has to account for the possible evolution of the
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post-pulse in space and in time while propagating through the plasma filament. This implies the use of
Maxwell–Bloch equations that account for the evolution of both ion populations and electromagnetic fields
in the plasma. The considered post-pulse intensity is about four orders of magnitude smaller than the main
pulse. It cannot ionize the gas and the coupling to molecular ionic transitions is weak. This allows us to
treat each V-triplet independently, to use an envelope approximation for the electric fields and polarization
fields and to select only the resonantly coupled levels. Consequently, the electromagnetic field is presented
here as a sum of two components operating at the frequencies close to the transitions A(2)–X(0) and
B(0)–X(0):

E(z, t) = Re
[
Eax exp(−iωaxτ) + Ebx exp(−iωbxτ)

]
,

where τ = t − z/c is the co-propagation time. Possible detuning from the resonant frequency is accounted
for in the time dependence of the electric field amplitudes Eax(τ , z) and Ebx(τ , z). Similarly, all polarizations
in the Bloch equations (A.6)–(A.11) are separated in the slow varying amplitudes and fast oscillating
phases:

dax = − i

2
pax exp(−iωaxτ), dbx = − i

2
pbx exp(−iωbxτ), dba =

1

2
pba exp(−iωbaτ).

Then the Maxwell–Bloch equations for the three level system system read [21]:

c∂zEax =
ωaxniμax

2ε0
pax sin θi, c∂zEbx =

ωbxniμbx

2ε0
pbx cos θi, (1)

∂τpax = −γaxpax +
μax

�
Eax(na − nx) sin θi +

μbx

2�
Ebxp∗ba cos θi, (2)

∂τpbx = −γbxpbx +
μbx

�
Ebx(nb − nx) cos θi +

μax

2�
Eaxpba sin θi, (3)

∂τpba = −γbapba −
μbx

2�
Ebxp∗ax cos θi −

μax

2�
E∗

axpbx sin θi, (4)

∂τna = −μax

2�
Re(p∗axEax) sin θi, ∂τnb = −μbx

2�
Re(p∗bxEbx) cos θi, (5)

where ε0 is the vacuum permittivity, coefficients γ ij account for the collision-induced spontaneous damping
of the corresponding polarizations, ni is the density of nitrogen ions in the plasma and the populations of
all three levels are normalized to the ion density in three considered states and are related by the condition
na + nb + nx = 1. We make a difference between the angle θi of orientation of the molecular ion and the
angle of orientation of the neutral molecules θn, because the former accounts for rotation of molecular ions
and for the possible revivals of molecular orientation because of rotational coherence as discussed in
section 3.2.

The characteristic time of spontaneous damping is on the order of a few ps, which is comparable to the
amplification time, and needs to be retained in these equations. Initial conditions for this system are
provided by solution of the Bloch equations (A.1)–(A.11) driven by the main pulse.

It is convenient for the qualitative analysis and numerical solutions to introduce the characteristic time
tN = (ε0�/ωaxμ

2
axni)1/2 and the characteristic length zN = ctN. In what follows we shall use the

dimensionless time τ → τ/tN and coordinate z → z/ctN and normalized electromagnetic fields
ea,b = μa,bxEa,bxtN/�. (Numerical values for these parameters are given in section 4.) Then the
dimensionless set of equations can be cast in the following form

∂zea =
1

2
pax sin θi, ∂τpax = −γ̂axpax + (na − nx) ea sin θi +

1

2
p∗baeb cos θi, (6)

∂zeb =
r

2
pbx cos θi, ∂τpbx = −γ̂bxpbx + (nb − nx) eb cos θi +

1

2
pbaea sin θi, (7)

∂τna = −1

2
Re(p∗axea) sin θi, ∂τnb = −1

2
Re(p∗bxeb) cos θi, (8)

∂τpba = −γ̂bapba −
1

2
p∗axeb cos θi −

1

2
pbxe∗a sin θi. (9)

where r = ωbxμ
2
bx/ωaxμ

2
ax is the ratio of characteristic times of evolution of the B–X and A–X transitions

and γ̂ ij = γijtN are the dimensionless damping rates. For the nitrogen ion this ratio r � 18 is quite large
because of a large ratio of dipole moments. This implies a much faster temporal evolution of the B–X
transition compared to A–X.
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It is important to mention that in the absence of damping, γ̂ ij = 0, this system has the propriety of
conserving locally in space the following combination of populations:

1

2
|pax|2 +

1

2
|pbx|2 +

1

2
|pba|2 + n2

a + n2
b + n2

x = C, (10)

where C is a positive constant which is equal to 1/3 for fully decorrelated and equally partitioned
populations. The case of fully correlated system C = 1 is considered in section 3.3.2. Another important
property is the energy conservation in the system. By time integrating the equations for |ea,b|2, one obtains
the energy conservation laws for transitions A–X and B–X separately:

Fa(L) − Fa(0) =

∫ L

0
dz (na(z, 0) − na(z, τmax)) , (11)

Fb(L) − Fb(0) =

∫ L

0
dz (nb(z, 0) − nb(z, τmax)) . (12)

Here Fa and Fb are the energy fluxes of the pump and seed pulses at the end of simulation τ = τmax at the
entrance, z = 0, and the exit, z = L, of the system

Fa(z) =
1

2

∫ τmax

0
dτ |ea(z, τ)|2, Fb(z) =

1

2r

∫ τmax

0
dτ |eb(z, τ)|2.

These relations (11) and (12) confirm that the number of emitted photons in A–X and B–X transition is
conserved separately and it is equal to the number of ions transferred from the correspondent excited state
to the ground state. By taking the difference between the equations for the field intensities one can obtain
also the following relation

1

2
∂z|ea|2 −

1

2r
∂z|eb|2 = ∂τ (nb − na),

which relates the number of ions transferred from state B to state A through the ground state X to the
number of emitted photons in the B–X and A–X transitions. This corresponds to a lasing process without
population inversion but has also been viewed as a two-photon stimulated Raman scattering [32]. However,
in difference from the conventional, single photon Raman scattering, here, the scattered wave is up-shifted
in frequency and the energy is provided from the medium. Therefore, in our view, it is better described as a
lasing process without population inversion.

Fulfillment of the conservation laws (10)–(12) provides a test for the accuracy of numerical calculations
shown below. The positive values of Fa,b correspond to the amplification of the corresponding input signal
in the plasma. In what follows, we define the energy gain, Ga,b, as a ratio between the emitted flux at the end
of simulation and the injected flux, and ηb as the fraction of energy extracted from the excited level:

Ga,b = Fa,b(L)/Fa,b(0), ηb = Fb(L)/nb0L. (13)

Before discussing numerical solutions we first present several analytic results that are useful for their
interpretation.

3.2. Role of molecular rotations
Before discussing the solutions for the set of equations (6)–(9), we need to consider the role of molecular
rotations. The strong laser electric field induces a dipolar moment in a neutral nitrogen molecule and exerts
a torque. This leads, after an inertial delay of ∼ 100 fs, to the formation of a coherent rotational wavepacket
with a partial alignment of the neutral molecules along the laser field axis. As molecules have a broad
discrete distribution in the rotational moments J, a coherent rotational wave packet quickly dephases, but
then experiences spontaneous revivals every half rotation period Trot/2, where Trot = 1/(2Bc) [33, 34].
Here, B = �/4πcIm is the rotation constant and Im is the moment of inertia of the molecule.

The rotational constant is equal to 2.0 cm−1 for the neutral molecule, 2.07 cm−1 for the nitrogen ion at
the B state and 1.93 cm−1 at the X state, so the revivals appear with a period about 4 ps. However, the
duration of revivals is rather short, it is approximately J0 times shorter than the revival period, where
J0 � μElastlas/� is the characteristic rotation quantum number. For the parameters of interest in our study
J0 ∼ 10–20 and the corresponding revival duration is shorter than 0.4 ps. Thus, revivals should not affect
significantly the amplification process that proceeds on a longer time scale. This is confirmed in the recent
publications [14, 15], where the authors demonstrated the possibility for producing the population
inversion between the rotational states of B(0) and X(0) levels with odd rotational quantum numbers.

Therefore, in our numerical model we assume that the probability of angular distribution of ions, P(θi),
does not depend on time, and we consider a quasi-classical angular distribution of ions with the average
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value 〈cos2 θi〉 � 0.33 corresponding to a non-adiabatic strong short pulse excitation [34, 35]. Equations for
angle averaged populations, na,b,x, and corresponding polarizations are given in appendix B.

3.3. Analytic solutions to the three level system
The system of equations describing the V-scheme has several analytic solutions that are presented in
appendix C for reference. Here, we present two particular solutions that will help us interpret the numerical
simulations presented in the next section: the lasing without inversion and the solitons. In both examples
we neglect the spontaneous damping for sake of simplicity.

3.3.1. Lasing without population inversion
The system of equations (6)–(9) has a particular solution, discussed by Svidzinsky et al [22]. It corresponds
to an amplification of a signal at a higher frequency ωbx due to a parametric coupling to the pump wave of
lower frequency ωax through the correlated polarization between levels A and B. Here, we assume that there
are populations at both excited states, na0 and nb0, are given, and that the A–X transition is driven by a
pump field ea(τ , z) = ea0 exp(−iΔωaxτ + iqz) coupled to the polarization pax(τ , z) = pax0

exp(−iΔωaxτ + iqz). Relations between the amplitudes, pax0 = 2iqea0/sin θi, the space dephasing parameter
q = (na0 − nx0)sin2 θi/2Δωax and the frequency detuning Δωax follow from the first two equations of the
system.

Let us consider a seed wave of small amplitude eb0 at a frequency ωbx corresponding to the B–X
transition and investigate the linear response of the system (6)–(9) to this initial perturbation. The
perturbed system contains three equations for the field eb and polarizations pbx and pba:

∂zeb =
r

2
pbx cos θi, ∂τpbx = (nb0 − nx0)eb cos θi +

1

2
pbaea0 sin θi exp(−iΔωaxτ + iqz),

∂τpba = iqea0eb cos θi exp(iΔωaxτ − iqz) − 1

2
pbxea0 sin θi exp(iΔωaxτ − iqz).

Making a Fourier transform in time with the initial condition eb(0, z) = eb0, and expressing the Fourier
components of polarizations through eb, one finds an equation for the seed field ∂zeb = Heb with the gain
factor H depending on detuning:

H =
ir cos2θi

2Δωax

Δωax(ω −Δωax) (nb0 − nx0) − (na0 − nx0) e2
a0 sin2θi/4

ω (ω −Δωax) − e2
a0 sin2θi/4

.

Solving this equation, the signal amplitude can be expressed as an inverse Fourier transform:

eb(τ , z) =
ieb0

2π

∫
dω

ω
exp(−iωτ + Hz). (14)

The integral here is performed in the complex plane ω along the contour going above the singular points,
according to the principle of causality. The singular points are solutions of the dispersion equation:

ω (ω −Δωax) − e2
a0 sin2θi/4 = 0,

which has two solutions ω1,2 =
1
2Δωax ∓ 1

2

√
Δω2

ax + e2
a0 sin2θi. The first one corresponds to a spontaneous

amplification at the B–X transition modified by the presence of the A level. It requires the population
inversion nb0 > nx0 as it is shown in appendix C. The second one corresponds to a parametric coupling
between A and B levels and requires a softer condition nb0 > na0. A convenient way to compute the inverse
Fourier transform (14) asymptotically in the limit rzτ cos2 θi 
 1 is to close the integration contour in the
lower half plane and to transform it into two circles with the centers in the singular points ω1,2. The radius
of each circle is found by equating the amplitudes of the two terms in the exponential. In particular,
assuming a sufficiently large detuning |Δωax| 
 ea0|sin θi|, for the singular point ω1 ≈ −e2

a0 sin2θi/4Δωax,
the circle radius Γ1 is defined by equation: 2Γ2

1τ ≈ rz(nb0 − nx0)cos2θi. This singular point corresponds to
oscillations decaying in time with the characteristic frequency Γ1, if nb0 < nx0, or to an exponential growth
in time, if nb0 > nx0.

The radius of the contour around the second singular point ω2 ≈ Δωax + e2
a0 sin2θi/4Δωax is defined by

equation: 8Γ2
2τ ≈ rz(nb0 − na0)e2

a0 cos2θi sin2θi/Δω2
ax. The integral around this singular point corresponds

to the modified Bessel function I1 in the case nb0 > na0:

eb(τ , z) = eb0
Γ2

|Δωax|
I1(2Γ2τ). (15)

7
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In the limit 2Γ2τ 
 1 this expression corresponds to an exponentially growing solution. In physical units
expression for the gain factor reads

Gbx �
μbxEa0

2�
| sin 2θi|

√
nb0 − na0

|Δωax|tN

√
ωbxτz

2ωaxc
. (16)

If spontaneous damping is included, it imposes a threshold value of the pump field amplitude for excitation
of this instability.

3.3.2. Solitary excitation
The soliton solution is a dynamic structure that propagates along the plasma with a constant velocity and
amplitude. It was described in a two-level system by McCall and Hahn [36] and in more details in reference
[37]. Considering for example A–X transition alone and neglecting the polarization damping term, system
(6) and (8) reduces to the following three equations:

∂zea =
1

2
pax sin θi, ∂τpax = (na − nx)ea sin θi, ∂τna = −1

2
Re(p∗axea) sin θi. (17)

Assuming ea to be real and depending on the coordinate and time as ξ = (τ − z/u)sin θi, this system has
two integral relations, |pax|2 = 2na(1 − na) and e2

a = 2nau, which are the particular case of the more general
expressions (10) and (11). The constants in these two relations are chosen assuming that there is no
population at the level A before the laser pulse arrival. Then the remaining equation for na has a soliton
solution:

na =
1

cosh2(wξ)
, ea =

e0

cosh(wξ)
, pax = − sinh(wξ)

cosh2(wξ)
, (18)

where the amplitude e0, velocity u and inverse width w are related as e0 =
√

2u and w = e0/2
√

2.
Population at the level A increases from 0 to 1 when ξ is negative and increasing, while it decreases back to
zero when ξ is positive. The soliton carries an area A =

∫ ∞
−∞ ea dξ = 2

√
2π. That relation imposes a

condition on the minimum pump amplitude needed for the soliton excitation.
The soliton propagates with a velocity uc/(1 + u) smaller than the light velocity. It transports a

dimensionless energy flux Fa =
1
2

∫ ∞
−∞ e2

a dz = e3
0

√
2/ sin θi, which depends on its amplitude. Soliton

solutions for a three level system has been constructed in references [38, 39] for a particular case of r = 1.
However, these are not relevant to our conditions of the large value of r ≈ 18 that makes correlation
between B–X and A–X solitons more complicated. Particular solutions of the V-system described above are
found in the numerical analysis presented in the next section.

4. Numerical solutions for the V-system

4.1. Initial conditions
In the numerical analysis of our system we consider the B(0)–A(2)–X(0) transition at wavelengths 391.4
and 787.5 nm [23]. The fractions of excited ions and initial values of polarizations are calculated from the
system of Bloch equations discussed in section 2. The system of Maxwell–Bloch equations averaged over the
ion orientation angle is presented in appendix B. As an example, we consider the main laser pulse intensity
2.6 × 1014 W cm−2 and duration of 40 fs. According to figure 3(b), that choice of parameters corresponds
to an ionization of 25% and to a situation without population inversion with respect to the ground level X:
na0 = 0.15, nb0 = 0.20 and nx0 = 0.30. However, it satisfies the necessary amplification condition na0 < nb0.

We first considered solutions of system (6)–(9) without external fields, eax = ebx = 0, and with
maximum initial values of polarizations: pij ∼ 1. (The choice of phases has no importance.) The system
with these initial conditions is quickly discharged by spontaneously amplifying photons at both transitions.
The characteristic de-excitation times of the system, Δta ∼ ct2

N/(2L|na − nx|) and Δtb ∼ ct2
N/(2rL|nb − nx|)

are very short, less than 0.1tN, especially for the B–X transition. This is consistent with the conservation
equation (10): any state will terminate with zero polarizations at excited levels and with nx = 1. This
situation, however, is not consistent with the delayed emission observed in the experiments. By reducing
polarization amplitudes by 100 times or more, one can slow down the spontaneous emission and maintain
a large fraction of ions in the excited states. However, we verified that without feeding the polarization pax

with an external pump it is not possible to obtain an efficient coupling between levels A and B and
amplification. Therefore, all simulations presented below were conducted with a post-pulse pump applied at
t = 0 and decaying exponentially with time.

8
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Figure 4. Temporal evolution of the intensity of electromagnetic waves Ia (a) and Ib (b). Red curves—incident field, Ia,b(0, t),
black lines—exiting field, Ia,b(L, τ). The intensity and time are in the normalized units: tN = 0.85 ps and IN = 0.91 GW cm−2.
Dimensionless pump amplitude ea0 = 5, other conditions and parameters are given in the text.

4.2. Reference case
As a reference point we take a nitrogen gas pressure pN = 30 mbar, which corresponds to a total ion density
ni = 1.2 × 1017 cm−3 for a 20% ionization for the three considered states. Then, according to section 3.1,
the characteristic time becomes tN � 0.85 ps, the characteristic length ctN � 0.26 mm, the effective electric
field EN = �/μaxtN ∼ 58.5 MV m−1 and the normalization intensity IN = cε0E2

N = 0.91 GW cm−2.
Spontaneous decorrelation time 1/γ at this pressure is set to 10tN = 8.5 ps, same for all three polarizations.

We consider a filament length of L = 7.8 mm. The post-pulse at wavelength 788 nm corresponding to
detuning Δωax = −3.5 ps−1 is decaying exponentially with a time constant of ta = 5tN = 4.3 ps. Its initial
electric field Ea0 = 293 MV m−1 corresponds to the dimensionless amplitude ea0 = 5 and intensity
11.4 GW cm−2. The fluence Fa(0) = 49 mJ cm−2 injected with the post-pulse is significantly larger than the
energy stored at the A level �ωaxna0niL = 4.7 mJ cm−2.

A seed pulse at a frequency corresponding to the B–X transition and with a duration of 0.17 ps is
injected 0.43 ps after the end of the main pump pulse. The seed field Eb0 = 19.5 MV m−1 corresponds to
the dimensionless amplitude eb0 = 1 and the intensity 0.05 GW cm−2. The injected seed fluence
Fb(0) = 0.009 mJ cm−2 is more than 3 orders of magnitude smaller than the energy stored in the B level,
�ωbxnb0NiL = 15.3 mJ cm−2. The choice of seed amplitude has not much importance. The initial
polarizations of the order of 10−2 − 10−3 are taken from the solution of the Bloch system discussed in
section 2. Their phases are not important. It is also possible to obtain emission from the B–X transition
with other seed amplitudes or without seed provided there is small initial polarization pbx0 in the filament.
Such an initial polarization pbx0 by field induced recollisions has been attributed as the source for the
amplification in the absence of a seed pulse [10, 40].

Example of the seed amplification in these conditions is presented in figure 4. It shows the intensities of
the pump and seed pulses, Ia/IN = 1

2 |ea|2 and Ib/IN = 1
2 |eb|2(μax/μbx)2, at the entrance of the filament,

z = 0, and at the exit, z = L, in function of co-propagation time τ . Here IN = ε0cE2
N = 0.91 GW cm−2 is

the normalization intensity. The pump pulse is modulated at the exit with a period of (2–3)tN due to the
frequency detuning from the A–X transition and partial absorption. The seed pulse of duration 0.2tN is
injected at time 0.5tN with a duration 0.25tN. It is amplified more than 25 times in energy and it extracts
about 0.8% of the energy initially stored in level B.

The amplified signal is extended by more than 10 ps and produces at the exit a sequence of pulses of
duration of about 2 ps. The amplification is explained by the parametric coupling of levels A and B by the
polarization pba as it is described in section 3.3.1. By suppressing the corresponding cross-polarization
terms in equations (B.5)–(B.8) one may eliminate completely the amplification. It is also verified that the
gain is proportional to the difference of populations between levels B and A, nb0 − na0, the filament length,
L, and the pump amplitude, ea0, according to equation (16). In particular, no gain is found for equal
populations, or when na0 � nb0.

By varying the post-pulse amplitude ea0 and the frequency detuning Δωax we evaluated two conditions
necessary for the seed amplification. First, the dimensionless post-pulse amplitude should be sufficiently
large, ea0 � 1, and second, the dimensionless detuning should be sufficiently small, |Δωax| � ea0. In
dimensional units, this corresponds to the post pulse intensity about 1 GW cm−2 or more and the detuning
of a few nanometers.

The cross-coupling between levels A and B manifests itself also in the spatial and temporal evolution of
the populations of excited ions shown in figure 5. The propagation of the pump post-pulse induces Rabi
oscillations of populations at the levels A and X with an amplitude decreasing with time. Part of the pump
pulse is absorbed and the population at level A temporally increases up to na � 0.3. It is accompanied by a
corresponding decrease of the population at level X. By contrast, the population at level B shows a delayed

9
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Figure 5. Spatio-temporal evolution of the populations at the excited level A (a) and B (b). Parameters are the same as in
figure 4.

Figure 6. Pressure dependence of the energy gain of the pump post-pulse Ga (a) and the seed pulse Gb (b) and fraction of energy
extracted from B-level ηb in per cent (c). The nominal pressure pN = 30 mbar corresponds to the particle density
ni = 1.2 × 1017 cm−3 on the three considered levels. The input pump intensity Ia(0) = 22.5 GW cm−2 (ea0 = 7, green, 1),
11.5 GW cm−2 (ea0 = 5, red, 2), 4.1 GW cm−2 (ea0 = 3, blue, 3), the frequency detuning Δωax = −3.5 ps−1, the post-pulse
decay time is 4.3 ps. The input seed intensity Ib(0) = 0.05 GW cm−2, zero detuning, switched on at tb = 0.5tN for duration of
0.2tN, na0 = 0.2 and nb0 = 0.32. The filament length L = 7.8 mm.

decrease corresponding to an exponential increase of the signal amplitude. Nevertheless, the condition of
amplification, na < nb is fulfilled all the time.

4.3. Pressure dependence of signal gain
The parametric dependence of the amplification process is analyzed by scanning the gains of the pump and
the seed pulses as a function of gas pressure and pump amplitude, while keeping all other parameters
unchanged, except the spontaneous damping, which varied linearly with pressure, γ = γ0p/pN, where
γ0 = 0.1t−1

N has the same value as in the previous section. We assume that the ionization level remains the
same and the density of ionized molecules is proportional to the pressure. Figure 6 shows variation of
energy gain of the pump post-pulse, Ga, and seed pulse, Gb, as well as the fraction of energy extracted from
level B, ηb, as a function of gas pressure.

By changing pressure by a factor of 300, from 0.1pN to 30pN, we observe two different behaviors at low
and high pressures. At low pressures, the pump post-pulse goes through the plasma without any significant
depletion, and its temporal shape is modulated at the Rabi frequency, see figures 4(a) and 7(a). By contrast,
at high pressures, p/pN�3–10, a significant part of the pump post-pulse is absorbed and the remaining part
comes out with a 2–3 ps delay in a form of the soliton, see figure 7(c).

The seed gain increases monotonously in power approximately 2.5–3 at low pressures, where there is no
pump pulse depletion, see curves 1 and 2 in figure 6(b). Such an increase of amplification with pressure
follows directly from equation (16): the gain is proportional to the pump amplitude. This is the regime of
parametric amplification. The amplified pulse is characterized by a long duration (up to 10 ps)
accompanied by Rabi oscillations with a period 2–3 ps. The amplification is, however, suppressed at very
low pump amplitudes, see curve 3 in figure 6(b). In this case the signal growth rate is too low and it cannot
be amplified during the time when the pump is present in plasma. A cutoff at high pressures is explained by
two effects: (i) the increase of spontaneous damping and (ii) post-pump absorption. For the chosen
damping rate, the damping time is shorter than the amplification time at pressures p�10pN. As the
parametric growth rate is proportional to the pump amplitude, the cutoff shifts to higher pressures if the
pump is stronger. The second effect is demonstrated in figure 6(a): at pressures p�5pN the energy carried
with the post-pulse is comparable with the energy stored in level A. Consequently, the pump is resonantly
absorbed and cannot support the seed amplification.

10



New J. Phys. 23 (2021) 023035 V T Tikhonchuk et al

Figure 7. Temporal shape of the post-pump (a)–(c) and seed pulse (d)–(f) for gas pressures p = 0.81pN (a), p = 2.25pN (b) and
p = 9pN (c). The dimensionless pump amplitude eea0 = 7, other parameters are the same as in figure 4. The intensity and time
and normalized to the values at the nominal pressure: IN = 0.91 GW cm−2 and tN = 0.85 ps. Red lines show the injected pump
and seed pulse.

Figure 8. Spatio-temporal evolution of the intensity of the post-pump (a) and seed pulse (b). Parameters correspond to the
pressure ratio p/pN = 4 and dimensionless pump amplitude eea0 = 5. Other parameters are given in the text.

It is important to note that there is no correlation in the temporal shape of the transmitted pump
post-pulse and seed pulse in the regime of parametric amplification. Conversely, at high pressures both the
seed and the pump post-pulse exit the plasma synchronously with a time delay of 2–3 ps and a sub-ps
duration. This regime of soliton amplification is realized at pressures exceeding (5–10)pN, if the pump
amplitude is sufficiently strong.

The increase of signal gain is correlated with an increase of the energy extracted from level B, ηb, in the
pressure range corresponding to the parametric amplification regime. This is shown in figure 6(c) in
percent. However, the extracted energy is saturated in the pressure range of (3–10)pN, and in the soliton
regime the extracted energy decreases.

Analysis of the spatio-temporal evolution of the post-pump and seed pulses shown in figure 8 provides a
better insight in the dynamics of soliton formation. First, the pump pulse is effectively absorbed in the
plasma over distance of a few mm and forms three solitons, which propagate with a slower velocity. Seed
amplification is correlated with the first two pump solitons, that is, the post-pump and the seed propagate
together and form a joint soliton. The third soliton is too weak and the corresponding seed pulse is
dissipated before reaching the plasma end.

The conditions of seed amplification are less favorable in the range of intermediate pressures,
p/pN = 1–10. This effect can be seen in figure 6(b) as a slower increase of gain with pressure (curve 1) or by
a complete gain suppression (curve 2). In this pressure range the post-pump is already significantly
absorbed and delayed in the plasma, but a soliton is not yet formed. The seed pulse is amplified as a single
pulse with a delay but it not yet correlated to the pump post-pulse.

Therefore, seed amplification in the V-scheme occurs in two regimes of parametric amplification and
soliton formation, both operating in a limited range of pressures. This range depends on the post-pulse
amplitude, duration, frequency detuning and population on the level A.

An increase of the pump amplitude extends the pressure range where seed gain increases monotonously
with pressure up to the cutoff. At small pump amplitudes and large detunings, zones of parametric and
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soliton amplification are separated by an interval of pressures p/pN � 1–10 where gain either stagnates or
suppressed. A similar behavior was reported in reference [23]. Post-pulse duration has to be sufficiently
long for enabling seed amplification. No amplification was observed numerically for post-pulse duration
shorter than 2–3 ps. Longer post-pulses favor stronger amplification and at longer seed delays.

We note that our model may not be sufficiently correct at high pressures and at large post-pulse
amplitudes where large detunings are allowed and two triplets X(0)–A(2)–B(0) and X(1)–A(3)–B(0) may
enter in competition. This issue needs further analysis, which is out of scope of this paper.

5. Comparison with experimental results

The features of the V-scheme amplification demonstrated in section 4 are in agreement with several
experimental observations [1–3, 10, 23, 41–43]. An amplified signal at 391 nm that is delayed from the
pump pulse by several picoseconds has been observed in references [3, 10]. It displays an increase that is
growing approximately quadratic at low pressures until it reaches a maximum around 30–50 mbar, and
then decreases at higher pressures [10, 23]. Similar behavior can be seen in figure 6(b), curve 2. The
measured in these papers gain is on the order of 100, which is also in agreement with figure 6(b).

Simulations show that the temporal shape of the amplified signal depends sensitively on several
parameters such a gas pressure, the length of the gain medium, amplitude, duration of the post-pulse and
the detuning of its frequency with respect to resonances. Because of a lack of knowledge on these
parameters it is difficult make a quantitative comparison with all experimental results. Nevertheless, the
calculated temporal pulse shapes show striking similarity with several published results. For instance, the
multiple temporal oscillations of the signal reported in reference [3] compare well with signal pulse shapes
shown in figures 4 and 7. Also, it is shown in reference [23] that there is good agreement between calculated
and measured temporal shapes at different pressures. Furthermore, V-scheme predicts the possibility of
quenching of lasing effect with a second pump pulse as it was shown in recent experiments [43].6

An amplification was also observed experimentally without injection of a seed pulse at 391 nm
[2, 40, 42]. This is consistent with the V-scheme, which predicts amplification even if the initial coherent
polarization B–X is on the order of 10−3–10−4. This small B–X polarization is attributed to electron
recollisions during the main laser pulse duration [40].

Signal amplification has been recently reported in air at normal pressure [41]. The pump pulse
wavelength was at 950 nm and the lasing signal occurred at 428 nm. An amplified signal was delayed by
5.6 ps. According to our model, these conditions may correspond to a soliton regime in a B(0)–X(1)–A(2)
V-scheme arrangement. The corresponding pulse shapes are shown in figure 7(f).

Finally, we note that it is also possible to obtain amplification with population inversion between the B
and ground X(0) and X(1) states. This, however, requires higher intensities, above ∼ 4 × 1014 W cm−2

[23, 44]. These conditions can be obtained under tight focusing in thin gas jets [45].

6. Conclusions

Our theoretical analysis shows that ionization of nitrogen gas by an intense femtosecond laser pulse at
800 nm is accompanied with a transfer of ionized molecules to higher excited levels due to resonance
polarization coupling. This process depends on both the laser intensity and pulse duration. At moderate
laser intensities in the range of (1–3) × 1014 W cm−2, an ionization level of a few percents is reached, and
one obtains an inversion between electronic levels B and A, but no population inversion between B and X.
In this case, a seed amplification can occur due to the coupling between A and B levels in a V-scheme. Two
additional conditions must be fulfilled in order for the gain to take place (i) the main laser pulse has to be
followed by a post-pulse of a few ps duration and an intensity 4–5 orders of magnitude smaller than the
main pulse; and (ii) the spectrum of the post-pulse has to contain a component sufficiently close to one of
the A–X transitions. The large number of rotational and vibrational levels in the excited ion facilitates this
resonance condition. A three level V-scheme is sufficient for a description of this process as only one A–X
transition closest to the spectral component of the laser post-pulse effectively participates in the coupling.

The seed amplification can be realized in two qualitatively different regimes: three-level parametric
coupling or joint soliton propagation. In the former regime that occurs at pressures of less than 100 mbar,

6 We have recently investigated the amplification of line at 391.4 nm with a high contrast (10−10) 800 nm laser pulse of 10 fs dura-
tion and a peak intensity in the range of 5 × 10−14 W/cm2. Seed amplification was still observed, suggesting that the experimentally
measured long lasting coherent polarization A-X [23] may not be due to the presence of a laser post-pulse. We investigate alternative
explanations for the origin of the long lasting A-X polarization.
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the post-pulse needs to be present during the whole process. This regime is experimentally observed in
good agreement with our theory. The soliton regime is realized at higher pressures, where the amplified
seed comes out synchronously with the post-pump in the form of a narrow pulse with a delay increasing
with pressure. The soliton regime might have been observed in air at normal pressure.

Finally, at ionization level in excess of 40% our theory shows that it is possible to obtain population
inversion between the B and ground X state and to achieve direct amplification of a seed pulse at the B–X
transition.

Acknowledgments

This research was partially supported by the Czech Republic MSMT targeted support of Large
Infrastructures, ELI Beamlines Project LQ1606 of the National Program of Sustainability II. This work is
partially supported by the National Natural Science Foundation of China (Grant No. 12034013), Innovation
Program of Shanghai Municipal Education Commission (Grants No. 2017-01-07-00-17-E00007). The
research is partially supported by Direction Générale de l’Armement (DGA), projet EPAT 3.

Appendix A. Equations describing ionization and excitation of nitrogen molecules

The temporal evolution of this 5 level system in a given laser electric field is described by the system of
Bloch equations for density matrix involving 5 diagonal elements, na2, na3, nb0, nx0, nx1, representing the
population of correspondent states A(2), A(3), B(0), X(0) and X(1), and 6 off-diagonal elements, da2x0,
da3x1, db0x0, db0x1, db0a2, and db0a3, accounting for polarization couplings between A and B states as shown in
figure 1. This is a standard system for the polarization matrix [46] extended to five coupled states.

The laser field responsible for molecule ionization and excitation is given by expression:
Elas(t) = E0 cos(ω0t)sin(πt/tlas) where E0 is the laser amplitude, ω0 is the carrier frequency and tlas is the
pulse duration. The spatial dependence of the laser field is not considered in this model as the laser pulse is
sufficiently strong and weakly modified in the gas. The five equations for the populations read:

∂tnx0 = wix0(1 − ni) − 2μax�
−1Elas sin θn Im da2x0 − 2μbx�

−1Elas cos θn Im db0x0, (A.1)

∂tnx1 = wix1(1 − ni) − 2μax�
−1Elas sin θn Im da3x1 − 2μbx�

−1Elas cos θn Im db0x1, (A.2)

∂tna2 = wia2(1 − ni) + 2μax�
−1Elas sin θn Im da2x0, (A.3)

∂tna3 = wia3(1 − ni) + 2μax�
−1Elas sin θn Im da3x1, (A.4)

∂tnb0 = wib0(1 − ni) + 2μbx�
−1Elas cos θn Im db0x0 + 2μbx�

−1Elas cos θn Im db0x1. (A.5)

They are completed with six equations for the corresponding polarizations:

∂tda2x0 = −iωa2x0da2x0 − iμax�
−1Elas sin θn (na2 − nx0) − iμbx�

−1Elas cos θn d�
b0a2, (A.6)

∂tda3x1 = −iωa3x1da3x1 − iμax�
−1Elas sin θn(na3 − nx1) − iμbx�

−1Elas cos θn d�
b0a3, (A.7)

∂tdb0x0 = −iωb0x0db0x0 − iμbx�
−1Elas cos θn (nb0 − nx0) − iμax�

−1Elas sin θn db0a2, (A.8)

∂tdb0x1 = −iωb0x1db0x1 − iμbx�
−1Elas cos θn(nb0 − nx1) − iμax�

−1Elas sin θn db0a3, (A.9)

∂tdb0a2 = −iωb0a2db0a2 + iμbx�
−1Elas cos θnd�

a2x0 − iμax�
−1Elas sin θn db0x0, (A.10)

∂tdb0a3 = −iωb0a3db0a3 + iμbx�
−1Elas cos θnd�

a3x1 − iμax�
−1Elas sin θn db0x1. (A.11)

Here, � is the Planck constant, wia,b,x are the ionization probabilities of neutral nitrogen molecule to the
corresponding state and ni = na2 + na3 + nb0 + nx0 + nx1 is the total ion density. The matrix elements are
normalized to the initial density of neutral molecules. The damping rates are in the range of a few inverse
picoseconds, they have no importance for the considered processes and have been neglected.

Appendix B. Angle-averaged equations for the V-scheme

Equations (6)–(9) are averaged over the ion orientation angle θi assuming that the probability distribution
P(θi) is a time independent function with average value

〈cos2θi〉 =
1

2

∫ π

0
cos2θi P(θi) sin θi dθi.
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By introducing the angle-averaged values for populations, n̄a,b,x = 〈na,b,x〉 and polarizations,
p̄ax = 〈pax sin θi〉, p̄bx = 〈pbx cos θi〉 and p̄ba = 〈pba sin θi cos θi〉, these equations can be written as follows:

∂zea =
1

2
p̄ax, ∂τ p̄ax = −γ̂axp̄ax + 〈(na − nx)sin2θi〉 ea +

1

2
p̄ ∗

baeb, (B.1)

∂zeb =
r

2
p̄bx, ∂τ p̄bx = −γ̂bxp̄bx + 〈(nb − nx)cos2θi〉 eb +

1

2
p̄baea, (B.2)

∂τ n̄a = −1

2
Re(p̄ ∗

axea), ∂τ n̄b = −1

2
Re(p̄ ∗

bxeb), (B.3)

∂τ p̄ba = −γ̂bap̄ba −
1

2
〈p∗ax cos2θi sin θi〉 eb −

1

2
〈pbx sin2θi cos θi〉 e∗a. (B.4)

The higher order correlations in the right-hand side of equations (B.1), (B.2) and (B.4) are reduced in the
lowest order. For example, 〈na sin2θi〉 ≈ n̄a〈sin2θi〉 and 〈pbx sin2θi cos θi〉 ≈ p̄bx〈sin2θi〉. Then, the system of
equations takes a closed form:

∂zea =
1

2
p̄ax, ∂τ p̄ax = −γ̂axp̄ax + (n̄a − n̄x) ea〈sin2θi〉+

1

2
p̄ ∗

baeb, (B.5)

∂zeb =
r

2
p̄bx, ∂τ p̄bx = −γ̂bxp̄bx + (n̄b − n̄x) eb〈cos2θi〉+

1

2
p̄baea, (B.6)

∂τ n̄a = −1

2
Re(p̄ ∗

axea), ∂τ n̄b = −1

2
Re(p̄ ∗

bxeb), (B.7)

∂τ p̄ba = −γ̂bap̄ba −
1

2
p̄ ∗

axeb〈cos2θi〉 −
1

2
p̄bxe∗a〈cos2θi〉. (B.8)

Following references [34, 35], solutions to this system of equations are presented in section 4 for the case
〈cos2 θi〉 = 0.33. Similar results can be obtained with other probability distributions.

Appendix C. Simple analytic solutions of a three-level system

C.1. Dark state
The system of equations (6)–(9) has a particular solution corresponding to constant electromagnetic field
amplitudes and populations. This solution corresponds to zero polarizations, pax = pbx = 0. Then
populations at the levels A, B and X are related to the field amplitudes by equations (6) and (7):

(na − nx) ea sin θi = −1

2
p∗baeb cos θi, and (nb − nx) eb cos θi = −1

2
pbaea sin θi.

These relations imply that
nb − nx

na − nx
=

|ea|2 sin2θi

|eb|2 cos2θi
= tan2 ψ.

Taking into account that na + nb + nx = 1, we find that such a solution may exist for arbitrary field
amplitudes:

na = (1 − 2nx)cos2 ψ + nx sin2 ψ, and nb = (1 − 2nx)sin2 ψ + nx cos2 ψ. (C.1)

This solution implies that the population at the level X is sufficiently low, nx < 0.5. It corresponds to a ‘dark
state’ of a three level system, which allows propagation of both electromagnetic waves without absorption.
That is, by injecting simultaneously the fields ea and eb one may maintain the population inversion in the
states A and B for a long time, assuming that all ions are aligned at the same angle θi with respect to the
electric field.

C.2. Amplified spontaneous emission
Another known solution corresponds to the exponential amplification of a weak signal in a two level system
in the conditions where there exists either a population inversion or a strong polarization. For example,
equations (7) and (8) for an isolated B–X transition read:

∂zeb =
r

2
pbx cos θi, ∂τpbx = (nb − nx) eb cos θi, ∂τnb = −1

2
Re(p∗bxeb) cos θi.

Neglecting population variation, nb = nb0 ≈ const, a pair of equations for the electric field and polarization
admits either an exponentially growing solution

eb ∝ pbx0 exp(
√

2r(nb0 − nx0)zτ | cos θi|),

14
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if nb0 > nx0, or an oscillating solution if nb0 < nx0. This growing solution may be realized at high pump
intensities where a population inversion B–X is created by the pump pulse.
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