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Lp-ASYMPTOTIC STABILITY OF 1D DAMPED WAVE EQUATIONS

WITH LOCALIZED AND LINEAR DAMPING∗

Meryem Kafnemer1,**, Benmiloud Mebkhout2, Frédéric Jean1

and Yacine Chitour3

Abstract. In this paper, we study the Lp-asymptotic stability of the one dimensional linear damped
wave equation with Dirichlet boundary conditions in [0, 1], with p ∈ (1,∞). The damping term is
assumed to be linear and localized to an arbitrary open sub-interval of [0, 1]. We prove that the semi-
group (Sp(t))t≥0 associated with the previous equation is well-posed and exponentially stable. The
proof relies on the multiplier method and depends on whether p ≥ 2 or 1 < p < 2.
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1. Introduction

This paper is concerned with the asymptotic stability of the one dimensional wave equation with a localized
damping term and Dirichlet boundary conditions. The problem is written as follows ztt − zxx + a(x)zt = 0 for (t, x) ∈ R+ × (0, 1),

z(t, 0) = z(t, 1) = 0 t ≥ 0,
z(0, ·) = z0 , zt(0, ·) = z1,

(1.1)

where z is the solution of the problem, (z0, z1) are the initial conditions and they all belong to an Lp-based
functional space that will be defined later. The function a is a continuous non-negative function on [0, 1],
bounded from below by a positive constant on some non-empty open interval ω of (0, 1), which represents the
region of the domain where the damping term is active.

Problem (1.1) has been widely studied in the case p = 2 whether with a linear or a non-linear damping.
Stability results are proved under a geometric condition imposed on the damping domain ω: it is properly
introduced in the early work [18] where the semi-linear problem is considered even in higher dimension and the
geometric condition is extended and characterized in [13]. Moreover, for linear problems there exist necessary
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and sufficient geometrical conditions for stabilization based on geometric optics methods (cf. the seminal work
[4]). Strong stabilization, i.e., energy decay to zero for each trajectory, has been established in [6] and [8] with a
LaSalle’s invariance argument. For the linear localized damping case in higher dimensions, exponential stability
has been established several times using different tools, in particular using the multiplier method which is the
relevant method to our paper context. We refer the reader to [12] for a complete presentation of the method as
well as the tools associated to it. As for the stability results obtained by this method in this case, we refer for
instance to [2] and [14] for detailed proofs and extended references. The non-linear problem on the other hand
has been studied (for instance) in [15] with no localization and in [11] for a localized damping. We refer the
reader to the excellent survey [2] for more references in the Hilbertian framework i.e. when p = 2.

As for more general functional frameworks, in particular Lp-based spaces with p 6= 2, few results exist and
one reason is probably due to the fact that, in such non-Hilbertian framework, the semi-group associated with
the d’Alembertian (i.e., the linear operator defining the wave equation) is not defined in general as soon as the
space dimension is larger than or equal to two, see e.g., [16]). This is why most of the existing results focus
on several stabilization issues only in one spatial dimension. Well-posedness results as well as important Lp

estimates have been shown in [8], in particular the introduction of a p-th energy of a solution as a generalization

of the standard E2(t) =
∫ 1

0
z2x+z

2
t

2 . Some of these results have been used in [3, 5] recently. The latter reference
relies on Lyapunov techniques for linear time varying systems to prove Lp exponential stability in the nonlinear
problem under the hypothesis that initial data live in L∞ functional spaces and with p ≥ 2 only; other stability
results have been shown in the same reference in particular L∞ stability but always with more conditions on
initial data which creates a difference between the norms of trajectories and the norms of initial data used in
their decay estimates.

In this paper we extend the results existing in the case p = 2 to the case p ∈ (1,∞) by adapting the multiplier
method to that issue. We first start by stating the problem and defining the appropriate Lp functional framework
as well as the notion of solutions. We prove the well-posedness of the corresponding C0 semi-group of solutions
using an argument inspired by [9] and [5]. As for stability issue, we prove that these semi-groups are indeed
exponentially stable. Even though the argument depends on whether p ≥ 2 or p ∈ (1, 2), it is another instance
of the multiplier method, where the multipliers are expressed in terms of the Riemann invariant coordinates
ρ = zx + zt and ξ = zx − zt. In particular, one of the multipliers in the case p = 2 is equal to φ(x)z with φ
a non negative function which is used to localize estimates inside ω. If p ≥ 2, this multiplier is replaced by
the pair of functions φ(x)z|ρ|p−2 and φ(x)z|ξ|p−2. Clearly, such multipliers cannot be used directly if p ∈ (1, 2)
and must be modified, which yields to a more delicate treatment. In both cases, energy integral estimates are
established following the standard strategy of the multiplier method and exponential stability is proved. For the
two extremes cases p = 1 and p =∞, we are able to prove that the corresponding semi-groups are exponentially
stable only for particular cases of global constant damping. However, we conjecture that such a fact should be
true in case of any localized damping.

The paper is divided into four sections, the first one being the introduction and the second one devoted
to provide the main notations used throughout the paper. Section 3 deals with the well-posedness issue and
Section 4 contains the main result of the paper, i.e. exponential stability of the C0 semi-group of solutions for
p ∈ (1,∞) as well as the partial result for p = 1 and p =∞. We gather in an appendix several technical results.

2. Statement and main notations of the problem

Consider Problem (1.1) where we assume that the following hypothesis satisfied:

(H1) a : [0, 1]→ R is a non-negative continuous function such that

∃ a0 > 0, a ≥ a0 on ω =]c, d[⊂ [0, 1], (2.1)

where ω is a non empty interval such that c = 0 or d = 1, i.e., ω̄ contains a neighborhood of 0 or 1. There is no
loss of generality in assuming d = 1, taking 0 as an observation point.
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Remark 2.1. The results of this paper still hold if the assumption that c = 0 or d = 1 is removed by using a
piecewise multiplier method, i.e., we can use both 0 and 1 as observation points (instead of simply 0 here) to
obtain the required energy estimate.

For p ∈ [1,∞), consider the function spaces

Xp := W 1,p
0 (0, 1)× Lp(0, 1), (2.2)

Yp :=
(
W 2,p(0, 1) ∩W 1,p

0 (0, 1)
)
×W 1,p

0 (0, 1), (2.3)

where Xp is equipped with the norm

‖(u, v)‖Xp :=

(
1

p

∫ 1

0

(|u′ + v|p + |u′ − v|p) dx

) 1
p

, (2.4)

and the space Yp is equipped with the norm

‖(u, v)‖Yp :=

(
1

p

∫ 1

0

(|u′′ + v′|p + |u′′ − v′|p) dx

) 1
p

. (2.5)

Initial conditions (z0, z1) for weak (resp. strong) solutions of (1.1) are taken in Xp (resp. in Yp), where the two
concepts of solutions are precisely defined later in Definition 3.2.

For all (t, x) ∈ R+ × (0, 1), define the Riemann invariants

ρ(t, x) = zx(t, x) + zt(t, x), (2.6)

ξ(t, x) = zx(t, x)− zt(t, x). (2.7)

Along strong solutions of (1.1), we deduce that
ρt − ρx = − 1

2a(x)(ρ− ξ) in R+ × (0, 1),
ξt + ξx = 1

2a(x)(ρ− ξ) in R+ × (0, 1),
ρ(t, 0)− ξ(t, 0) = ρ(t, 1)− ξ(t, 1) = 0 ∀t ∈ R+,
ρ0 := ρ(0, .) = z′0 + z1 , ξ0 := ξ(0, .) = z′0 − z1,

(2.8)

with (ρ0, ξ0) ∈W 1,p(0, 1)×W 1,p(0, 1).
We define the pth-energy of a (weak) solution of (1.1) as the function Ep defined on R+ by

Ep(t) =
1

p

∫ 1

0

(|zx + zt|p + |zx − zt|p) dx (2.9)

and Ep can be expressed in terms of ξ and ρ as

Ep(t) =
1

p

∫ 1

0

(|ρ|p + |ξ|p)dx. (2.10)

For r ≥ 0, we introduce the following notation

bxer := sgn(x)|x|r, ∀x ∈ R, (2.11)
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where sgn(x) = x
|x| for nonzero x ∈ R and sgn(0) = [−1, 1]. We have the following obvious formulas which will

be used all over the paper:

d

dx
(bxer) = r|x|r−1, ∀r ≥ 1, x ∈ R, (2.12)

d

dx
(|x|r) = rbxer−1, ∀r > 1, x ∈ R. (2.13)

Before we state our results, we provide the following proposition (essentially taken from [9]).

Proposition 2.2. Let p ∈ (1,∞) and suppose that a strong solution z of (2.8) is defined on a non trivial
interval I ⊂ R+ containing 0, for some initial conditions (z0, z1) ∈ Yp. For t ∈ I, define

Φ(t) :=

∫ 1

0

[F(ρ) + F(ξ)]dx, (2.14)

where F is a C1 convex function. Then Φ is well defined for t ∈ I and satisfies

d

dt
Φ(t) = −1

2

∫ 1

0

a(x)(ρ− ξ)(F ′(ρ)−F ′(ξ))dx ≤ 0. (2.15)

Proof. By the regularity assumptions, ρ(t, .) and ξ(t, .) are absolutely continuous functions. Formal differentia-
tion, easy to justify a posteriori by the regularity of the data, yields

d

dt

∫ 1

0

[F(ρ) + F(ξ)]dx =

∫ 1

0

[ρtF ′(ρ) + ξtF ′(ξ)]dx. (2.16)

Using (2.8), one obtains that

d

dt

∫ 1

0

(F(ρ) + F(ξ))dx =

∫ 1

0

(ρx −
1

2
a(x)(ρ− ξ))F ′(ρ) + (−ξx +

1

2
a(x)(ρ− ξ))F ′(ξ))dx,

=

∫ 1

0

[F(ρ)−F(ξ)]x dx− 1

2

∫ 1

0

a(x)(ρ− ξ)(F ′(ρ)−F ′(ξ))dx,

= −1

2

∫ 1

0

a(x)(ρ− ξ)(F ′(ρ)−F ′(ξ))dx. (2.17)

Since F is convex, F ′ is non-decreasing, implying that (ρ − ξ)(F ′(ρ) − F ′(ξ)) ≥ 0 which gives the conclusion
when combining it with (2.17).

Corollary 2.3. For (z0, z1) ∈ Yp, p ∈ [1,∞), suppose that the solution z of (1.1) exists on R+. Then the energy
t 7−→ Ep(t) is non-increasing and, for t ≥ 0,

E′p(t) = −1

2

∫ 1

0

a(x)(ρ− ξ)
(
bρep−1 − bξep−1

)
dx. (2.18)

Proof. For (z0, z1) ∈ Yp and p > 1, we apply Proposition 2.2 with F (s) = |s|p
p , which proves (2.18). The case

p = 1 is obtained by letting p tend to one.
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3. Well-posedness

We start by recalling the classical representation formula for regular solutions of (1.1) given by the d’Alembert
formula, cf. [17], equation 8, page 36.

Proposition 3.1. Consider the following problem with an arbitrary source term g ∈ C2(R+ ×R,R) and initial
data z0 ∈ C2(R) and z1 ∈ C1(R),{

ztt(t, x)− zxx(t, x) + g(t, x) = 0 for (t, x) ∈ R+ × R,
z(0, .) = z0 , zt(0, .) = z1.

(3.1)

Then the unique solution z of this problem is in C2(R+×R,R) and is given for all (t, x) ∈ R+×R by d’Alembert
formula

z(t, x) =
1

2
[z0(x+ t) + z0(x− t)] +

1

2

∫ x+t

x−t
z1(s)ds+

1

2

∫ t

0

∫ x+(t−s)

x−(t−s)
g(s, τ) dτ ds. (3.2)

In order to apply the above proposition to (1.1), we extend by a standard procedure (cf. [7], Exercise 4, Sect.
4.3) the following partial differential equation defined on R+ × (0, 1) ztt − zxx + g(t, x) = 0 for (t, x) ∈ R+ × (0, 1),

z(t, 0) = z(t, 1) = 0 ∀t ∈ R+,
z(0, .) = z0 , zt(0, .) = z1,

(3.3)

to an equivalent partial differential system defined on R+ × R. We first extend the data of the problem by
considering z̃0, z̃1 and g̃ the 2-periodic extensions to R of the odd extensions of z0, z1 and g to [−1, 1].

Using (3.2), we obtain then the expression of the solution z for the problem on R+ × (0, 1), which is the
following

z(t, x) =
1

2
[z̃0(x+ t) + z̃0(x− t)] +

1

2

∫ x+t

x−t
z̃1(s)ds+

1

2

∫ t

0

∫ x+(t−s)

x−(t−s)
g̃(s, τ) dτ ds, (3.4)

which clearly provides, for every t ≥ 0, a 2-periodic odd function z(t, ·) on R. We also have the expression of
the derivatives

zx(t, x) =
1

2
[z̃′0(x+ t) + z̃′0(x− t)] +

1

2
[z̃1(x+ t)− z̃1(x− t)]

+
1

2

∫ t

0

[g̃(s, x+ (t− s))− g̃(s, x− (t− s))] ds, (3.5)

and

zt(t, x) =
1

2
[z̃′0(x+ t)− z̃′0(x− t)] +

1

2
[z̃1(x+ t) + z̃1(x− t)]

+
1

2

∫ t

0

[g̃(s, x+ (t− s)) + g̃(s, x− (t− s))] ds. (3.6)

Before we proceed to the well-posedness of (1.1) in Xp (resp. Yp), we need to define the notion of its weak and
strong solutions.
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Definition 3.2. For (z0, z1) in Xp (resp. Yp), we say that (1.1) has a weak (resp. strong) solution z ∈
L∞(R+,W

1,p
0 (0, 1)) ∩W 1,∞(R+, L

p(0, 1)) (resp. z ∈ L∞(R+,W
2,p(0, 1) ∩W 1,p

0 (0, 1)) ∩W 1,∞(R+,W
1,p
0 (0, 1)))

given by the expression (3.4) in Xp (resp. Yp), if the source term g from (3.1) is given by g(t, x) = −a(x)zt(t, x).

Theorem 3.3 (Well-posedness). Let p ∈ [1,∞). For any initial data (z0, z1) ∈ Xp (resp. Yp), there exists a
unique weak (resp. strong) solution z such that

z ∈ L∞(R+,W
1,p
0 (0, 1)) ∩W 1,∞(R+, L

p(0, 1)), (3.7)

(resp. z ∈ L∞(R+,W
2,p(0, 1) ∩W 1,p

0 (0, 1)) ∩W 1,∞(R+,W
1,p
0 (0, 1)).) (3.8)

Moreover, in both cases, the energy function t 7→ Ep(t) associated with a solution is non-increasing.

Proof. The arguments for both items is adapted from that of Theorem 1 of [5]. We prove the existence of an
appropriate solution y of (3.6) by a standard fixed point argument. We proceed on some interval [0, T ] for T > 0
small enough independent on the initial condition. We can then reproduce the reasoning on [T, 2T ] starting from
the solution at t = T and so on to establish well-posedness for all t ≥ 0.

Since g̃ is 2-periodic function in space, it is natural to work in a space of functions that have the same features.
Hence we denote by BT the space of functions that are defined on [0, T ]× R, odd on [−1, 1] and 2-periodic in
space and p-integrable. The space BT is equipped with the norm

‖y‖BT = sup
t∈[0,T ]

‖y(t, .)‖Lp(0,1), (3.9)

which makes it a Banach Space. We define the mapping

FT : BT −→ BT
y 7−→ FT (y),

such that, for all (t, x) ∈ [0, T ]× R, we have

FT (y)(t, x) =
1

2

[
z̃0
′(x+ t)− z̃0′(x− t)

]
+

1

2
[z̃1(x+ t) + z̃1(x− t)]

+
1

2

∫ t

0

[ã(x+ (t− s))y(s, x+ (t− s)) + ã(x− (t− s))y(s, x− (t− s))] ds. (3.10)

Since a is bounded, it is clear that FT is a contraction on BT for T > 0 small enough, hence the existence of
a fixed point to FT , which is a (weak) solution of (1.1). It is also clear that T does not depend on the initial
condition (z0, z1) ∈ Xp. As explained previously, this enables one to prove well-posedness in Xp.

As for the part regarding Yp, the argument is similar to the previous one, after replacing BT by the space dT
consisting of the functions defined on [0, T ]×R which are odd on [−1, 1] and 2-periodic in space with p-integrable
derivative with respect to x, equipped with the norm given by

‖y‖dT = sup
t∈[0,T ]

‖y(t, .)‖W 1,p
0 (0,1). (3.11)

For (z0, z1) ∈ Xp, p > 1, we get that t 7→ Ep(t) is non increasing by the fact that Yp is dense in Xp. For p = 1,
we use the facts that Xp is dense in X1 for p > 1 and the map p 7→ Ep(t), for a fixed trajectory and a fixed
positive time t, is right-continuous.
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Remark 3.4. Since (1.1) is linear and t 7→ Ep(t) is non-increasing, the flow of its weak solutions defines a
C0-semigroup (Sp(t))t≥0 of contractions of Xp, for every p ∈ [1,∞).

4. Exponential stability

In this section, we aim to establish exponential stability for the C0-semigroup (Sp(t))t≥0 defining the weak
solutions of (1.1) for every p ∈ (1,∞). The argument relies on the multiplier method and is slightly different
whether p ≥ 2 or not. Indeed, two multipliers involve the exponent p− 2, which becomes negative if p ∈ (1, 2).
In the latter case, one must modify all the multipliers to handle that situation.

Before starting describing such results, we have the following weaker general stability result for p ∈ [1,∞).

Proposition 4.1 (Strong stability). Fix p ∈ [1,∞) and suppose that Hypothesis (H1) is satisfied. Then, for
every (z0, z1) ∈ Xp, the solution z(t, ·) of (1.1) starting at (z0, z1) tends to zero as t tends to infinity (in the
sens that Ep(t) tends to 0 as t tends to infinity).

Proof. We follow the proof provided in the case p = 2 in [6]: by a standard density argument, it is enough to
establish the result for strong solutions of (1.1). The latter is obtained by a LaSalle type argument using the
energy function Ep and the fact that the set {z(t, ·), t ≥ 0} is relatively compact in W 1,p

0 (0, 1), which is itself
obtained by noticing that zt is a weak solution of (1.1) with bounded energy Ep.

We introduce next some functions and notations which are common to the handling of both cases. Recalling
that we have chosen x0 = 0 as an observation point, we consider for 0 < ε0 < ε1 < ε2, the setsQi = (1−εi, 1+εi),
i = 0, 1, 2, as well as three smooth functions ψ, φ and β defined below according to the next figure.

More precisely, the functions ψ, φ and β are smooth with compact support and defined as follows:
0 ≤ ψ ≤ 1,

ψ = 0 on Q0,

ψ = 1 on (0, 1) \Q1,


0 ≤ φ ≤ 1,

φ = 1 on Q1,

φ = 0 on (0, 1) \Q2,


0 ≤ β ≤ 1,

β = 1 on Q2 ∩ (0, 1),

β = 0 on R \ ω.
(4.1)

Remark 4.2. In the sequel, we will denote by Cp positive constants only depending on p and by C positive
constants depending on a(·) (typically through its upper bound A on [0, 1] and its lower bound a0 on ω), and
on ψ, φ and β (through bounds of their first derivatives over their supports).

Our main result is the following theorem:
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Theorem 4.3. (Exponential stability) Fix p ∈ (1,∞) and suppose that Hypothesis (H1) is satisfied. Then
the C0-semigroup (Sp(t))t≥0 is exponentially stable.

4.1. Case where p ≥ 2

As usual, it is enough to prove Theorem 4.3 for strong solutions and then extend the result for weak solutions
by a density argument. In turn, the theorem for strong solutions classically follows from the next proposition,
cf. Theorem 1.4.2 of [2] for instance.

Proposition 4.4. Fix p ∈ [2,∞) and suppose that Hypothesis (H1) is satisfied. Then there exist positive
constants C and Cp such that, for every (z0, z1) ∈ Yp, it holds the following energy estimate:

∀ 0 ≤ S ≤ T ,

∫ T

S

Ep(t) dt ≤ C CpEp(S), (4.2)

where Ep(·) denotes the energy of the solution of (1.1) starting at (z0, z1).

The proof will be divided into four steps in Sections 4.1.1–4.1.4. We fix an arbitrary pair of times 0 ≤ S ≤ T
and a strong solution z(·, ·) of (1.1) starting at (z0, z1) ∈ Yp, and we consider three sets of multipliers:

(m1) x 7→ xψ(x)f(ρ(t, x)) and x 7→ xψ(x)f(ξ(t, x)) for every t ≥ 0;
(m2) x 7→ φ(x)f ′(ρ(t, x))z(t, x) and x 7→ φ(x)f ′(ξ(t, x))z(t, x) for every t ≥ 0;
(m3) x 7→ v(t, x) for every t ≥ 0, where v is the solution of the following elliptic problem defined for every t ≥ 0:

{
vxx = βf(z) x ∈ (0, 1),
v(0) = v(1) = 0,

(4.3)

where the function f is defined by

f(s) = bsep−1, s ∈ R. (4.4)

Introducing the function F (s) =
∫ s
0
f(τ)dτ , we have

F (s) =
|s|p

p
, F ′ = f, f ′(s) = (p− 1)|s|p−2. (4.5)

Note that we use the usual notation q = p
p−1 for the conjugate exponent of p.

Remark 4.5. In the Hilbertian case p = 2, the classical multipliers as given in [2] are xψ(x)zx(t, x), xφ(x)z(t, x)
and v associated with p = 2 (i.e. vxx = βz). Then, while clearly our third multiplier v is a straightforward
extension of the Hilbertian case to any p ∈ [1,∞), the two sets of multipliers given in Items (m1) and (m2)
seem to be new, even if those of Item (m2) are identical when p = 2.

4.1.1. First set of multipliers

The first step toward an energy estimate consists in obtaining an inequality that contains the expression of
the energy Ep and, for this purpose, we use the first set of multipliers of Item (m1). We obtain the following
lemma.
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Lemma 4.6. Under the hypotheses of Proposition 4.4, we have the following estimate∫ T

S

Ep(t)dt ≤ CCpEp(S) + C

∫ T

S

∫
Q1∩(0,1)

(F (ρ) + F (ξ)) dxdt︸ ︷︷ ︸
S4

, (4.6)

where Cp denotes constants that depend on p only.

Proof. Multiplying the first equation of (2.8) by xψ f(ρ) and integrating over [S, T ]× [0, 1], we obtain that∫ T

S

∫ 1

0

xψ f(ρ)

(
ρt − ρx +

1

2
a(x)(ρ− ξ)

)
dxdt = 0. (4.7)

Starting with
∫ T
S

∫ 1

0
xψ f(ρ)ρt dxdt, one has

∫ T

S

∫ 1

0

xψ f(ρ)ρt dxdt =

∫ 1

0

xψ

∫ T

S

(F (ρ))tdtdx =

∫ 1

0

xψ [F (ρ)]
T
S dx. (4.8)

Regarding −
∫ T
S

∫ 1

0
xψ f(ρ)ρx dxdt, we use an integration by part with respect to x and we obtain

−
∫ T

S

∫ 1

0

xψ f(ρ)ρx dxdt = −
∫ T

S

∫ 1

0

xψ (F (ρ))x dxdt

=

∫ T

S

∫ 1

0

(xψ)xF (ρ) dxdt−
∫ T

S

[xψF (ρ)]
1
0 =

∫ T

S

∫ 1

0

(xψ)xF (ρ) dx dt. (4.9)

By combining (4.8) and (4.9), we get∫ T

S

∫ 1

0

(xψ)xF (ρ) dxdt+

∫ 1

0

xψ [F (ρ)]
T
S dx = −1

2

∫ T

S

∫ 1

0

xψ(x)a(x)f(ρ)(ρ− ξ)) dx dt. (4.10)

We proceed similarly by multiplying the second equation of (2.8) by xψ f(ξ) and, following the same steps that
yielded (4.10), we obtain that∫ T

S

∫ 1

0

(xψ)xF (ξ) dx dt−
∫ 1

0

xψ [F (ξ)]
T
S dx = −1

2

∫ T

S

∫ 1

0

xψ(x)a(x)f(ξ)(ρ− ξ)) dxdt. (4.11)

Summing up (4.10) and (4.11), we obtain∫ T

S

∫ 1

0

(xψ)x(F (ρ) + F (ξ)) dxdt =

∫ 1

0

xψ [F (ξ)]
T
S dx−

∫ 1

0

xψ [F (ρ)]
T
S dx

−1

2

∫ T

S

∫ 1

0

a(x)xψ(f(ξ) + f(ρ))(ρ− ξ)) dx dt. (4.12)

Using the definition of ψ, we obtain∫ T

S

∫
(0,1)\Q1

(F (ρ) + F (ξ)) dxdt = −
∫ T

S

∫
Q1∩(0,1)

(xψ)x(F (ρ) + F (ξ)) dxdt+

∫ 1

0

xψ [F (ξ)]
T
S dx
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−
∫ 1

0

xψ [F (ρ)]
T
S dx− 1

2

∫ T

S

∫ 1

0

a(x)xψ(f(ξ) + f(ρ))(ρ− ξ) dxdt. (4.13)

We now complete the expression of the energy Ep in the left-hand side of the previous equality and, since∫ 1

0
F (ξ) + F (ρ) dx = Ep, it follows that

∫ T

S

Ep(t)dt ≤
∫ T

S

∫
Q1∩(0,1)

| (1− (xψ)x) | (F (ρ) + F (ξ)) dx dt︸ ︷︷ ︸
S1

+

∫ 1

0

|xψ|
∣∣∣[F (ρ)− F (ξ)]

T
S

∣∣∣dx︸ ︷︷ ︸
S2

+
1

2

∫ T

S

∫ 1

0

|a(x)xψ| |(f(ρ) + f(ξ))| |ρ− ξ|dxdt︸ ︷︷ ︸
S3

. (4.14)

We start by estimating S1. Since | (1− (xψ)x) | ≤ C, we get

∫ T

S

∫
Q1∩(0,1)

|1− (xψ)x| (F (ρ) + F (ξ)) dxdt ≤ C
∫ T

S

∫
Q1∩(0,1)

(F (ρ) + F (ξ)) dx dt ≤ CS4, (4.15)

where S4 has been defined in (4.6).
As for S2, using the fact that |xψ| < 1 and the fact that t 7→ Ep(t) is non increasing, one gets the following

upper bound for S2,

S2 ≤ Ep(S) + Ep(T ) ≤ 2Ep(S). (4.16)

We finally estimate S3. Recall that q := p
p−1 denotes the conjugate exponent of p. Using (A.1) in Lemma A.1

with A = a(x) |ρ− ξ| , B = |f(ξ)|+ |f(ρ)| and η = η1 where η1 > 0 an arbitrary constant, it follows that

S3 ≤ C
∫ T

S

∫ 1

0

a(x) |f(ρ) + f(ξ)| |ρ− ξ| dx dt

≤ CCpηq1
∫ T

S

∫ 1

0

(F (ρ) + F (ξ)) dxdt+
CCp
ηp1

∫ T

S

∫ 1

0

a(x)|ρ− ξ|p dxdt

≤ CCpηq1
∫ T

S

Ep(t)dt+
CCp
ηp1

∫ T

S

∫ 1

0

a(x)|ρ− ξ|p dx dt. (4.17)

Set R = max(|ρ|, |ξ|). Then, for every 0 < µ1 < 1, one has

∫ T

S

∫ 1

0

a(x)|ρ− ξ|p dxdt =

∫ T

S

∫
|ρ−ξ|≥Rµ1

a(x)|ρ− ξ|p dxdt+

∫ T

S

∫
|ρ−ξ|<Rµ1

a(x)|ρ− ξ|p dxdt. (4.18)

For the first integral term above, we have directly from Lemma A.3 with a = ρ, b = ξ that

∫ T

S

∫
|ρ−ξ|≥Rµ1

a(x)|ρ− ξ|p dxdt ≤ Cp

µ2−p
1

∫ T

S

(−E′p(t)) dt ≤ Cp

µ2−p
1

E(S). (4.19)
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As for the second integral term in (4.18), we have that

∫ T

S

∫
|ρ−ξ|<Rµ1

a(x)|ρ− ξ|p dx dt ≤ µp1
∫ T

S

∫
|ρ−ξ|<Rµ1

a(x)Rp dx dt

≤ Cpµp1
∫ T

S

∫ 1

0

(F (ρ) + F (ξ))dxdt

≤ Cpµp1
∫ T

S

Ep(t)dt. (4.20)

Combining (4.18), (4.19) and (4.20), we obtain that

∫ T

S

∫ 1

0

a(x)|ρ− ξ|p dxdt ≤ Cpµp1
∫ T

S

Ep(t)dt+
Cp

µ2−p
1

Ep(S). (4.21)

By combining (4.21) with (4.17), we obtain that

S3 ≤ CCp
(
µp1
ηp1

+ ηq1

)∫ T

S

Ep(t)dt+ C
Cp

ηp1µ
2−p
1

Ep(S). (4.22)

Gathering (4.14), (4.15), (4.16) and (4.22), it follows that

∫ T

S

E(t) dt ≤ C
∫ T

S

∫
Q1∩(0,1)

(F (ρ) + F (ξ)) dxdt

+ CCp

(
µp1
ηp1

+ Cηq1

)∫ T

S

Ep(t)dt+

(
C

Cp

ηp1µ
2−p
1

+ 2

)
Ep(S). (4.23)

We can choose η1 > 0 and µ1 > 0 such that

CCp

(
µp1
ηp1

+ ηq1

)
<

1

2
, (4.24)

which proves (4.6).

4.1.2. Second pair of multipliers

The second set of multipliers given in Item (m2) is used to handle the term S4 in (4.6) and it will lead us to
the following lemma.

Lemma 4.7. Under the hypotheses of Proposition 4.4 with φ as defined in (4.1), we have the following estimate

S4 ≤ C
Cp
ηp2

∫ T

S

∫
Q2∩(0,1)

|z|p dx dt︸ ︷︷ ︸
T5

+CCpη
q
2

∫ T

S

Ep(t) dt+ CCpEp(S), (4.25)

where η2 is an arbitrary constant in (0, 1) and C and Cp are positive constants whose dependence is specified
in Remark 4.2.
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Proof. We multiply the first equation of (2.8) by φf ′(ρ)z, where z is the solution of (1.1) and we integrate over
[S, T ]× [0, 1] to obtain

∫ T

S

∫ 1

0

φf ′(ρ)z(ρt − ρx +
1

2
a(x)(ρ− ξ)) dxdt = 0. (4.26)

On one hand, we have that∫ T

S

∫ 1

0

φf ′(ρ)zρt dxdt =

∫ T

S

∫ 1

0

φ (f(ρ))t z dxdt = −
∫ 1

0

∫ T

S

φf(ρ)ztdtdx+

∫ 1

0

φ [f(ρ)z]
T
S dx. (4.27)

On the other hand, an integration by part with respect to x yields

−
∫ T

S

∫ 1

0

φf ′(ρ)zρx dxdt = −
∫ T

S

∫ 1

0

φz (f(ρ))x dx dt =

∫ T

S

∫ 1

0

(φz)xf(ρ) dx dt, (4.28)

and then ∫ T

S

∫ 1

0

(φz)x f(ρ) dxdt =

∫ T

S

∫ 1

0

φxzf(ρ) dxdt+

∫ T

S

∫ 1

0

φzxf(ρ) dx dt. (4.29)

Putting together (4.26), (4.27), (4.28) and (4.29)

−
∫ T

S

∫ 1

0

φf(ρ)zt dx dt+

∫ 1

0

φ [f(ρ)z]
T
S dx+

∫ T

S

∫ 1

0

φxzf(ρ) dx dt

+

∫ T

S

∫ 1

0

φzxf(ρ) dxdt+
1

2

∫ T

S

∫ 1

0

φf ′(ρ)za(x)(ρ− ξ) dxdt = 0. (4.30)

Since ρ− 2zt = zx − zt, we have that∫ T

S

∫ 1

0

φzxf(ρ) dx dt−
∫ T

S

∫ 1

0

φf(ρ)zt dxdt =

∫ T

S

∫ 1

0

φρf(ρ) dx dt− 2

∫ T

S

∫ 1

0

φztf(ρ) dxdt, (4.31)

it follows that∫ T

S

∫ 1

0

φρf(ρ) dxdt = 2

∫ T

S

∫ 1

0

φztf(ρ) dx dt−
∫ 1

0

φ [f(ρ)z]
T
S dx−

∫ T

S

∫ 1

0

φxzf(ρ) dx dt

− 1

2

∫ T

S

∫ 1

0

φf ′(ρ)z a(x)(ρ− ξ) dx dt. (4.32)

We proceed similarly after multiplying the second equation of (2.8) by φf ′(ξ)z and, following the same steps
that led to (4.32), we obtain that

∫ T

S

∫ 1

0

φξf(ξ) dx dt = −2

∫ T

S

∫ 1

0

φztf(ξ) dx dt+

∫ 1

0

φ [f(ξ)z dx]
T
S −

∫ T

S

∫ 1

0

φxzf(ξ) dx dt

− 1

2

∫ T

S

∫ 1

0

φf ′(ξ)z a(x)(ρ− ξ) dx dt. (4.33)
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We take the sum of (4.32) and (4.33) and get

∫ T

S

∫ 1

0

φ (ρf(ρ) + ξf(ξ)) dx dt = −
∫ T

S

∫ 1

0

φxz (f(ρ) + f(ξ)) dxdt−
[∫ 1

0

φ (f(ρ)− f(ξ)) z dx

]T
S

−1

2

∫ T

S

∫ 1

0

φ (f ′(ρ) + f ′(ξ)) z a(x)(ρ− ξ) dxdt+ 2

∫ T

S

∫ 1

0

φzt (f(ρ)− f(ξ)) dxdt. (4.34)

Using the definition of φ in (4.1) and the fact that 2zt = ρ− ξ, we derive that

S4 ≤ C
∫ T

S

∫
Q2∩(0,1)

|z (f(ρ) + f(ξ))| dx dt︸ ︷︷ ︸
T1

+Cp

∣∣∣∣∣
[∫ 1

0

(f(ρ)− f(ξ)) z dx

]T
S

∣∣∣∣∣︸ ︷︷ ︸
T2

+ Cp

∫ T

S

∫
Q2∩(0,1)

| (f ′(ρ) + f ′(ξ)) z a(x)(ρ− ξ)|dx dt︸ ︷︷ ︸
T3

+Cp

∫ T

S

∫ 1

0

|φ(ρ− ξ) (f(ρ)− f(ξ))| dxdt︸ ︷︷ ︸
T4

. (4.35)

We start by estimating T1. We have T1 ≤ T′1 where

T′1 :=

∫ T

S

∫
Q2∩(0,1)

|z|(|f(ρ)|+ |f(ξ)|) dx dt, (4.36)

which gives when using (A.1) in Lemma A.1 with A = |z| and B ∈ {|f(ρ)|, |f(ξ)|},

T′1 ≤
Cp
ηp2

∫ T

S

∫
Q2∩(0,1)

F (z) dx dt+ Cpη
q
2

∫ T

S

Ep(t)dt, (4.37)

where η2 > 0 is arbitrary.
To estimate T2, we have by Young’s inequality recalled in Lemma A.1 that∣∣∣∣∫ 1

0

φ (f(ρ)− f(ξ)) zdx

∣∣∣∣ ≤ ∫ 1

0

|f(ρ)||z|dx+

∫ 1

0

|f(ξ)||z|dx

≤ Cp
∫ 1

0

(F (ρ) + F (ξ)) dx+ Cp

∫ 1

0

|z|pdx. (4.38)

Using Poincaré’s inequality,∫ 1

0

|z|pdx ≤ C
∫ 1

0

|zx|pdx ≤ C
∫ 1

0

|ρ+ ξ|pdx ≤ CCp
∫ 1

0

(|ρ|p + |ξ|p) dx ≤ CCpEp(t). (4.39)

Combining (4.38) and (4.39) and the fact that t 7→ Ep(t) is non increasing, it follows that

T2 ≤ CCpEp(S). (4.40)

As for T3, we first notice that for every (ρ, ξ) ∈ R2, one has

| (f ′(ρ) + f ′(ξ)) (ρ− ξ)| ≤ Cp (|f(ρ)|+ |f(ξ)|) . (4.41)
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It follows that T3 ≤ CpT′1 which has been defined in (4.36) and which is upper bounded in (4.37).
Regarding T4, we use the fact that φ(x) ≤ Ca(x) for x ∈ [0, 1] to get

T4 ≤ C
∫ T

S

∫
ω

a(x)(ρ− ξ) (f(ρ)− f(ξ)) dx dt ≤ C
∫ T

S

(−E′(t))dt ≤ CEp(S). (4.42)

Combining (4.35), (4.37), (4.40) and (4.42), the estimate (4.25) is proved.

4.1.3. Third multiplier

It remains to tackle the term T5 appearing in (4.25). To handle it, we consider the multiplier introduced in
Item (m3) and, in order to achieve future upper bounds, we will be needing estimates of the Lq-norms of v and
vt, where q = p

p−1 , given in the following lemma.

Lemma 4.8. For v as defined in (4.3), we have the following estimates:∫ 1

0

|v|q dx ≤ CCpEp(t). (4.43)∫ 1

0

|vt|q dx ≤ Cp
(

(p− 2)σEp(t) +
1

σp−2

∫ 1

0

β|zt|pdx
)
, (4.44)

where σ > 0 is an arbitrary positive constant and C and Cp are positive constants whose dependence is specified
in Remark 4.2.

Proof. From the definition of v, one gets

v(t, x) = −x
∫ 1

x

(1− s)β f(z) ds− (1− x)

∫ x

0

sβ f(z) ds, x ∈ [0, 1]. (4.45)

One deduces that, by using Hölder’s inequality,

|v(t, x)|q ≤ C
(∫ 1

0

|z|p−1 ds

)q
≤ C

∫ 1

0

|z|p ds, x ∈ [0, 1]. (4.46)

Poincaré’s inequality yields
∫ 1

0
|z|p ds ≤ C

∫ 1

0
|zx|p ds and then (4.43) after integrating over x ∈ [0, 1] and the

definition of Ep(t).
Similarly, one has

vt(t, x) = −x
∫ 1

x

(1− s)β ztf ′(z) ds− (1− x)

∫ x

0

sβ ztf
′(z) ds, x ∈ [0, 1]. (4.47)

By using Hölder inequality and the fact that β is bounded by 1, one deduces that

|vt(t, x)|q ≤ Cp
(∫ 1

0

β|zt||z|p−2 ds

)q
≤ Cp

∫ 1

0

β|zt|q|z|q(p−2) ds, x ∈ [0, 1]. (4.48)

If p = 2, we have q = 2 and get (4.44) after integrating over x ∈ [0, 1]. For p > 2, we apply Young’s inequality
with the pair of conjugate exponents (p− 1, p−1p−2 ) and conclude as for (4.43).

The next lemma shows the use of the third multiplier v.
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Lemma 4.9. Under the hypotheses of Proposition 4.4, with v as defined in (4.3), we have the following estimate,

∫ T

S

∫
Q2∩(0,1)

|z|p dxdt︸ ︷︷ ︸
T5

≤ CCp

(
η

∫ T

S

Ep(t) dt+
1

ηr
Ep(S)

)
, (4.49)

where r = 2p2−p−2
p , η is any real number in (0, 1) and C and Cp are positive constants whose dependence is

specified in Remark 4.2.

Proof. We multiply the first equation of (2.8) by v∫ T

S

∫ 1

0

v(ρt − ρx +
1

2
a(x)(ρ− ξ)) dxdt = 0. (4.50)

First, an integration by part with respect to t gives

∫ 1

0

∫ T

S

vρt dtdx = −
∫ 1

0

∫ T

S

vtρdtdx+

[∫ 1

0

vρdx

]T
S

. (4.51)

Then, an integration by part with respect to x yields

−
∫ 1

0

vρx dx =

∫ 1

0

vxρdx =

∫ 1

0

vx(zx + zt) dx =

∫ 1

0

vxzx dx+

∫ 1

0

vxzt dx. (4.52)

We have that ∫ 1

0

vxzx dx = −
∫ 1

0

vxxz dx = −
∫ 1

0

β|z|p dx, (4.53)

which gives that

−
∫ T

S

∫ 1

0

vρx dx dt = −
∫ T

S

∫ 1

0

β|z|p dxdt+

∫ T

S

∫ 1

0

vxzt dxdt. (4.54)

Combining (4.50), (4.51) and (4.54), we obtain

∫ T

S

∫ 1

0

β|z|p dx dt =

∫ T

S

∫ 1

0

vxzt dx dt−
∫ 1

0

∫ T

S

vtρdtdx+

[∫ 1

0

vρdx

]T
S

+
1

2

∫ T

S

∫ 1

0

va(x)(ρ− ξ) dxdt. (4.55)

We next multiply the second equation of (2.8) by v and, following the same steps that yielded (4.55), we get

∫ T

S

∫ 1

0

β|z|p dxdt = −
∫ T

S

∫ 1

0

vxzt dxdt+

∫ 1

0

∫ T

S

vtξ dtdx−
[∫ 1

0

vξdx

]T
S

+
1

2

∫ T

S

∫ 1

0

va(x)(ρ− ξ) dx dt. (4.56)
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Now taking the sum of (4.55) and (4.56), we obtain

2

∫ T

S

∫ 1

0

β|z|p dxdt =

∫ 1

0

∫ T

S

vt(ξ − ρ) dtdx−
[∫ 1

0

v(ρ− ξ)dx
]T
S

+

∫ T

S

∫ 1

0

va(x)(ρ− ξ) dxdt. (4.57)

Using the definition of β, we obtain

2T5 ≤

∣∣∣∣∣
[∫ 1

0

v(ρ− ξ)dx
]T
S

∣∣∣∣∣︸ ︷︷ ︸
V1

+

∫ T

S

∫ 1

0

|vt||(ξ − ρ)| dxdt︸ ︷︷ ︸
V2

+

∫ T

S

∫ 1

0

|va(x)(ρ− ξ)| dxdt︸ ︷︷ ︸
V3

. (4.58)

We start by estimating V1. For fixed t ∈ [S, T ], we have, by using (4.43)∣∣∣∣∫ 1

0

v(ρ− ξ)dx
∣∣∣∣ ≤ ∫ 1

0

(|v||ρ|+ |v||ξ|) dx ≤ 2
p− 1

p

∫ 1

0

|v|qdx+

∫ 1

0

(F (ρ) + F (ξ)) dx ≤ CCpEp(t), (4.59)

and hence, since Ep(T ) ≤ Ep(S), we get

V1 ≤

∣∣∣∣∣−
[∫ 1

0

v(ρ− ξ)dx
]T
S

∣∣∣∣∣ ≤ CCpEp(S). (4.60)

Using Young’s inequality, we have for every η > 0

V2 ≤
∫ T

S

∫ 1

0

(|vt||ξ|+ |vt||ρ|) dxdt ≤ 2
p− 1

pη

∫ T

S

∫ 1

0

|vt|q dxdt+ η

∫ T

S

∫ 1

0

(F (ρ) + F (ξ)) dxdt. (4.61)

From (4.44) and the fact that the definition of β implies β ≤ C a, we get for every σ > 0 that

∫ T

S

∫ 1

0

|vt|q ≤ Cp

(
(p− 2)σ

∫ T

S

Ep(t)dt+
C

σp−2

∫ T

S

∫ 1

0

a(x)|ρ− ξ|pdxdt

)
. (4.62)

Using (4.21), we obtain for every σ, µ1 > 0

∫ T

S

∫ 1

0

|vt|q ≤ CCp

[(
(p− 2)σ +

µp1
σp−2

)∫ T

S

Ep(t)dt+
1

µ1σp−2
Ep(S)

]
. (4.63)

Combining (4.61) and (4.63), we obtain for every η, σ, µ1 > 0

V2 ≤ CCp

[(
(p− 2)

σ

η
+

µp1
σp−2η

+ η

)∫ T

S

Ep(t)dt+
1

µ1σp−2η
Ep(S)

]
. (4.64)

Choosing σ = η2 and µ1 = η2
p−1
p , one gets, for every η > 0

V2 ≤ CCp

(
η

∫ T

S

Ep(t) dt+
1

ηr
Ep(S)

)
. (4.65)
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Finally, we estimate V3 in (4.58). Using Young’s inequality, we have, for every ν > 0,

V3 ≤ CCp

(
ν

∫ T

S

∫ 1

0

|v|q dxdt+
1

ν

∫ T

S

∫ 1

0

a(x)|ρ− ξ|p dxdt

)
, (4.66)

which yields by using (4.43) and (4.21), that for every ν, µ > 0, one has

V3 ≤ CCp

(
(ν +

µp

ν
)

∫ T

S

Ep(t)dt+
1

νµ
Ep(S)

)
. (4.67)

Choosing µp = ν, one gets that for every η > 0

V3 ≤ CCp

(
ν

∫ T

S

Ep(t)dt+
1

ν1+
2
p

Ep(S)

)
. (4.68)

Combining (4.58), (4.60), (4.65) and (4.68) and taking ν = η < 1, we obtain (4.49).

4.1.4. End of the proof of Proposition 4.4

Collecting (4.6), (4.25) and (4.49), we obtain for every positive η2, η3 and η ∈ (0, 1) that

∫ T

S

Ep(t)dt ≤ CCp

[(
ηq2 +

η

ηp2

)∫ T

S

Ep(t)dt+

(
1 +

1

ηp2η
r

)
Ep(S)

]
. (4.69)

Taking η = ηp+q2 and fixing η2 so that 2CCpη
q
2 = 1

2 , we immediately get (4.2). It is then standard to deduce
that there exists γp > 0 such that, for every (z0, z1) ∈ Xp, the energy Ep associated with of the solution z(t) of
(1.1) starting at (z0, z1) satisfies the following,

Ep(t) ≤ Ep(0)e1−γpt, t ≥ 0. (4.70)

That concludes the proof of Proposition 4.4.

4.2. Case where 1 < p < 2

The main issue to prove Theorem 4.3 in the case p ∈ (1, 2) (when compared with the case p ∈ [2,∞)) is the
trivial fact that p− 2 < 0 and hence the weights f ′(ρ) and f ′(ξ) used in the multipliers of Items (m2) and (m3)
may not be defined on sets of positive measure. As a consequence we cannot use these multipliers directly and
we have to modify the functions f and F . This is why, we consider, for p ∈ (1, 2), the functions g and G defined
on R, by

g(y) = (p− 1)

∫ y

0

(|s|+ 1)p−2 ds = sgn(y)
[
(|y|+ 1)p−1 − 1

]
, (4.71)

G(y) =

∫ y

0

g(s) ds =
1

p
[(|y|+ 1)p − 1]− |y|. (4.72)

It is clear that one has that |g(y)| ≤ |f(y)| and |G(y)| ≤ |F (y)| for every y ∈ R. Finally, using the function
g, we also modify the energy Ep by considering, for every t ∈ R+ and every solution of (1.1), the function Ep
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defined by

Ep(t) =

∫ 1

0

(G(ρ) +G(ξ)) dx. (4.73)

We start with an extension of Proposition 2.2.

Lemma 4.10. For every p ∈ (1, 2),

– the function g is an odd bijection from R to R with a continuous first derivative which is decreasing on
R+;

– the function G is even, of class C2 and strictly convex;
– the energy t 7→ Ep(t) is non-increasing on R+ along trajectories of (1.1).

Proof. One has that, for every x ∈ R,

G′′(x) = g′(x) = (p− 1)(|x|+ 1)p−2 > 0. (4.74)

It is clear that g′′ is continuous and positive, which proves the strict convexity. The last item follows after using
Proposition 2.2 with F = G

p which admits a continuous first derivative by what precedes.

The proof of Theorem 4.3 in the case p ∈ (1, 2) relies on the following proposition which gives an estimate of
the modified energy Ep of a strong solution and which is similar to Proposition 4.4.

Proposition 4.11. Fix p ∈ (1, 2) and suppose that Hypothesis (H1) is satisfied. Then there exist positive
constants C and Cp such that, for every (z0, z1) ∈ Yp verifying

Ep(0) ≤ 1, (4.75)

we have the following energy estimate:

∀ 0 ≤ S ≤ T,
∫ T

S

Ep(t) dt ≤ C CpEp(S). (4.76)

We next develop an argument for Proposition 4.11, which follows the lines of the proof of Proposition 4.4.
The main idea consists in replacing f, F by g,G and to control all the constants Cp involved in these estimates
in terms of p ∈ (1, 2). We also provide a sketchy presentation where we only precise details specific to the present
case.

We fix p ∈ (1, 2) and (z0, z1) ∈ Yp. We recall that we have chosen x0 = 0 as an observation point and let
0 < ε0 < ε1 < ε2 with the corresponding sets Qi =]1− εi, 1 + εi[, i = 0, 1, 2 as before.

As a consequence of (4.75) and Corollary 2.3 and standard estimates (such as the fact that Ep ≤ Ep), one
deduces that

|z(t, x)|p + Ep(t) ≤ Cp, ∀t ≥ 0, x ∈ [0, 1], (4.77)

where Cp is a positive constant that depends on p only.
In the case p ≥ 2, we have used repeatedly Holder’s inequality for f, F , which is not precise enough when

dealing with g,G for the case p ∈ (1, 2). Insteaed, one needs to consider the convex conjugate (cf. [10]) of G
which we denote from now on by H and which is defined as the Legendre transform of G, i.e.,

H(s) := sup
y∈R
{sy −G(y)}, s ∈ R. (4.78)
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Since G is of class C2 with invertible first derivative g, one has that

H(g(x)) =

∫ g(x)

0

g−1(s)ds =

∫ x

0

vg′(v)dv, (4.79)

and

xg(x) = G(x) +H(g(x)), x ∈ R. (4.80)

The second equality in (4.79) is obtained using the change of variable v = g−1(s) and (4.80) follows (for instance)
by integration by part of the right-hand side of (4.80).

4.2.1. First pair of multipliers

For the first pair of multipliers, we change the function f in Item (m1) by the function g and hence use
xψ g(ρ), x ψg(ξ), where ψ is defined in (4.1).

Lemma 4.12. Under the hypotheses of Proposition 4.11, we have the following estimate

∫ T

S

Ep(t)dt ≤ C CpEp(S) + C

∫ T

S

∫
Q1∩(0,1)

(G(ρ) +G(ξ)) dxdt︸ ︷︷ ︸
S4

. (4.81)

Proof. Estimate 4.81 is obtained by following the exact same steps as those given to derive (4.6), with the
difference that we use the function g instead of the function f . By multiplying the first equation of (2.8) by
xψ g(ρ) and the second one by xψ g(ξ), we perform the integrations by parts described to obtain (4.13) with
the function f and, we are led to the similar equation

∫ T

S

(G(ρ) +G(ξ)) dt =

∫ T

S

∫
Q1∩(0,1)

(1− (xψ)x) (G(ρ) +G(ξ)) dxdt+

∫ 1

0

xψ [G(ξ)−G(ρ)]
T
S dx

−1

2

∫ T

S

∫ 1

0

a(x)xψ(g(ξ) + g(ρ))(ρ− ξ) dxdt, (4.82)

which yields that

∫ T

S

Ep(t)dt ≤
∫ T

S

∫
Q1∩(0,1)

| (1− (xψ)x) | (G(ρ) +G(ξ)) dxdt︸ ︷︷ ︸
S1

+

∫ 1

0

|xψ|
∣∣∣[G(ξ)−G(ρ)]

T
S

∣∣∣ dx︸ ︷︷ ︸
S2

+
1

2

∫ T

S

∫ 1

0

|a(x)xψ| |g(ξ) + g(ρ)| |ρ− ξ|dxdt︸ ︷︷ ︸
S3

. (4.83)

Using the fact that ψx is bounded, we get at once that

S1 ≤ C
∫ T

S

∫
Q1∩(0,1)

(G(ρ) +G(ξ)) dxdt ≤ CS4, (4.84)
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where S4 has been defined in (4.81). Using now the fact that |xψ| ≤ 1 and the fact that t 7→ Ep(t) is non
increasing, it follows that

S2 ≤ Ep(T ) + Ep(S) ≤ 2Ep(S). (4.85)

As for S3, we proceed as for the estimate of S3 by first using (A.16) and Lemma A.8 instead of Lemmas A.1
and A.3 respectively.

In particular, we have the following estimate, which extends (4.21) to the case p ∈ (1, 2) and which holds for
every µ1 ∈ (0, 1), ∫ T

S

Ep(t) dt ≤ C Cpµp1
∫ T

S

Ep(t)dt+ C
Cp

µ2−p
1

Ep(S), (4.86)

where Ep(t) is defined by

Ep(t) =

∫ 1

0

a(x)g(zt) dx. (4.87)

4.2.2. Second pair of multipliers

The goal of this subsection is to estimate S4. To do so, we change the function f in Item (m2) by the function
g and hence define the pair of multipliers: φg′(ρ)z, φg′(ξ)z where φ is defined in (4.1).

Lemma 4.13. Under the hypotheses of Proposition 4.11 and for 1 < p < 2 with φ as defined in (4.1), we have
the following estimate:

S4 ≤ C
Cp
ηp2

∫ T

S

∫
Q2∩(0,1)

G(z) dxdt︸ ︷︷ ︸
T5

+C Cpη
2
2

∫ T

S

Ep(t) dt+ C CpEp(S), (4.88)

where η2 is an arbitrary constant in (0, 1) and C and Cp are positive constants whose dependence are specified
in Remark 4.2 on p.

Proof. Estimate (4.88) is obtained by following the same steps as those given to derive (4.25), with g instead of
f . By multiplying the first equation of (2.8) by φg′(ρ)z and the second one by φg′(ξ)z, where z is the solution
of (1.1), we perform the integrations by parts described to obtain (4.34) with the function f and we are led to
the equation

∫ T

S

∫ 1

0

φ (g(ρ)ρ+ g(ξ)ξ) dxdt = −
∫ T

S

∫ 1

0

φx z (g(ρ) + g(ξ)) dxdt+

[∫ 1

0

φ (g(ξ)− g(ρ)) zdx

]T
S

− 1

2

∫ T

S

∫ 1

0

φ(g′(ρ) + g′(ξ))za(x)(ρ− ξ) dx dt

+ 2

∫ T

S

∫ 1

0

φ (g(ρ)− g(ξ)) (ρ− ξ)dx dt. (4.89)

According to (A.8), one has

g(ρ)ρ+ g(ξ)ξ ≥ g(ρ) + g(ξ), ∀(ρ, ξ) ∈ R2. (4.90)



LP -ASYMPTOTIC STABILITY OF 1D DAMPED WAVE EQUATIONS 21

Hence, also using the definition of φ, it follows from (4.89) that

S4 ≤ C
∫ T

S

∫
Q2∩(0,1)

|z (g(ρ) + g(ξ)) |dxdt︸ ︷︷ ︸
T1

+

∣∣∣∣∣∣
[∫

Q2∩(0,1)
(g(ξ)− g(ρ)) zdx

]T
S

∣∣∣∣∣∣︸ ︷︷ ︸
T2

+
1

2

∫ T

S

∫
Q2∩(0,1)

(g′(ρ) + g′(ξ)) a(x)|z(ρ− ξ)|dxdt︸ ︷︷ ︸
T3

+2

∫ T

S

∫
Q2∩(0,1)

| (g(ρ)− g(ξ)) (ρ− ξ)|dx dt︸ ︷︷ ︸
T4

, (4.91)

for some positive constant C. The above equation must be put in parallel with (4.35) where the term Tj,
1 ≤ j ≤ 4 in (4.91) corresponds to the term Tj in (4.35).

The term T1 is handled exactly as the term T1 while using (A.16) instead of Lemma A.1 in order to obtain

T1 ≤
Cp
ηp2

∫ T

S

∫
Q2∩(0,1)

g(z) dx dt+ Cpη
2
2

∫ T

S

Ep(t)dt, (4.92)

where η2 > 0 is arbitrary.
We proceed similarly for the term T2 by using (A.16) instead of Young’s inequality and Corollary A.7 instead

of the standard Poincaré inequality to obtain

T2 ≤ CpEp(S). (4.93)

The term T4 can also be treated identically as the term T4 to obtain

T4 ≤ CEp(S). (4.94)

We now turn to an estimate of T3 which differs slightly from that of T3 because of the appearance of the
function g′. Using (4.77) and the second equation in (A.12), one deduces that

(g′(ρ) + g′(ξ)) |z| ≤ Cp|g(z)|, t ∈ [S, T ], x ∈ [0, 1], (4.95)

where Cp is a positive constant only depending on p. One derives that

T3 ≤ Cp
∫ T

S

∫
Q2∩(0,1)

a(x)|g(z)|(|ρ|+ |ξ|) dx dt. (4.96)

Applying (A.16) to the above, we end up with an estimate of T3 by exactly the right-hand side of (4.92) and
one concludes.

4.2.3. Third multiplier

We finally turn to an estimation of the term T5 and, relying on the multiplier defined in Item (m3), we get
after changing the function f by the function g the multiplier (still denoted) v solution of the following elliptic
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problem defined at every t ≥ 0 by {
vxx = βg(z), x ∈ [0, 1],
v(0) = v(1) = 0,

(4.97)

where β is defined in (4.1).

We will be needing the following estimates of v and vt given in the next lemma.

Lemma 4.14. For v as defined in (4.97), we have the following estimates:∫ 1

0

H(v)dx ≤ CCpEp(t), (4.98)∫ 1

0

H(vt)dx ≤ CCpEp(t), (4.99)

where Ep(t) is defined in (4.87).

Proof. From the definition of v, one gets

v(t, x) = −x
∫ 1

x

(1− s)β g(z) ds− (1− x)

∫ x

0

sβ g(z) ds, x ∈ [0, 1]. (4.100)

It immediately follows from the above that∫ 1

0

H(v)dx ≤ H
(
C

∫ 1

0

β|g(z)|ds
)
≤ CCpH

(∫ 1

0

β|g(z)|ds
)
, (4.101)

where we have used (A.12) whether Cp
∫ 1

0
β|g(z)|ds ≥ M or not. Since H is (strictly) convex, one can apply

Jensen’s inequality to the right-hand side of the above equation to get that∫ 1

0

H(v)dx ≤ CCp
∫ 1

0

βH (g(z)) ds, (4.102)

and one derives (4.98) by using (A.12) together with (4.77). Similarly, one has that

vt(t, x) = −x
∫ 1

x

(1− s)β ztg′(z) ds− (1− x)

∫ x

0

sβ ztg
′(z) ds, x ∈ [0, 1], (4.103)

Upper bounding |g′(z)| by 1, one deduces that∫ 1

0

H(vt)dx ≤ H(C

∫ 1

0

β|zt|) ≤ CCpH(

∫ 1

0

β|zt|) ≤ CCpH
(∫ 1

0

a(x)|zt|dx
)
, (4.104)

where we used the fact that β(x) ≤ Ca(x) on [0, 1] and the convexity of H.

Since
∫ 1

0
a(x)|zt|dx =

∫
|zt|≤M +

∫
|zt|>M , we have according to (A.12), (A.13) and Hölder’s inequality that

∫ 1

0

a(x)|zt|dx ≤ C Cp
(∫ 1

0

a(x)g(|zt|) dx+

∫ 1

0

a(x)g(|zt|)
1
p dx

)
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≤ C Cp
(∫ 1

0

a(x)g(|zt|) dx+ E
1
p
p (t)

)
. (4.105)

By convexity of H, we obtain after plugging the previous equation into (4.104) and using Jensen’s inequality
that ∫ 1

0

H(vt)dx ≤ CCp
(∫ 1

0

a(x)H (g(|zt|)) dx+H(E
1
p
p (t))

)
. (4.106)

The first term in the right-hand side of the above inequality is clearly upper bounded by CCpEp(t) thanks to
(A.9). As for the second term, one has that

H(E
1
p
p (t)) ≤ CCpg(y∗), where y∗ is defined by g(y∗) = E

1
p
p (t). (4.107)

By using (4.77), it follows that g(y∗) ≤ CCp and elementary computations using (A.12) and the fact that

Ep ≤ CCpEp yield that y∗ ≤ CCp. Hence g(y∗) ≥ CCpy∗, i.e., y∗ ≤ CCpE
1
p
p (t). Since g is convex and increasing

on R+, one gets after using (A.12) that

H(E
1
p
p (t)) ≤ CCpg

(
CpE

1
p
p (t)

)
≤ CCpg

(
E

1
p
p (t)

)
≤ CCpE

2
p
p (t) ≤ CCpEp(t), (4.108)

where we have used repeatedly (4.77) and (A.12). This concludes the proof of (4.99).

We now use the multiplier v in (2.8) and we get the following result.

Lemma 4.15. Under the hypotheses of Proposition 4.11 with v as defined in (4.97), we have the following
estimate

T5 ≤ CCp

(
ηp
∫ T

S

Ep(t) dt+
1

ηs
Ep(S)

)
, (4.109)

where Cp is a positive number that depends on p only and η is any real number in (0, 1).

Proof. Proceeding as in the proof of Lemma 4.9 to derive (4.58), we obtain

2

∫ T

S

∫
Q2∩(0,1)

zg(z) dx dt ≤

∣∣∣∣∣
[∫ 1

0

v(ρ− ξ)dx
]T
S

∣∣∣∣∣︸ ︷︷ ︸
V1

+

∫ T

S

∫ 1

0

|vt||(ξ − ρ)| dxdt︸ ︷︷ ︸
V2

+

∫ T

S

∫ 1

0

|va(x)(ρ− ξ)| dx dt︸ ︷︷ ︸
V3

. (4.110)

After using Fenchel’s inequality (A.2) and (4.98), one gets the following estimate for V1

V1 ≤ CCpEp(S). (4.111)
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As for V2, we first apply (A.15) (corresponding to the adaptation to the case p ∈ (1, 2) of the use of Young’s
inequality in (4.61)) to get that

V2 ≤ C
Cp
ηq

∫ T

S

∫ 1

0

H(vt) + CCpη
p

∫ T

S

Ep(t)dt,

for every 0 < η < 1. To handle the first integral term in the right-hand side of the above equation, we use (4.99)
and (4.86) to get that

V2 ≤ C
Cp

ηqµ2−p Ep(S) + CCp

(
µp

ηq
+ ηp

)∫ T

S

Ep(t)dt,

for every 0 < η, µ < 1. For V3, we apply Fenchel’s inequality, (4.98) and (4.86) to get that

V3 ≤ CCp
(
σ2 +

λp

σp

)∫ T

S

Ep(t)dt+ C
Cp

λ2−pσp
Ep(S),

for every 0 < λ, σ < 1. One chooses appropriately λ, µ and σ in terms of η to easily conclude the proof of
(4.109).

4.2.4. End of the proofs of Proposition 4.11 and Theorem 4.3 in the case p ∈ (1, 2)

It is immediate to derive (4.76) by gathering (4.81), (4.88) and (4.109) with a constant Cp only depending on
p. One deduces exponential decay of Ep exactly of the type (4.70) with a constant γp > 0 only depending on p
for weak solutions verifying (4.75) for their initial conditions. Pick now any (z0, z1) ∈ Xp such that Ep(0) = 1.
One deduces that for every t ≥ 0,

Ep(t) ≤ Ep(0)e1−γpt ≤ e1−γpt, (4.112)

since Ep ≤ Ep. Set

λp :=
(p

8

) 1
p

,

and let cp be a positive constant such that

G(x) > cpF (x), if |x| > λp. (4.113)

Note that such a constant cp > 0 exists according to the second equation in (A.13) and can be taken equal to
p−1
2 .

For every t ≥ 0 and x ∈ [0, 1], let R(t, x) = max(ρ(t, x), ξ(t, x)). It holds by elementary computations that∫
R≤λp

(F (ρ) + F (ξ)) dx ≤ 1

4
,∫

R>λp

(F (ρ) + F (ξ)) dx <
2

cp

∫
R>λp

(G(ρ) +G(ξ)) dx. (4.114)
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One deduces at once that

Ep(t) <
1

4
+

2

cp
Ep(t), ∀t ≥ 0. (4.115)

Set

tp :=

(
1 + ln( 8

cp
)
)

γp
.

Then, using (4.112), it follows that Ep(t) ≤ 1
2 if t ≥ tp. Since t 7→ (Ep(t))

1
p is a norm on Xp, it implies that

‖Sp(tp)‖Xp = sup
Ep(0)≤1

Ep(t)
1
p ≤

(
1

2

) 1
p

< 1,

i.e., that the C0-semi-group (Sp(t))t≥0 is exponentially stable for p ∈ (1, 2).

Remark 4.16. From the argument, it is not difficult to see that γp is bounded above and cp must tend to zero
as p tends to one. That yields that our estimate for tp tends to infinity as p tends to one. Hence it is not obvious
how to use our line of proof to get exponential stability for p = 1.

5. Case of a global constant damping

Suppose now that we are dealing with a global constant damping, in other words ω = (0, 1) and

a(x) ≡ 2α, ∀ x ∈ (0, 1), (5.1)

where α is a positive constant. We then prove the following proposition.

Proposition 5.1. For p = 1 or p = ∞, the semi-group (S(t))t≥0 is exponentially stable for a global constant
damping if α ∈ (0, 2).

Proof. For every p ∈ (1,∞), we perform a change of unknown function, namely

z(t, x) = e−αtv(t, x), x ∈ (0, 1), t ≥ 0,

where z is any solution of (1.1) starting at (z0, z1) ∈ Xp. Clearly v is a solution of vtt − vxx = α2v in R+ × (0, 1),
v(t, 0) = v(t, 1) = 0 t ≥ 0,
v(0, ·) = z0 , vt(0, ·) = z1 + αz0.

(5.2)

We use Ep and Vp to denote the pth-energies associated with z and v respectively. Since zx = e−αtvx and
zt = e−αt(vt − αv), we get, after using Lemma A.9 and the following inequality (cf. [1], Lem. 2.2)

|a+ b|p ≤ 2p−1(|a|p + |b|p), ∀(a, b) ∈ R2, (5.3)

that, for every t ≥ 0,

Ep(t) ≤ e−αpt
(

2p−1Vp(t) + 2pαp
∫ 1

0

|v(x)|p dx

)
≤ e−αpt

(
2p−1 +

αp

p2

)
Vp(t). (5.4)
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On the other hand, for strong solutions of (5.2), one has after applying Corollary 2.3 to v that, for every t ≥ 0,

V ′p(t) = α2

∫ 1

0

v
(
bρep−1 − bξep−1

)
dx,

which yields, by using Young’s inequality, that

V ′p(t) ≤ α2

(
2
ηp

p

∫ 1

0

|v|pdx+
p

qηq
Vp(t)

)
, (5.5)

for every η > 0. Using again Lemma A.9 and the fact that vx = 1
2 (ρ + ξ) together with (5.3), we obtain that,

for every t ≥ 0,

V ′p(t) ≤ α2

(
ηpKp +

p

qηq

)
Vp(t),

where we have set Kp := 1
p2p . The minimum with respect to η of ηpKp + p

qηq is equal to pK
1
p
p , and one gets by

using Gronwall’s lemma that

Vp(t) ≤ Vp(0)eα
2pK

1
p
p t. (5.6)

Combining (5.4) and (5.6), one gets that, for every t ≥ 0,

Ep(t)
1
p ≤ (2 + α)2eMα tEp(0)

1
p ,

where

Mα := −α+ α2K
1
p
p = −α

(
1− α

2p
1
p

)
.

One concludes easily by letting p tend either to one or ∞ and using an obvious density argument.

Appendix A.

We next provide two classical inequalities.

Lemma A.1 ([10]). (Young’s inequality)
Let p > 1 and q = p

p−1 its conjugate exponent. Then, for every A,B ∈ R and η > 0, Young’s inequality reads

|AB| ≤ ηp |A|
p

p
+
|B|q

qηq
. (A.1)

Lemma A.2 ([10]). (Fenchel’s inequality)
Let a, b be two real numbers, and f any function then it holds that

|a b| ≤ f(|a|) + f∗(|b|), (A.2)
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where f∗ is the convex conjugate of f defined by the Legendre transform as follows

f∗(b) = supx∈R{b.x− f(x)}, b ∈ R. (A.3)

Moreover, if f is of class C2, the derivative of f∗ is given by

[f∗]
′
(y) = [f ′]

−1
(y), y ∈ R. (A.4)

Note that Young’ inequality is a particular instance of Fenchel’s inequality, corresponding to the function

f(a) = |a|p
p for p > 1.

The next lemma states a technical result used several times in the paper.

Lemma A.3. For p > 1, there exists a positive constant Cp such that, for every real numbers a, b and µ ∈ (0, 1)
subject to |a− b| ≥ max(|a|, |b|)µ, one has

|a− b|p ≤ Cp
µ2−p (a− b) (f(a)− f(b)) . (A.5)

Proof. With no loss of generality, we can assume that max(|a|, |b|) = |a| = R > |b| and have same sign. Indeed,
if ab ≤ 0, then |a− b|p ≤ 2pRp and (a− b)(f(a)− f(b)) ≥ Rp, hence (A.5) is satisfied with Cp ≥ 2p). Set then
h = 1− b

a and h ∈ (0, 1). Proving (A.5) amounts to show that there exists Cp such that for every h, µ ∈ (0, 1)
with h ≥ µ, it holds

hp−1 ≤ Cp
µ2−p

∣∣1− (1− h)p−1
∣∣ . (A.6)

Clearly the inequality holds for h “far away” from zero for any Cp large enough (w.r.t. one) and hence it is

enough to establish it for h close to zero. By linearizing (1− h)p−1, one must find Cp so that hp−2 ≤ Cp
µ2−p which

indeed holds true.

We can now state a lemma which is basic for our subsequent work.

Lemma A.4. Let p ∈ (1, 2). Then, the function g,G and H defined in (4.71), (4.72) and (4.78) satisfy the
following relations:

(i) for every x ∈ R, one has

xg(x) = G(x) +H(g(x)). (A.7)

(ii) for every x ∈ R, it holds that

1

2
x g(x) ≤ G(x) ≤ x g(x). (A.8)

(iii) There exists a positive constant Cp only depending on p such that, for every x ∈ R, one has

Cp xg(x) ≤ H(g(x)) ≤ Cpxg(x). (A.9)

CpG(x) ≤ H(g(x)) ≤ CpG(x). (A.10)
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Proof. Thanks to the parity properties of g and G, it is enough to establish the several relations only for x ≥ 0.
Item (i) is already proved in (4.80). As for Item (ii), the right inequality (A.8) is immediate since g is

increasing. On the other hand, since p < 2, we have for all 0 ≤ s ≤ x that

g′(x) = (p− 1)(x+ 1)p−2 ≤ (p− 1)(s+ 1)p−2. (A.11)

Integrating between 0 and x, it follows that xg′(x) ≤ g(x), and then (xg)′(x) ≤ 2g(x), which yields the left
inequality (A.8) after an integration between 0 and x. As for the proof of Item (iii), it is clear that (A.10)
follows from combining (A.8) and (A.9) and moreover, the right inequality in (A.9) is an immediate consequence
of (A.7) since g(x) ≥ 0 for x ≥ 0. The proof for the left inequality in (A.9) is divided in two cases and can be
deduced at once from the following estimates.

(a) For every M > 0 and real x so that |x| ≤M , it holds

(p− 1)(M + 1)p−2
x2

2
≤ H(g(x)) ≤ (p− 1)

x2

2
.

(p− 1)(M + 1)p−2x2 ≤ x g(x) ≤ (p− 1)x2.

(p− 1)(M + 1)p−2
x2

2
≤ G(x) ≤ (p− 1)

x2

2
; (A.12)

(b) for every M > 0 such that
(
1 + 1

M

)p
< p, there exists a positive constant Cp only depending on p and M

so that, for every real x verifying |x| > M , one has((
1 +

1

M

)p−1
−
(

1

M

)p−1)
|x|p ≤ x g(x) ≤ |x|p,

1

2

((
1 +

1

M

)p−1
−
(

1

M

)p−1)
|x|p ≤ G(x) ≤ |x|p,

(
1− 1

p

(
1 +

1

M

)p)
|x|p ≤ H(g(x)) ≤

(
1 +

1

M

)p−1
|x|p. (A.13)

Remark A.5. Note that the condition
(
1 + 1

M

)p
< p is only needed to get the third inequality of (A.13) only.

Hence, the lower and upper bounds of xg(x) and G in (A.13) are valid for all M > 0.

In turn, the set of inequalities in Item (a) simply follows from the inequality

(M + 1)p−2 ≤ (s+ 1)p−2 ≤ 1, 0 ≤ s ≤ x ≤M,

and, after integrating between 0 and x, by the use of the equations (4.71), (4.72) and (4.79).
As for the set of inequalities in Item (b), one first uses the explicit expressions of xg(x) and G(x) given in

(4.71), (4.72) to deduce that, for every x ≥ 0,

x g(x) = xp

[(
1 +

1

x

)p−1
−
(

1

x

)p−1]
,

G(x) = xp

(
1

p

[(
1 +

1

x

)p
−
(

1

x

)p]
−
(

1

x

)p−1)
.
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Since p < 2, the function s 7→ (1 + s)p−1− sp−1 is decreasing on [0, 1
M ] and then one gets the required bounds for

xg(x) in (A.13). The upper and the lower bounds for g(x) in (A.13) are immediate and follow from combining
the upper and the lower bounds of (A.8) and the result above. Then the bounds for H(g(x)) in (A.13) are
simply obtained by combining the previous estimates with the relation H(g(x)) = xg(x)−G(x). �

The next lemma is a particular instance of Fenchel’s inequality which is used repeatedly in the paper.

Lemma A.6. For p ∈ (1, 2), there exist positive constants Cp such that, for every a, x ∈ R, it holds that

|a x| ≤ Cp
ηp
G(a) + Cp η

2H(x), (A.14)

|a x| ≤ CpηpG(a) +
Cp
ηq
H(x), (A.15)

and

|a g(x)| ≤ Cp
ηp
G(a) + Cp η

2g(x). (A.16)

Proof. Before proving the required inequalities, let us notice that one deduces from (A.12) and (A.13) that there
exists constants Cp only depending on p ∈ (1, 2) such that

if |x| ≤ Cp, then Cpx
2 ≤ H(x) ≤ Cpx2, (A.17)

if |x| > Cp, then Cpx
q ≤ H(x) ≤ Cpxq. (A.18)

Since g is convex, we apply Fenchel’s inequality given in (A.2) with a
η and ηw with w ∈ {x, g(x)} to obtain

|a x| ≤ G
(
a

η

)
+H(ηx). (A.19)

Since both H and G are even functions, we assume with no loss of generality that both a and x are non negative.
Using the estimates for G and H given in (A.12), (A.13) and (A.17) and (A.18) respectively, we deduce that

there exists a positive constant Cp only depending on p ∈ (1, 2) so that for every a ≥ 0 and η ∈ (0, 1),

G

(
a

η

)
≤ Cp max

(
1

η2
,

1

ηp

)
G(a) ≤ Cp

ηp
g(a),

H(ηx) ≤ Cp max(η2, ηq)H(x) ≤ Cpη2H(x), (A.20)

and one immediately gets (A.14) from (A.19) and (A.20). On the other hand, (A.16) follows from (A.14) and
(A.20) after setting setting x = g(y) and using (A.10).

Similarly, to get (A.15), we start from

|a x| ≤ G(ηa) +H

(
x

η

)
, (A.21)

and we proceed as above to get the conclusion.

As a corollary of the previous lemma, we have the following Poincaré-type of result.
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Corollary A.7. Let p ∈ (1, 2). Then there exists a positive constant Cp such that, for every absolutely continuous
function z : [0, 1]→ R so that z(0) = 0, one has

∫ 1

0

G(z(s))ds ≤ Cp
∫ 1

0

G(z′(s))ds. (A.22)

Proof. With no loss of generality, we can assume that the right-hand side of (A.22) is finite. One has for every
x ∈ [0, 1]

G(z(x)) =

∫ x

0

z′(s)g(z(s))ds. (A.23)

By applying (A.16), one gets that for every x ∈ [0, 1]

G(z(x)) ≤ Cp
ηp

∫ 1

0

g(z′(s))ds+ Cp η

∫ 1

0

g(z(s))ds, (A.24)

for every η > 0 and positive constants Cp only depending on p. By integrating between 0 and 1 and then
choosing appropriately η one concludes.

The following lemma is a useful extension of Lemma A.3 with f, F replaced by g, g.

Lemma A.8. For p > 1, there exists a positive constant Cp such that, for every real numbers a, b and µ ∈ (0, 1)
subject to |a− b| ≥ max(|a|, |b|)µ, one has

G(a− b) ≤ Cp
µ2−p (a− b) (g(a)− g(b)) (A.25)

Proof. Thanks to (A.8), it i s enough to prove the existence of Cp > 0 so that

|g(a− b)| ≤ Cp
µ2−p |g(a)− g(b)|, (A.26)

for every a ≥ b, µ ∈ (0, 1) such that |a− b| ≥ µR where R = max(|a|, |b|). Assume first that ab ≤ 0. Then the
left-hand side of (A.26) is smaller than g(2R) while |g(a) − g(b)| ≥ g(R). Clearly g(2R) ≤ 2g(R) since g is
concave and hence (A.26) holds true in that case for any Cp ≥ 2.

We next assume that a ≥ b ≥ 0 and we consider c = a− b instead of b. The assumption on a, b reads c ≥ µa.
Equation (A.26) becomes

g(c) ≤ Cp
µ2−p (g(a)− g(a− c)) . (A.27)

Note that the right-hand side of the above equation defines a decreasing function of a, once the other parameters
are fixed. It is therefore enough to consider the case a = c

µ . By replacing c by c
µ in the explicit expression of g,

we are led to prove the existence of Cp > 0 so that

(µc+ 1)p−1 − 1 ≤ Cp
µ2−p

[
(c+ 1)p−1 − ((1− µ)c+ 1)

p−1
]
, (A.28)
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for every c > 0 and µ ∈ (0, 1). By applying the mean value theorem to both sides of the above equation and
reordering the terms, (A.28) reads (

µ+ µη2
η1 + 1

)2−p

≤ Cp, (A.29)

for some η1 ∈ (0, µc) and η2 ∈ ((1 − µ)c, c) both depending on c > 0 and µ. Assume first that µc ≤ 1. Then
clearly (A.28) holds true for any Cp ≥ 22−p according to (A.29). If now µc > 1, then c > 1 and since the
left-hand side of (A.28) is smaller than (µc)p−1, we are left to find Cp > 0 such that(

µ+ µη2
µc

)2−p

≤ Cp. (A.30)

The left-hand side of the above equation is again smaller than 22−p and one concludes.

Lemma A.9. Let p ∈ (1,∞). Then, for every v ∈W 1,p
0 (0, 1), it holds the following Poincaré inequality∫ 1

0

|v(x)|p dx ≤ 1

p2p

∫ 1

0

|v′(x)|p dx. (A.31)

Proof. For x ∈ [0, 12 ], we have after using Hölder inequality,

|v(x)|p =

(∣∣∣∣∫ x

0

v′(s) ds

∣∣∣∣)p ≤ x pq ∫ 1
2

0

|v′(x)|p dx. (A.32)

After integrating the previous between 0 and 1
2 , one gets

∫ 1
2

0

|v(x)|p dx ≤ 1

p2p

∫ 1
2

0

|v′(x)|p dx. (A.33)

For x ∈ [ 12 , 1], we start from |v(x)| =
∣∣∫ x

1
v′(s) ds

∣∣ and get∫ 1

1
2

|v(x)|p dx ≤ 1

p2p

∫ 1

1
2

|v′(x)|p dx, (A.34)

and finally (A.31) by adding (A.33) and (A.34).
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