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Abstract— We present a decomposition method based on the 

Auxiliary Problem Principle to design optimal maintenance 

scheduling policies for systems of physical components 

(turbines, generators, transformers) sharing a common stock of 

spare parts. The method outperforms a reference blackbox 

method on a system with 80 components. 

Résumé— Nous présentons une méthode de décomposition 

basée sur le Principe du Problème Auxiliaire afin de déterminer 

des politiques de maintenance optimales pour des systèmes de 

composants physiques (turbines, alternateurs, transformateurs) 

partageant un stock commun de pièces de rechange. Cette 

méthode obtient de meilleures performances que la méthode 

boîte noire de référence sur un système de 80 composants. 

Keywords— maintenance scheduling, stochastic optimization, 

decomposition-coordination 

I. INTRODUCTION 

In industry, maintenance aims at improving the 
availability of physical assets and therefore impacts the 
overall performance of a system. There exists two main kind 
of maintenance: corrective and preventive. Corrective 
maintenance (CM) is performed in reaction to a breakdown. 
Preventive maintenance (PM) consists in repairing or 
replacing a component before a failure. Maintenance policies 
have an important economic impact and are therefore studied 
in various areas such as the electricity sector [1], the 
manufacturing industry [2] or civil engineering [3]. In the 
electricity sector, maintenance optimization plays a major role 
in ensuring a reliable and competitive electricity production.  

In this work, we consider components of hydroelectric 
power plants such as turbines, transformers or generators. We 
study a system of a given type of components that share a 
common stock of spare parts. The time horizon is 40 years. 
Over time, components experience random failures that occur 

according to known failure distributions. Thus, the dynamics 
of the system is stochastic. A preventive strategy consists in 
choosing the dates of replacement for each component of the 
system. The goal is to find a preventive strategy that 
minimizes an expected cost depending on maintenance and on 
the occurrences of forced outages of the system. Operational 
constraints impose to only look for deterministic maintenance 
strategies. This means that the dates of PM are chosen at the 
beginning of the time horizon with only a statistical 
knowledge of the future dates of failure. This differs from 
condition-based maintenance [4] where maintenance 
decisions are taken given the online observation of the 
degradation state of the components, making the strategy 
stochastic. The numerical experiments should involve systems 
constituted of up to 80 components in order to model the most 
demanding industrial case at EDF. This leads to optimization 
problems in high dimension that are numerically challenging.  

Many studies consider time-based [5], [6] or age-based 
[7], [8] maintenance policies. Such strategies are only defined 
with one decision variable per component: either the 
periodicity of maintenance (time-based) or the age at which a 
component is replaced (age-based). In this paper, more 
general strategies are considered as we can decide whether or 
not to perform a PM at each time step for each component. 
Suppose that there are 𝑇 time steps and 𝑛 components, then 
our maintenance strategy is defined by 𝑛𝑇 decision variables 
instead of 𝑛 variables for time-based or age-based strategies. 
The effort is justified as we consider a system on a long-term 
horizon where the cost incurred by forced outages are of the 
order of millions of euros. Then, even a minor improvement 
in the maintenance strategy generates important savings.  

As highlighted in [1], a frontal resolution is impracticable 
for high-dimensional problems and decomposition methods 
are relevant. Previous works use a linear relaxation to apply 
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decomposition techniques such as Benders [9] or Dantzig-
Wolfe decomposition [10]. Our problem is a non-linear mixed 
integer program. The originality of our work lies in the use of 
a continuous relaxation of the system on which we apply a 
decomposition-coordination method based on variational 
techniques [11]. To our knowledge such a decomposition 
scheme has not been applied for optimal maintenance 
scheduling. 

Originated from the work of [12]–[15], decomposition-
coordination methods consist in splitting the original large-
scale optimization problem into several independent 
subproblems of smaller size that can be solved efficiently. The 
subproblems are coordinated to ensure that the concatenation 
of solutions leads to an optimal solution of the original 
problem. Different types of decomposition-coordination 
schemes have been designed, by prices, by quantities or by 
prediction. They have been unified within the Auxiliary 
Problem Principle [16]. 

In our setting, each subproblem consists in optimizing the 
maintenance on a single component. The decomposition 
algorithm iteratively solves the subproblems with the 
blackbox algorithm MADS [17] and coordinates the solutions 
of these subproblems in order to reach a global optimum. We 
apply the decomposition method on relaxed systems with up 
to 80 components. The most demanding case takes around 20 
hours of computation time. We show that in high dimension 
the decomposition method outperforms the blackbox 
algorithm applied directly on the original problem. 

The paper is organized as follows: in Section II, we 
describe the industrial system and formulate the maintenance 
optimization problem. A decomposition method based on the 
Auxiliary Problem Principle is applied in Section III. Section 
IV contains numerical results showing the efficiency of the 
method in high dimension. Finally, in Section V, we conclude 
and give directions for future research. 

II. SYSTEM MODELING AND MAINTENANCE OPTIMIZATION 

PROBLEM 

We start by describing the model of the studied industrial 
system and formulate the maintenance optimization problem. 
In the sequel, the notation 〈 ⋅ , ⋅ 〉 represents the inner product 
in a Hilbert space and ‖ ⋅ ‖ is the induced norm. For any 
vector 𝑣 = (𝑣1, … , 𝑣𝑛), we denote the first 𝑘 components of 𝑣 
by: 

𝑣1:𝑘 = (𝑣1, … , 𝑣𝑘) .  

Random variables are always denoted by capital bold letters. 

A. Description of the system 

We consider a system of 𝑛 ∈ ℕ⋆ physical components of 
a given type (generators, turbines or transformers) from a 
hydropower plant sharing a common stock of spare parts. A 
sketch of the system with 𝑛 = 2 components is represented in 
Fig. 1. A corrective maintenance (CM) consists in the 
replacement of a component after a failure. A preventive 
maintenance (PM) is a planned replacement of a component 
before a failure. 

We study this system on a horizon 𝑇 ∈ ℕ⋆. In the sequel, 
𝑖 ∈ 𝕀 =  {1, … , 𝑛}  denotes a component index, 𝑡 ∈  𝕋 =
 {0, … , 𝑇} denotes a time step. 

 

1) Characterization of the stock and the components 
The safety stock over time is characterized by the 

sequence 𝑆 = (𝑆0, … , 𝑆𝑇) ∈ 𝒮 ≔ ⟦0, 𝑠⟧𝑇+1,  where  𝑆𝑡  is the 
number of available spare parts at time 𝑡  and 𝑠 ∈ ℕ  is the 
maximum number of spare parts. The initial stock is set 
to 𝑆0 = 𝑠. The replenishment delay for the parts, that is, the 
time from order to delivery of a part, is known and denoted 
by 𝐷 ∈ ℕ. 

At time 𝑡, component 𝑖 is described by the vector 𝑋𝑖,𝑡 ∈
ℝ𝑝 which contains the following information: 

• The regime of the component. A component has only 
two regimes: in the healthy regime, it runs in its 
nominal operating point. In the broken regime, it stops 
working completely. Initially all components are 
healthy. 

• The age of the component (if healthy) or the time for 
which it has failed (if broken). Initially the components 
are new. 

• The time elapsed since the last 𝐷  failures of the 
component, where we recall that 𝐷 is the number of 
time steps for the supply of spare parts. This 
information is useful to compute the dates of 
replenishment of the stock. 

The state of the system is then described at 𝑡 by the vector 
(𝑋1,𝑡 , … , 𝑋𝑛,𝑡 , 𝑆𝑡). Finally, to describe the components over 

the whole study period, we introduce 

𝑋 = (𝑋1, … , 𝑋𝑛) = ((𝑋1,0, … , 𝑋1,𝑇), … , (𝑋𝑛,0, … , 𝑋𝑛,𝑇)) . 

For 𝑖 ∈ 𝕀, we introduce the space 𝒳𝑖 = (ℝ𝑝)𝑇+1 so that 𝑋𝑖 ∈
𝒳𝑖  and 𝑋 ∈ 𝒳 = ∏ 𝒳𝑖

𝑛
𝑖=1 . In order to emphasize that 𝑋 

depends on all the components of the system, we sometimes 
use the notation 𝑋1:𝑛 instead of 𝑋. 

2) Preventive maintenance (PM) strategy 
A PM consists in repairing a component although it is in 

the healthy regime. The dates of PM can be different for each 
component. They define the preventive maintenance strategy 
of the system. Operational constraints impose to look for 
deterministic strategies. This means that the dates of PM are 
chosen without any knowledge on the state of the system after 
the beginning of the time horizon and cannot be changed 
during the study. The maintenance strategy is defined by a 
vector 

𝑢 = (𝑢1, … , 𝑢𝑛) = ((𝑢1,0, … , 𝑢1,𝑇), … , (𝑢𝑛,0, … , 𝑢𝑛,𝑇)) , 

where for all (𝑖, 𝑡) ∈ 𝕀 × 𝕋, 𝑢𝑖,𝑡 ∈ [0,1] characterizes the PM 

for component 𝑖  at time 𝑡 . We introduce 𝕌𝑖 = [0,1]𝑇+1  so 
that 𝑢𝑖 ∈ 𝕌𝑖  and 𝑢 ∈ 𝕌 = ∏ 𝕌𝑖

𝑛
𝑖=1 . A value 𝑢𝑖,𝑡 = 1  means 

that a PM of component 𝑖 is performed at 𝑡 whereas 𝑢𝑖,𝑡 = 0 

means that no PM is performed. As we aim at applying a 
decomposition method which is based on variational 
techniques, we consider a continuous relaxation of the system. 
This is why 𝑢𝑖,𝑡 is allowed to take values in the whole interval 

Fig. 1: System of two components sharing the same stock of spare parts 
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[0,1] and not just in the set {0,1}. Let us give a meaning for 
the values 𝑢𝑖,𝑡 ∈ [0,1] . We set a threshold  0 < 𝜈 < 1 : a 

control 𝑢𝑖,𝑡 ≥ 𝜈  corresponds to a rejuvenation of the 

component proportional to 𝑢𝑖,𝑡  and a value 𝑢𝑖,𝑡 < 𝜈 

corresponds to not performing a PM. The threshold 𝜈  is 
introduced for technical reasons linked to the behavior of the 
optimization. We consider that the maintenance operation is 
instantaneous and that it does not use parts from the stock. The 
reason is that PM are planned in advance, hence it is possible 
to order the parts so that they arrive just on time for the 
maintenance operation. The modeled stock corresponds only 
to the safety stock. As PM do not interact with the stock, there 
is no green border on the stock on Fig. 1. 

3) Failures of the components 
In our study, the failure distribution of component 𝑖 is a 

known Weibull distribution of parameters (𝛽𝑖 , 𝜆𝑖) denoted by 
Weib(𝛽𝑖 , 𝜆𝑖), for which the cumulative distribution function 
𝐹𝑖 is given by: 

𝐹𝑖(𝑥) = 1 − 𝑒
−(

𝑥
𝜆𝑖

)
𝛽𝑖

  

The probability of failure of a component at a given time 
step only depends on its age and its failure distribution. More 
precisely, assume that component 𝑖 has age 𝑎 ≥ 0 at time 𝑡. 
Then, the probability of failure of component 𝑖  at 𝑡 + Δ𝑡 
conditionally to the component being healthy at 𝑡 is given by 

𝑝𝑖(𝑎) =
𝐹𝑖(𝑎 + Δ𝑡) − 𝐹𝑖(𝑎)

1 − 𝐹𝑖(𝑎)
  . 

In order to model the random failures of the components, we 
introduce the random process 

𝑾 = {𝑾𝑖,𝑡}
(𝑖,𝑡)∈𝕀×𝕋

 

defined on a probability space (Ω, ℱ, ℙ). We assume that all 
𝑾𝑖,𝑡 are independent random variables and follow a uniform 

distribution on [0,1]. Suppose that component 𝑖 has age 𝑎 at 
time 𝑡 . If 𝑾𝑖,𝑡+1 < 𝑝𝑖(𝑎) , then component 𝑖  fails at 𝑡 + 1, 

otherwise no failure occurs. 

B. Dynamics of the system 

The dynamics of the system is stochastic because it 
depends on random failures of the components. Hence, the 
variables that describe the components and the stock are 
random variables and are represented using the bold 
characters 𝑿 and 𝑺 in the sequel. 

1) Dynamics of a component 

The dynamics of a component between 𝑡  and 𝑡 + 1  is 
described by Fig. 2.  

• Suppose that component 𝑖  is healthy with age 𝑎 . If 
𝑢𝑖,𝑡 ≥ 𝜈, then a PM is performed and the component is 

rejuvenated proportionally to 𝑢𝑖,𝑡 , its age becomes 

(1 − 𝑢𝑖,𝑡)(𝑎 + 1). Note that in the case where 𝑢𝑖,𝑡 =
1, a PM makes the component as good as new. If 𝑢𝑖,𝑡 <
𝜈, then no PM is performed and the component fails 
with probability 𝑝𝑖(𝑎). 

• If component 𝑖 is broken, it is replaced as soon as there 
is an available spare part in the stock.  

We write the dynamics of component 𝑖  over the whole 
time horizon as: 

Θ𝑖(𝑿𝑖 , 𝑺, 𝑢𝑖, 𝑾𝑖) = 0 ∈ ℒ𝑖 , 

where ℒ𝑖 = (ℝ𝑝)𝑇+1 and Θ𝑖 = {Θ𝑖,𝑡}
𝑡∈𝕋

 such that: 

{
Θ𝑖,0(𝑿𝑖 , 𝑺, 𝑢𝑖 , 𝑾𝑖) = 𝑿𝑖,0 − 𝑥𝑖

Θ𝑖,𝑡+1(𝑿𝑖 , 𝑺, 𝑢𝑖 , 𝑾𝑖) = 𝑿𝑖,𝑡+1 − 𝑓(𝑿𝑖,𝑡 , 𝑺𝑡 , 𝑢𝑖,𝑡 , 𝑾𝑖,𝑡+1),
 

where 𝑥𝑖 ∈ ℝ𝑝 is the initial state of component 𝑖, assumed to 
be new, and 𝑓 represents the dynamics described by Fig. 2. 

 

 

2) Dynamics of the stock 
For the safety stock, the initial number of spare parts 

is 𝑆0 = 𝑠. As a PM can be anticipated, we consider that the 
needed spares are ordered so that they arrive just on time for 
the scheduled maintenance. A part is used for each CM and a 
new part is ordered only after the failure of a component. This 
is a (𝑠 − 1; 𝑠) stock point inventory policy, used for long lead 
time, expensive and rarely used spare parts. The number of 
time steps for the supply of a part is 𝐷 . If there are more 
broken components than parts in the stock, we replace as many 
components as possible. The other components stay in a 
broken state until new parts arrive in the stock. We write the 
dynamics of the stock as: 

Θ𝑆(𝑿1:𝑛, 𝑺) = 0 ∈ ℒ𝑆, 

where ℒ𝑆 = ℝ𝑇+1 and Θ𝑆 = {Θ𝑆,𝑡}
𝑡∈𝕋

 such that: 

{
Θ𝑆,0(𝑿1:𝑛 , 𝑺) = 𝑺0 − 𝑠

Θ𝑆,𝑡+1(𝑿1:𝑛 , 𝑺) = 𝑺𝑡+1 − 𝑓𝑆(𝑿1:𝑛,𝑡 , 𝑺𝑡),
 

where 𝑓𝑆  represents the dynamics of the stock that has just 
been described in this part. Note that 𝑺𝑡+1  depends on the 
current level of stock 𝑺𝑡  but also on 𝑿𝑖,𝑡  for all 𝑖 ∈ 𝕀 as the 

future stock depends on the state of all the components of the 
system. We say that the stock is coupling all the components. 

Finally, the dynamics of the whole system is summarized 
by the equality constraint 

Θ(𝑿, 𝑺, 𝑢, 𝑾) = 0 ∈ (∏ ℒ𝑖

𝑛

𝑖=1

) × ℒ𝑆 , 

with Θ = {{Θ𝑖}𝑖∈𝕀, Θ𝑆}. We have now completely described 
the dynamics of the system. In the next section, we specify the 
costs associated to the system. 

C. Costs generated by the system 

The costs generated by the system are due to PM, CM and 
forced outages of the unit. In practice as PM are scheduled in 
advance, they are cheaper than unpredictable CM. A forced 
outage of the unit induces a loss of production. It is 

Fig. 2: Dynamics of a component 
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characterized by a daily cost which is higher than that of a PM 
or a CM. We consider a discount rate 𝜏 meaning that a cost 𝑐 
occurring at time 𝑡 will be valued 𝜂𝑡𝑐 with the discount factor 

𝜂𝑡 =
1

(1+𝜏)𝑡  . We introduce the following notations: 

• 𝑗𝑖,𝑡
𝑃 (𝑢𝑖,𝑡)  is the PM cost incurred at time 𝑡  for 

component 𝑖. Let 𝐶𝑖
𝑃 be the cost of a PM operation on 

component 𝑖. The cost 𝐶𝑖
𝑃 covers the cost of the parts 

for the maintenance and the cost of engineering and 
maintenance teams labor. As the controls 𝑢𝑖,𝑡  take 

values in the interval [0,1], we must define a cost for 
these “partial” maintenance. We use a quadratic cost 
as it is strongly convex and should favor numerical 
convergence of the optimization algorithm: 

𝑗𝑖,𝑡
𝑃 (𝑢𝑖,𝑡) = 𝜂𝑡𝐶𝑖

𝑃𝑢𝑖,𝑡
2  . 

In the case where 𝑢𝑖,𝑡 = 0 and 𝑢𝑖,𝑡 = 1, we get back to 

the real incurred cost. Note that in the case where 0 <
 𝑢𝑖,𝑡  < 𝜈, which models a situation where no PM is 

performed, we have 𝑗𝑖,𝑡
𝑃 (𝑢𝑖,𝑡) > 0. 

• 𝑗𝑖,𝑡
𝐶 (𝑿𝑖,𝑡) is the CM cost. It is due at the time of the 

failure of a component, even if there is no spare part to 

perform the operation immediately. Let 𝐶𝑖
𝐶 be the cost 

of a CM operation on component 𝑖. Similarly as for 

𝐶𝑖
𝑃, the cost 𝐶𝑖

𝐶 covers the cost of the parts and the cost 
of engineering and maintenance teams labor. We have 

𝑗𝑖,𝑡
𝐶 (𝑿𝑖,𝑡) = {

𝜂𝑡𝐶𝑖
𝐶 , if component 𝑖 fails at 𝑡

0, otherwise .
 

• 𝑗𝑡
𝐹(𝑿1:𝑛,𝑡)  is the forced outage cost. The unit is in 

forced outage when at least one component is in a 
failed state and the CM has not occurred immediately 
because of a lack of spare part. Let 𝐶𝐹 be the forced 
outage cost per time unit. We have 

𝑗𝑡
𝐹(𝑿1:𝑛,𝑡) = {

𝜂𝑡𝐶𝐹,   if forced outage
0,   otherwise .

 

Remark that this cost depends on the coupled state of 
all components. 

In order to consider the costs over the whole study period 
we introduce: 

• The total maintenance cost (preventive and corrective) 
generated by component 𝑖 on the studied period: 

𝑗𝑖(𝑿𝑖 , 𝑢𝑖) = ∑ 𝑗𝑖,𝑡
𝑃 (𝑢𝑖,𝑡) + 𝑗𝑖,𝑡

𝐶 (𝑿𝑖,𝑡)

𝑇

𝑡=0

 ,  

• The total forced outage cost generated by the system 
during the studied period: 

𝑗𝐹(𝑿1:𝑛) = ∑ 𝑗𝑡
𝐹(𝑿1:𝑛,𝑡)

𝑇

𝑡=0

 

No cost on the stock is considered in our model. Note also 
that the forced outage cost per time unit 𝐶𝐹is fixed but it is 
possible to change its value across time steps. If the time step 
used for the simulation is small enough, this feature enables 
us to take into account seasonality effects or a variation of the 
electricity price. 

D. Formulation of the maintenance optimization problem 

Recall that the dynamics of the system is stochastic as it 
depends on the failures of the components, modeled by the 
random vector 𝑾. The cost function is then stochastic as well. 
The objective is to find the deterministic maintenance strategy 
𝑢 ∈ 𝕌  that minimizes an expected cost over all failure 
scenarios: 

 
min

(𝑿,𝑺,𝑢)∈𝒳×𝒮×𝕌
𝔼 (∑ 𝑗𝑖(𝑿𝑖 , 𝑢𝑖) + 𝑗𝐹(𝑿1:𝑛)

𝑛

𝑖=1

)

 s.t.    Θ(𝑿, 𝑺, 𝑢, 𝑾) = 0

  (1) 

The total maintenance cost is additive with respect to the 
components meaning that: 

𝔼 (∑ 𝑗𝑖(𝑿𝑖 , 𝑢𝑖)

𝑛

𝑖=1

) = ∑ 𝔼(𝑗𝑖(𝑿𝑖 , 𝑢𝑖))

𝑛

𝑖=1

 , 

whereas the forced outage cost induces a non-additive 
coupling between the components. We will see that these two 
terms are treated in a different way for the design of a 
decomposition-coordination algorithm. 

E. Optimization with Mesh Adaptive Direct Search (MADS) 

and its limits 

This work is motivated by a real industrial case of 
maintenance of components of hydroelectric power plants. 
Problem (1) models a simplified version of the real problem. 
The number of components 𝑛 in the system can be up to 80 
and 𝑇 is 40 years so 𝕌 has dimension up to 3280 as we have 
one maintenance decision each year for each component 
(starting at year 0).  

When the number of components is not too large, say 𝑛 <
10 , the maintenance problem (1) is solved efficiently by 
MADS [17]. MADS is an iterative blackbox optimization 
algorithm that evaluates the objective function at some points 
lying on a spatial discretization of the admissible space called 
the mesh. The mesh and the evaluation points are updated at 
each iteration so as to guarantee the convergence of the 
algorithm to a critical point. MADS has been designed for 
continuous optimization and uses the modeling of Section II. 
In particular, the PM strategies are modeled with a continuous 
decision variable. The real PM strategy is then obtained by 
projecting the output of the algorithm on {0,1}. 

MADS is a blackbox algorithm. This means that 
evaluation points are chosen iteratively without the need for 
the gradients of the objective function. This feature is 
particularly appealing as the cost function is not differentiable. 

In practice, the objective function is costly to evaluate as 
the expectation is estimated using Monte-Carlo simulations. 
When the number of components is large (𝑛 ≥ 10), MADS 
needs more iterations to explore the high-dimensional space 
of solutions and the objective function takes more time to 
evaluate. The algorithm may not be able to find a very 
effective maintenance strategy. To overcome the difficulty of 
MADS when dealing with large systems, we use a 
decomposition of the original optimization problem 
component by component. 

III. A DECOMPOSITION BY COMPONENT BASED ON THE 

AUXILIARY PROBLEM PRINCIPLE 

In this section, we present a decomposition-coordination 
scheme for the optimal maintenance scheduling problem (1). 
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This scheme is based on the Auxiliary Problem Principle 
(APP). The APP has first been introduced in [16] as a unified 
framework for decomposition methods but also for other 
classical iterative algorithms. This principle casts the 
resolution of an optimization problem into the resolution of a 
sequence of auxiliary problems whose solutions converge to 
the solution of the original problem. The auxiliary problems 
are constructed to be decomposable. Thus, the resolution of 
each auxiliary problem of large dimension boils down to the 
resolution of independent subproblems of smaller size. 
Theoretical guarantees on the convergence of the method can 
be found in [18]. 

The main advantage of decomposition methods is that the 
resolution of the small subproblems is much faster than the 
resolution of the original problem. Decomposition methods 
are also naturally adapted to parallelization as each 
subproblem is independent. 

The construction of the auxiliary problems and the APP 
fixed point algorithm is presented in the general case in [11]. 
In the subsequent sections, we apply this framework for the 
optimal maintenance scheduling problem (1). 

A. Construction of an auxiliary problem 

The construction of a decomposable auxiliary problem 
relies on a decomposition of the admissible space 𝒳 × 𝒮 × 𝕌 
and on a decomposition of the constraint space ℒ. Considering 
the physical nature of the industrial system composed of 𝑛 
components and a stock, we aim at decomposing the problem 
in 𝑛 + 1 subproblems, one for each component and one for 
the stock. Hence, we decompose the admissible space and the 
constraint space as follows: 

{
𝒳 × 𝒮 × 𝕌 = (𝒳1 × 𝕌1) × … × (𝒳𝑛 × 𝕌𝑛) × 𝒮

ℒ = ℒ1 × … × ℒ𝑛 × ℒ𝑆
 

This decomposition is called decomposition by component. 
The subproblem on 𝒳𝑖 × 𝕌𝑖  is called subproblem on 
component 𝑖 and the subproblem on 𝒮  is called subproblem 
on the stock. 

However, problem (1) is not directly decomposable by 
component because of couplings that we recall now: 

• The maintenance cost 𝑗𝑀 = ∑ 𝑗𝑖
𝑛
𝑖=1  is additive with 

respect to the decomposition by component. 

• The forced outage cost 𝑗𝐹  induces a non-additive 
coupling between the components. 

• The dynamics Θ𝑖  of component 𝑖 induces a coupling 
with the stock. The dynamics Θ𝑆  of the stock is 
coupling the stock with all components. 

To construct a decomposable auxiliary problem, we need 
to introduce an additive auxiliary function 𝐾  and an block 
diagonal auxiliary dynamics Φ, see [11] for more details. Let 

�̅� ∈ 𝒳  and  �̅� ∈ 𝒮 , we introduce the auxiliary function 
𝐾(𝑿) =  ∑ 𝐾𝑖(𝑿𝑖)𝑛

𝑖=1  with: 

𝐾𝑖(𝑿𝑖) = 𝑗𝐹(�̅�1:𝑖−1, 𝑿𝑖 , �̅�𝑖+1:𝑛) . 

The auxiliary dynamics is defined as Φ(𝑿, 𝑺, 𝑢, 𝑾) =
((Φ𝑖(𝑿𝑖 , 𝑢𝑖, 𝑾𝑖))𝑖∈𝕀, Φ𝑆(𝑺)) with: 

 
1 Formally, �̅� is an element of the dual cone of the cone of constraints {0}ℒ ⊂
ℒ where {0}ℒ denotes the cone which only contains the element 0 ∈ ℒ. The 

{
Φ𝑖(𝑿𝑖 , 𝑢𝑖, 𝑾𝑖) = Θ𝑖(𝑿𝑖 , �̅�, 𝑢𝑖 , 𝑾𝑖), 𝑖 ∈ 𝕀

Φ𝑆(𝑺) = Θ𝑆(�̅�1:𝑛, 𝑺) ,
 

Note that 𝐾 and Φ are designed so that 𝐾𝑖 and Φ𝑖 (resp. Φ𝑆) 
only depend on variables of the space 𝒳𝑖 × 𝕌𝑖  (resp. 𝒮) while 

the other variables are fixed to a value defined by �̅� and �̅�. Let 
�̅� ∈ 𝕌, �̅� ∈ ℒ ,1 the auxiliary problem that results from this 
choice of 𝐾 and Φ is: 

min
(𝑿,𝑺,𝑢)∈𝒳×𝒮×𝕌

𝔼 (∑(𝑗𝑖(𝑿𝑖 , 𝑢𝑖) + 𝐾𝑖(𝑿𝑖))

𝑛

𝑖=1

+ 〈�̅�, (Θ′(�̅�, �̅�, �̅�, 𝑾)

− Φ′(�̅�, �̅�, �̅�, 𝑾)) ⋅ (𝑿, 𝑺, 𝑢)〉) 

s.t.     Φ(𝑿, 𝑺, 𝑢, 𝑾) = 0 . 

(2) 

The inner product in the auxiliary problem is a coordination 
term. It can be interpreted as a penalty, weighted by �̅�, that 
quantifies the non-respect of the original dynamics when 
using the auxiliary dynamics. The idea of the APP is to 
iteratively solve the auxiliary problem (2), with an appropriate 

update of the values of �̅�, �̅�, �̅�, �̅� at each iteration so that the 
sequence of solutions of the auxiliary problems converges to 
the solution of the original problem (1). 

By construction the auxiliary problem is decomposable by 
component. Solving (2) amounts to solve 𝑛 + 1 independent 
subproblems. The subproblem on component 𝑖 ∈ 𝕀 is: 

min
(𝑿𝑖,𝑢𝑖)∈𝒳𝑖×𝕌𝑖

𝔼(𝑗𝑖(𝑿𝑖 , 𝑢𝑖) + 𝐾𝑖(𝑿𝑖)

+ 〈�̅�𝑆, 𝜕𝑿𝑖
Θ𝑆(�̅�1:𝑛 , �̅�) ⋅ 𝑿𝑖〉) 

s.t.    Φ𝑖(𝑿𝑖 , 𝑢𝑖 , 𝑾𝑖) = 0 

The subproblem on the stock is: 

min
𝑺∈𝒮

𝔼 (∑〈�̅�𝑖, 𝜕𝑺Θ𝑖(�̅�𝑖 , �̅�, �̅�𝑖 , 𝑾𝑖) ⋅ 𝑺〉

𝑛

𝑖=1

)

s.t.    Φ𝑆(𝑺) = 0

 

The theory of the APP is based on the following 
fundamental theorem. 

Theorem 1.  Suppose that the maintenance cost 𝑗𝑀and the 
forced outage cost 𝑗𝐹are convex and lower semi-continuous. 
Assume moreover that 𝑗𝑀 + 𝑗𝐹  is coercive and that 𝑗𝐹 is 
differentiable. Suppose also that Θ  is linear and 

differentiable. Let (𝑿#, 𝑺#, 𝑢#) be a solution of the auxiliary 

problem (2) and 𝚲# be an optimal multiplier for its constraint. 

If (𝑿#, 𝑺#, 𝑢#, 𝚲#) = (�̅�, �̅�, �̅�, �̅�) , then (𝑿#, 𝑺#, 𝑢#)  is a 

solution of the original problem (1) and 𝚲#  is an optimal  
multiplier for its constraint. 

The proof consists in checking that if (𝑿#, 𝑺#, 𝑢#, 𝚲#) =
(�̅�, �̅�, �̅�, �̅�) then it solves the variational inequalities that are 
satisfied by an optimal solution and an optimal multiplier of 
the master problem (1). More details can be found in [11]. 

B. The APP fixed-point algorithm 

Theorem 1 suggests to use a fixed-point algorithm to solve 
the original problem, leading to the APP fixed-point 
Algorithm 1. The maximum number of iterations is 𝑀 ∈ ℕ. 

dual cone of  {0}ℒ is the cone ℒ⋆ where ℒ⋆ is the dual space of ℒ. As ℒ is 

reflexive, we can identify ℒ and ℒ⋆ so that �̅� ∈ ℒ. 
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The subproblems on the components are solved with the 
blackbox algorithm MADS [17]. At iteration 𝑘, MADS only 

outputs a primal solution (𝑿𝑖
𝑘+1, 𝑢𝑖

𝑘+1) of subproblem 𝑖 ∈ 𝕀. 

The optimal multiplier 𝚲𝑖
𝑘+1 is computed afterwards using the 

adjoint state. 

 

The subproblem on the stock is very easy to solve 
numerically. The constraint Φ𝑆(𝑺) =  0  represents the 

dynamics of the stock with �̅� = (�̅�1, … , �̅�𝑛) being fixed. The 
value of �̅� completely determines the dynamics of the stock. 
Hence, solving the subproblem on the stock just boils down to 
simulate its dynamics. The optimal multiplier is also 
computed using the adjoint state. 

In practice, the assumptions of Theorem 1 are not satisfied 
as 𝑗𝐹 is not continuous and therefore not differentiable. The 
dynamics Θ is neither linear nor differentiable. However, the 
decomposition method may still give good results in practice. 
In order to be able to compute the gradients that appear in the 
auxiliary problem, we use a continuous relaxation of the 
dynamics. A continuous relaxation of the cost function is also 
used as the gradients of the cost appear in the multiplier update 
step. 

IV. NUMERICAL RESULTS 

In this part, we present the results of the decomposition 
methodology applied to the optimal maintenance scheduling 
problem. The expectation in (1) cannot be evaluated exactly, 
so we solve a Monte-Carlo approximation of the problem with 
𝑄 =  100 fixed failure scenarios 𝜔1, … , 𝜔𝑄 ∈ Ω: 

min
(𝑿,𝑺,𝑢)∈𝒳×𝒮×𝕌

1

𝑄
∑ ∑ 𝑗𝑖(𝑿𝑖(𝜔𝑞), 𝑢𝑖) + 𝑗𝐹 (𝑿1:𝑛(𝜔𝑞))

𝑛

𝑖=1

𝑄

𝑞=1

 

s.t.  Θ(𝑿(𝜔𝑞), 𝑺(𝜔𝑞), 𝑢, 𝑾(𝜔𝑞)) = 0,   𝑞 ∈ {1, … 𝑄} 

The reference algorithm is the blackbox algorithm MADS 
applied directly on the original optimization problem. The 
maintenance strategies given by the two algorithms are then 
evaluated on a set of 105 failure scenarios, distinct from those 
used for the optimization. For the numerical experiments, we 
consider a system with the characteristics given in Table I. 
Parameters of the computation are given in Table II. 

Remark 1.  The APP fixed-point algorithm solves a 
decomposable auxiliary problem at each iteration, this 
algorithm is designed to be parallelized. It runs on 80 
processors so that the subproblems on the components are 
solved in parallel. The reference algorithm MADS runs only 
on one processor. Note that it is also possible to parallelize 
MADS [17], although the implementation is not as immediate 
as for the decomposition method. The parallel version of 
MADS has not been tested. 

 

 

 The output of the two algorithms is a maintenance strategy 
with 𝑢𝑖,𝑡 ∈  [0,1] for (𝑖, 𝑡) ∈ 𝕀 × 𝕋 . From the operational 

perspective, a PM makes a component as good as new. Hence, 
for the evaluation of the strategy, the controls are projected 
on {0,1}: we consider that if 𝑢𝑖,𝑡 ≥ 𝜈, then the PM makes the 

component as good as new, otherwise no PM is performed. 
The comparison between the two maintenance strategies is 
fair as we use the same procedure for their evaluation. 

The mean cost of the best solution is 12902 k€ with MADS 
and 11483 k€ with the decomposition which represents a gain 
of 11%. The values of some quantiles are gathered in Table 
III. Fig. 3 represents the distribution of the cost. Fig. 4 outlines 
that the average CM cost is higher with the decomposition 
strategy. However, a much lower PM cost makes the 
decomposition more efficient than MADS. This is due to the 
fact that fewer PM are performed with the decomposition 
strategy than with MADS strategy (Table IV). The counterpart 
is that failures and forced outages occur more often with the 
decomposition strategy (Table IV). The forced outage cost is 
not visible on Fig. 4 as it represents only 0.05 k€ for MADS 
strategy and 4.09 k€ for the decomposition strategy, showing 
that both methods give efficient PM strategies. There are more 
forced outages with the decomposition strategy (63 
occurrences in 105 failure scenarios versus 1 for MADS) but 
they almost all occur in the last two time steps of the study 
horizon. Therefore the cost of forced outages is low because 
of the discount factor.  

 

TABLE I. CHARACTERISTICS OF THE INDUSTRIAL SYSTEM 

TABLE II. PARAMETERS OF THE COMPUTATION 

TABLE III. QUANTILES OF THE COST OF THE TWO MAINTENANCE 

STRATEGIES (K€) 
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The cumulative number of PM is shown on Fig. 5. As 
already noticed there are fewer PM with the decomposition 
strategy. A striking feature with the decomposition strategy is 
that there are almost no PM in the first three years. This 
exploits the fact that the components are new. The reference 
algorithm MADS applied directly on the original problem 
does not detect this feature. In fact, the region of the space 
corresponding to not doing any PM in the first three years 
jointly for all components is a very small subset of the 
admissible space of the original problem and is not explored 
by MADS. On the other hand, the subproblems in the APP 
fixed-point algorithm act on an individual component, it is 
then easier to figure out that doing no PM in the first three 
years is profitable. 

 

There is also a significant reduction of the number of PM 
in the last five years of the study horizon. It is indeed useless 
to invest money to repair a component for the last few years. 
Moreover, the discount factor at the end of the horizon greatly 
reduces the incurred cost so that a forced outage is not too 
penalizing. This is why some forced outages occur with the 
decomposition strategy at the end of the study period. 

Another indicator that is monitored by decision makers is 
the level of stock. A necessary condition for the occurrence of 
a forced outage is that the stock is empty. Hence, we look at 
the probability of having an empty stock. The higher this 

probability, the higher the probability of forced outage. The 
probability of having an empty stock is very low for both 
strategies in the first 30 years and then increases for the 
decomposition strategy (Fig. 6). Again, because of the 
discount factor, forced outages in the last few years do not 
have important financial consequences. It is then more 
profitable to do fewer PM and allow for a higher risk of 
failure. This is what the decomposition strategy does. 

Overall the strategy obtained by decomposition is more 
cost effective than MADS strategy. For a decision maker the 
decomposition strategy requires less investment as we do 
fewer PM. It also has the best expected cost. Even in the case 
of extreme events, it is more robust than MADS strategy, as 
shown by the 99% quantile in Table III. Indeed the forced 
outages may occur only at the end of the horizon. 

V. CONCLUDING REMARKS AND OUTLOOK 

In this work we study a maintenance scheduling 
optimization problem for hydropower plants management but 
the methodology that has been presented can be applied to any 
kind of physical assets as long as the failure distribution and 
the dynamics of the system are known. We set up a 
decomposition method to find a deterministic preventive 
maintenance strategy for a system of physical components 
sharing a common stock of spare parts. The decomposition 
relies on the Auxiliary Problem Principle. We construct a 
sequence of auxiliary problems that are solved iteratively. The 
auxiliary problems are decomposable into independent 
subproblems of smaller dimension that are solved in parallel. 
Each subproblem involves only one component of the system 
or the stock.  

The main advantage of the decomposition method against 
classical optimization methods is that it is scalable to problems 
of arbitrary size as it is designed to be parallelized. It is then 

TABLE IV. OVERVIEW OF THE NUMBER OF PM, FAILURES AND 

FORCED OUTAGES FOR EACH STRATEGY 

Fig. 3: Distribution of the cost for the two maintenance strategies 

Fig. 4: Part of the PM, CM and forced outage cost in the total expected cost 

Fig. 6: Evolution of the probability of having an empty stock 

Fig. 5: Cumulative number of PM 
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theoretically possible to jointly optimize the maintenance 
scheduling of a whole fleet of dependent components at the 
price of some modeling effort. From the implementation 
perspective, the most challenging part is the tuning of the 
relaxation of the system in order to compute the gradients of 
the dynamics that appear in the auxiliary problem. The 
performance of the method is sensitive to this tuning that must 
be done carefully. 

On the industrial system, the decomposition method 
outperforms the blackbox algorithm MADS applied directly 
on the full problem.  The mean cost of the best solution is 
12902 k€ with MADS and 11483 k€ with the decomposition 
meaning that our new approach generates a gain of 11% in the 
total Life Cycle Cost when compared with off the shelf 
methods. Moreover, if the gain in Life Cycle Cost is 
important, the decrease by 20% of the number of preventive 
actions, directly linked to scheduled investments budget, will 
be highly appealing to decision makers seeking to optimize 
and prioritize Capex.  

The strategy given by the decomposition involves fewer 
PM especially at the beginning and the end of the time 
horizon. More forced outages occur but only at the end of the 
time horizon so without heavy financial consequences. It is 
also robust to extreme events as the 99% quantile is better for 
the decomposition strategy than for MADS. This work proves 
the interest of the modeling effort needed to apply the 
decomposition method. 

However, these results raise the question about the 
relevance of the discount factor in the modeling when 
studying systems on a long term horizon. In the model, 
failures at the end of the horizon only incur very low cost and 
it is more profitable to let the system fail. But is it really 
profitable in practice? Some interesting thoughts on this point 
can be found in [19]. 

Moreover, some challenges still remain for an application 
of this decomposition method in an operational context. Here, 
the dynamics is simulated with a time step of one year. This 
means that the state of a component cannot change within a 
year and we have to estimate a yearly cost of forced outage, 
resulting in an inaccurate evaluation of the real costs. A 
smaller time step must be used for the simulation of the 
dynamics in order to get an accurate evaluation of the costs. 
Moreover, smaller time steps enable us to take into account 
seasonality effects on the components by varying the forced 
outage cost for example. It should be noted that smaller time 
steps for the simulation of the dynamics will increase the 
computation time for the evaluation of the cost function in the 
maintenance optimization problem. However, the complexity 
of the problem stays the same as maintenance decisions are 
always made on a yearly basis, so the space of admissible 
maintenance strategies does not change. In other words, the 
number of iterations to solve the problem should stay the same 
but each one of them is longer. 

On the other hand, to speed up the resolution, we can 
consider doing PM only on a two-year basis or even focusing 
only on periodic strategies. This reduces the complexity of the 
problem. Preliminary results show that the performance of 
periodic strategies is close to those presented in this paper, 
showing that if computation time is limited, looking for 
periodic strategies is a good alternative.  

Finally, it is also possible to model more complex systems, 
by adding a control on the time of the order of spare parts or 
dependence between the failures of the components for 
instance. We could also consider imperfect preventive 
maintenance. However, a balance must be found between the 
simplicity of the model and its adequation to reality given the 
industrial application in mind. 
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