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Abstract It is well known in the literature that standard hierarchical matrix (H-matrix) based methods, although very effi-
cient for asymptotically smooth kernels, are not optimal for oscillatory kernels. In a previous paper, we have shown that the
method should nevertheless be used in the mechanical engineering community due to its still important data-compression
rate and its straightforward implementation compared toH2-matrix, or directional, approaches.

Since in practice, not all materials are purely elastic it is important to be able to consider visco-elastic cases. In this
context, we study the effect of the introduction of a complex wavenumber on the accuracy and efficiency ofH-matrix based
fast methods for solving dense linear systems arising from the discretization of the elastodynamic (and Helmholtz) Green’s
tensors. Interestingly, such configurations are also encountered in the context of the solution of transient purely elastic
problems with the convolution quadrature method. Relying on the theory proposed in [12] for H2-matrices for Helmholtz
problems, we study the influence of the introduction of damping on the data compression rate of standard H-matrices. We
propose an improvement of H-matrix based fast methods for this kind of configuration. This work is complementary to the
recent work [12]. Here, in addition to addressing another physical problem, we consider standardH-matrices, derive a simple
criterion to introduce additional compression and we perform extensive numerical experiments.

Keywords Hierachical matrices · Convolution Quadrature Method · Boundary Element Method · (Visco)-Elastodynamics

1 Introduction

The 3D linear isotropic elastodynamic equation for the displacement field u (also called Navier equation) is given by

div σ(u) + ρω2u = 0 (1)

where ω > 0 is the circular frequency. It is supplemented with appropriate boundary conditions which contain the data. The

stress and strain tensors are respectively given by σ(u) = λ(divu)I3 + 2µε(u) and ε(u) =
1

2

(
[∇u] + [∇u]

T), where I3

is the 3-by-3 identity matrix and [∇u] is the 3-by-3 matrix whose β-th column is the gradient of the β-th component of u
for 1 ≤ β ≤ 3, µ and λ are the Lamé parameters and ρ is the density.

Denoting k2p = ρω2(λ+ 2µ)−1 and k2s = ρω2µ−1 the so-called P and S wavenumbers, the Green’s tensor of the Navier
equation is a 3-by-3 matrix-valued function expressed by

Uω(x,y) =
1

ρω2

(
curl curlx

[
eiks|x−y|

4π|x− y|
I3

]
−∇xdivx

[
eikp|x−y|

4π|x− y|
I3

])
(2)

where the index xmeans that differentiation is carried out with respect to x and divxA corresponds to the application of the
divergence along each row of A. One may use this tensor to represent the solution of (1). Alternately, one may use the tensor
Tω(x,y), which is obtained by applying the traction operator

T = 2µ
∂

∂n
+ λndiv +µn× curl (3)

to each column of Uω(x,y): Tω(x,y) = [T yUω(x,y)] where the index y means that differentiation is carried out with
respect to y.
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We consider the fast solution of dense linear systems of the form

Ap = b, A ∈ C3Nc×3Nc (4)

where A is the matrix corresponding to the discretization of the 3-by-3 Green’s tensors Uω(xi,yj) or Tω(xi,yj) for two
clouds of Nc points (xi)1≤i≤Nc and (yj)1≤j≤Nc . Here p is the unknown vector approximating the solution at (xi)1≤i≤Nc
and b is a given right hand side that depends on the data. Such dense systems are encountered for example in the context
of the Boundary Element Method (with a straightforward derivation for piecewise constant interpolation of the unknown
field) [5,32].

If no compression or acceleration technique is used, the storage of such a system is of the order O(N2
c ), the iterative

solution (e.g. with GMRES) is O(NiterN
2
c ) where Niter is the number of iterations, while the direct solution (e.g. via LU

factorizations) is O(N3
c ). In the last decades, different approaches have been proposed to speed up the solution of dense sys-

tems. The most well-known method is probably the fast multipole method (FMM) proposed by Greengard and Rokhlin [20]
which enables a fast evaluation of the matrix-vector products. We recall that the matrix-vector product is the crucial tool in
the context of an iterative solution. Initially developed for N-body simulations, the FMM has then been extended to oscilla-
tory kernels [19,15]. The method is now widely used in many application fields and has shown its capabilities in the context
of mechanical engineering problems solved with the BEM [13,24,36].

An alternative approach designed for dense systems is based on the concept of hierarchical matrices (H-matrices) [2].
The principle of H-matrices is to partition the initial dense linear system, and then approximate it into a data-sparse one,
by finding sub-blocks in the matrix that can be accurately estimated by low-rank matrices. In other terms, one further
approximates the matrix A from (4). The efficiency of hierarchical matrices relies on the possibility to approximate, under
certain conditions, the underlying kernel function by low-rank matrices. The approach has been shown to be very efficient
for asymptotically smooth kernels (e.g. Laplace kernel). On the other hand, oscillatory kernels such as the Helmholtz or
elastodynamic kernels, are not asymptotically smooth. In these cases, the method is not optimal [1]. To avoid the increase
of the rank for high-frequency problems, H2-matrix, or directional, methods have been proposed [6,7]. H2-matrices are
a specialization of hierarchical matrices. It is a multigrid-like version of H-matrices that enables more compression, by
factorizing some basis functions of the approximate separable expansion.

Since the implementation of H2-matrix methods is much more involved than the one of the standard H-matrix, in [14]
we have studied the frequency-range within which theH-matrices are efficient for elastodynamic problems and what can be
expected of such an approach to solve problems encountered in mechanical engineering. We have shown that even though
the method is not optimal (in the sense that more efficient approaches can be proposed at the cost of a much more com-
plex implementation effort), an efficient solver is easily developed. The capabilities of the method have been illustrated on
numerical examples using the Boundary Element Method.

In practice, not all materials are purely elastic and it is thus important to be able to consider visco-elastic cases. In this
context, we study the effect of the introduction of a complex wavenumber on the accuracy and efficiency of hierarchical
matrix (H-matrix) based fast methods for solving dense linear systems arising from the discretization of the elastodynamic
Green’s tensors. Interestingly, such configurations are also encountered in the context of the solution of transient purely elas-
tic problems with the convolution quadrature method. Relying on the theory proposed in [12] forH2-matrices for Helmholtz
problems, we study the influence of the introduction of damping on the data compression rate of standard H-matrices. We
propose an improvement of H-matrix based fast methods for this kind of configuration. This work is complementary to the
recent report [12]. Here, in addition to addressing another physical problem, we consider standard H-matrices, derive an
additional condition to obtain more compression and we perform extensive numerical experiments.

This paper is organized as follows. In Section 2, we recall the main algorithmic components of standard H-matrices.
Then in Section 3, we review existing and improved admissibility conditions for the case of complex wavenumbers. We
discuss the similarities, differences and novelties compared to [12]. In Section 4, we perform extensive numerical tests to
show the efficiency of a new admissibility condition, designed to improve the efficiency of standardH-matrices in the case of
complex wavenumbers. Section 5 is devoted to the discussion of some practical situations in which this improved approach
will be useful. The paper ends with some conclusions and future works.

2 Main components ofH-matrices

Hierarchical matrices or H-matrices have been introduced by Hackbusch [21] to compute a data-sparse representation of
some special dense matrices (e.g., matrices resulting from the discretization of non-local operators). The principle of H-
matrices is (i) to partition the matrix into blocks and (ii) to perform low-rank approximations of the blocks of the matrix which
are known a priori (by using an admissibility condition) to be accurately approximated by low-rank decompositions. With
these two ingredients it is possible to define fast iterative and direct solvers for matrices having a hierarchical representation.
Using low-rank representations, the memory requirements and costs of a matrix-vector product are reduced. In addition,
usingH-matrix arithmetic it is possible to derive fast direct solvers.
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Clustering of the unknowns The key ingredient of hierarchical matrices is the recursive block subdivision. The first step,
prior to the partition of the matrix, is thus a partitioning based on the geometry of the set of row and column indices of
the matrix A. The purpose is to perform a permutation of the indices in the matrix to reflect the physical distance and thus
interaction between degrees of freedom. Consecutive indices should correspond to DOFs that interact at close range. For the
sake of clarity, in this work A is defined by the same set of indices I = {1, . . . , n} for rows and columns. A binary tree TI
is used to drive the clustering. Each node of the tree defines a subset of indices σ ⊂ I and each subset corresponds to a part
in the partition of the domain. There exist different approaches to perform the subdivision [22]. We consider the simplest
possible one : based on a geometric argument. For each node in the tree, we determine the box enclosing all the points in the
cloud and subdivide it into two balanced boxes, along the largest dimension. The subdivision is stopped when a prescribed
number of points per box Nleaf , is reached. The depth of the tree TI is denoted by L(I).
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(a) Partition of the physical domain (b) Binary cluster tree TI

Fig. 1: Illustration of the clustering of the degrees of freedom: (a) partition of the degrees of freedom in the domain and (b)
corresponding binary tree.

Subdivision of the matrix After the clustering of the unknowns is performed, a block cluster representation TI×I of the
matrix A is defined by going through the cluster tree TI . Each node of TI×I contains a pair (σ, τ) of indices of TI and defines
a block of A (see Figure 2). This uniform partition defines a block structure of the matrix with a full pattern of 4L(I)−1

blocks, in particular every node of the tree at the leaf level is connected with all the other nodes at the leaf level (Figure 3a).
This partition is not optimal since some parts of the matrix A can accurately be approximated by a low-rank matrix at a
higher level (i.e. for larger clusters). Such blocks are said to be admissible. A hierarchical representation P ⊂ TI×I that uses
the cluster tree TI and the existence of admissible blocks is more appropriate. Starting from the initial matrix, each block is
recursively subdivided until it is either admissible or the leaf level is reached. For complex 3D geometries, an admissibility
condition based on the geometry and the interaction distance between points is used to determine a priori the admissible
blocks. For more details on the construction of the block cluster tree, we refer the interested reader to [9]. The partition
P is subdivided into two subsets Pad and Pnon-ad reflecting the possibility for a block τ × σ to be either admissible, i.e.,
τ × σ ∈ Pad; or non-admissible, i.e., τ × σ ∈ Pnon-ad. It is clear that P = Pad ∪ Pnon-ad. To sum up, the blocks of the
partition can be of three types: at the leaf level a block can be either an admissible block or a non-admissible block, at a
non-leaf level a block can be either an admissible block or anH-matrix (i.e, a block that will be subsequently hierarchically
subdivided).

Performing low-rank approximations. Once the admissible blocks are determined, an accurate rank-revealing algorithm is
applied to determine low-rank approximations. We recall that the numerical rank of a matrix A is

r(ε) := min{r | ||A− Ar|| ≤ ε||A||} (5)

where Ar defines the singular value decomposition (SVD) of A keeping only the r largest singular values and ε > 0 is a given
parameter. Such an algorithm must be accurate (i.e., its result, the computed numerical rank, must be as small as possible)
to avoid unnecessary computational costs. The truncated Singular Value Decomposition (SVD) [16] gives the best low-rank
approximation (Eckart-Young theorem) for unitary invariant norms (e.g., Frobenius or spectral norm). Thus it produces an
approximation with the smallest possible numerical rank for a given prescribed accuracy. But the computation of the SVD is
expensive, i.e., in the order of O(max(m,n)×min(m,n)2) for an m×n matrix, and in addition it requires the computation
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Fig. 2: Illustration of the construction of the block cluster tree: (a) Clustering of the unknowns on the geometry and (b)
corresponding block clustering in the matrix.

(a) (b)

Fig. 3: (a) Block cluster representation TI×I for the illustrative example (full structure); (b) Hierarchical partition P ⊂ TI×I
of the same matrix based on the admissibility condition (sparse structure).

of all the entries of A. In the context of theH-matrices, the use of the SVD would induce the undesired need to assemble the
complete matrix.

The adaptive cross approximation (ACA) [3,4] offers an interesting alternative to the SVD since it produces a quasi-
optimal low-rank approximation without requiring the assembly of the complete matrix. The starting point of the ACA is
that every matrix of rank r is the sum of r matrices of rank 1. The ACA is thus a greedy algorithm that improves the accuracy
of the approximation by adding iteratively rank-1 matrices. There are various ACAs that differ by the choice of the best
pivot at each iteration. The simplest approach is the so-called fully-pivoted ACA and it consists in choosing the pivot as the
largest entry in the residual. But similarly to the SVD, it requires the computation of all the entries of A to compute the pivot
indices. It is not an interesting option for the construction ofH-matrices. The partially-pivoted ACA proposes an alternative
approach to choose the pivot avoiding the assembly of the complete matrix. The idea is to maximize alternately the residual
for only one of the two indices and to keep the other one fixed. With this strategy, only one row and one column is assembled
at each iteration. The complexity of the partially-pivoted ACA is reduced to O(r2ACA(m+ n)), where rACA is the achieved
rank. This is the approach used in this work but the results presented do not depend on this choice. Other approaches such
as fast multipole expansions [30,20], panel clustering [31,23], quadrature formulas [8] or interpolations [29] could be used.
The advantages of the ACA are to be purely algebraic and easy to implement.

3 Existing admissibility conditions and improvements for the case of complex wavenumbers

The admissibility condition enables to distinguish blocks which are known a priori to be accurately approximated by a low-
rank approximation. The standard admissibility condition for H-matrices, optimal for asymptotically smooth kernels and
efficient for oscillatory kernels is given by

the block X × Y is admissible if min (diam(X), diam(Y )) ≤ η dist(X,Y ) (6)

with diam(X), diameter of the clusterX (in practice the diameter of the bounding box), and dist(X,Y ), the distance between
the clusters X and Y (the distance between the bounding boxes in practice) - See Fig. 4.
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Fig. 4: Efficient implementation of the admissibility condition: (a) theoretical condition and (b) implemented condition.

Sparsification condition for damped kernels. In the context of oscillatory kernels with complex wavenumbers, we know that
exp(ikβr)

r is the dominant term of the 3D elastodynamic kernel function. A first issue is thus to determine when the negative
exponential term introduced in the kernel, due to Im(kβ) > 0 (with β = s or p), dominates the oscillatory behaviour. For a
given wavenumber kβ ∈ C with Im(kβ) > 0, the question thus reduces to find the smallest value rlim > 0 such that :

∀r ≥ rlim,
∣∣∣∣exp(ikβr)

r

∣∣∣∣ 6 εdecay ×
∣∣∣∣exp(ikβrmin)

rmin

∣∣∣∣ (7)

In (7), there are two parameters:

– rmin, which is related to the mesh. It can be defined for example as the minimal distance between two nodes of the
boundary element mesh (importantly it is thus also related to the minimal distance between two clusters).

– εdecay , which is the threshold parameter of the sparsification.

If we can define for a given wavenumber such an rlim, we know that some blocks of the matrix will be full of zeros, or at
least all their entries are sufficiently small so that the approximation can be chosen as a 0-rank approximation, i.e., it is also
full of zeros. The aim of this Section is thus to determine if we can complement the standard admissibility condition (6) to
take into account these sparse blocks.

In the discussion below, the wavenumber is denoted by k ∈ C with Im(k) > 0. In [12], sparsification of oscillatory
kernels with damping is also considered. One adjustable parameter is the order m̃ of the polynomials required to approximate
the oscillatory kernel on a given admissible block X × Y . Precisely in [12, definition (3.9)] the order of approximation m̃
is chosen so that the Chebyshev interpolation of the oscillatory kernel on the given admissible block X × Y achieves the
requested approximation error. It is noted that if the resulting order is strictly lower than 0 (m̃ = −1), then the entries are
sufficiently small so that the approximation is made of zeros. In this particular case the approximation boils down to a 0-rank
approximation. Interestingly, a rigorous mathematical analysis is carried out, and the order of approximation m̃ on the given
admissible block X × Y is chosen so that (see [12, bottom of page 11]):

C0 ρ
−m̃
0

∣∣∣∣exp(iσkr)

r

∣∣∣∣ ≤ εerror (8)

where εerror > 0 is the target approximation error, while σ,C0 > 0, and ρ0 > 1 are given values (see again [12, §4]).
So, up to some scaling factor, we note that condition (8) with m̃ = −1 is completely similar to the proposed condition (7).
Interestingly, even though empirical (7) is based on a sound mathematical analysis thanks to the equivalent condition (8) that
is proposed and analyzed in [12]. Now, there remains to take into account those blocks that fulfil condition (7). We propose
a heuristic condition, see (9) below. The major difference with [12] is that we do not limit the search to admissible blocks.

The first important remark concerns admissible blocks that fulfil condition (6) when an algebraic approach is used to
perform the low rank approximation (which is another difference with [12]) . A priori, the numerical rank of a block full of
zeros is 0, so the ACA will automatically perform a low rank approximation with a rank equal to 0. And if all the admissible
blocks are blocks full of zeros then the maximal numerical rank of admissible blocks rmaxACA is equal to 0.
Second, one has to check whether some additional gains can be obtained on the storage of the non-admissible blocks, when
they are made of entries with small/negligible values. This is the main originality of our new admissibility condition. In
relation with the definition (7) of rlim, we add a condition based on the distance between clusters of non-admissible blocks.
When rmaxACA = 0, we propose the following simple admissibility condition to take into account potential non-admissible
blocks full of zeros:

If rmaxACA = 0, a non-admissible block X × Y is replaced by a matrix of zeros if dist(X,Y ) ≥ rlim. (9)
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The aim of the additional admissibility condition (9) is to further reduce storage requirements by approximating a large
number of non-admissible blocks by matrices full of zeros. Note that it is tested only if all admissible blocks can already be
approximated by matrices full of zeros, i.e., if rmaxACA = 0. This is a conditional test that may, or may not, be implemented, in
the limit of εdecay tending to 0+. Conditionality is expected to depend heavily on the damping.

Sparsification condition for oscillatory kernels. For an oscillatory kernel, possibly with damping, a well-known issue is to
take into account its behavior depending on the direction. In the literature, this corresponds to the so-called H2-matrix, or
directional, methods. We refer again to [12, definition 3.2], where an admissibility condition is proposed in the context of
directionalH2-matrices for Helmholtz problems with complex frequencies. For a wavenumber k ∈ C with Im(k) > 0, and
given η = (ηi)

3
i=1 ∈ R3

>0, the admissibility condition writes: a pair of clusters X,Y ∈ TI and a direction c ∈ S2 (unit
sphere in R3) are said to be η-admissible if they satisfy the following three conditions:

|Re(k)|
∣∣∣∣∣∣∣∣ MX −MY

dist(MX ,MY )
− c
∣∣∣∣∣∣∣∣ 6 η1

max{diam2(X), diam2(Y )}
(10a)

max{diam(X), diam(Y )} 6 η2 dist(X,Y ) (10b)

|Re(k)| max{diam2(X), diam2(Y )} 6 max{η2, η3(Im(k))dist(X,Y )} dist(X,Y ) (10c)

The first condition, i.e., (10a) corresponds to the choice of the sector in the directional approach, with MX and MY

respectively the centres of the clusters X and Y , while c is a unit vector defining the direction along which the wave is
travelling. This is the purely directional condition, which is included in the choice of C0 from condition (8) (see formula
(4.5) from Lemma 4.1 page 15 in [12]).
Then, condition (10b) is similar to the standard admissibility condition (6). Furthermore, they are equivalent for clusters of
similar size.
In this work we focus on the understanding of condition (10c) which is used to determine when a sparse approximation can
be performed. (10c) is an adaptation of the H2 part of the admissibility condition for kernels with complex wavenumbers.
Importantly, this condition reduces the set of admissible blocks compared to the standard admissible condition inH-matrices.
(10c) includes two criteria that we separate below, see (11) and (12). If Im(k) is large enough (we will explain what it means
in the following), the condition (10c) becomes:

|Re(k)|max{diam2(X), diam2(Y )} 6 η3(Im(k))dist2(X,Y ) (11)

This criterion becomes less and less restrictive as the value of damping ratio α = Im(k)/Re(k) increases, meaning that it
does not significantly reduce the set of admissible blocks compared to standard H-matrices. On the other hand, if Im(k) is
small (which includes the limiting case Im(k) = 0) then (10c) simplifies to the standard condition for H2-matrices in the
case without damping [11]

|Re(k)|max{diam2(X), diam2(Y )} 6 η2dist(X,Y ) (12)

Finally, (10c) reduces to (10b) if |Re(k)| ∼ (max{diam(X), diam(Y )})−1 and Im(k) is small.

Figure 5 illustrates on an example (η2 = 2, η3 = 0.5, Re(ks) = 18 and Im(ks) = 0.3) how the two criteria (11) and
(12) help realize condition (10c). We represent the different scenarios for various hypothetical distances y = dist(X,Y ) and
diameters x = max(diam(X), diam(Y )) of the blocks. The blue curve shows the limit when criterion (12) becomes satisfied
and the red curve the limit when criterion (11) becomes satisfied. Obviously, there are four scenarios:

– both criteria hold;
– only criterion (11) holds;
– only criterion (12) holds;
– no criterion holds;

Let’s now see how (10c) works in practice, for different damping ratios αs. For all the remaining of this work, we
define G as the 3Nc × 3Nc matrix corresponding to the discretization of the 3D visco-elastodynamic Green’s tensor at
the Nc discretization points. This matrix is further decomposed into nine submatrices (Gαβ)1≤α,β≤3, each submatrix Gαβ
corresponding to the discretization of the Gαβ-component of the Green’s tensor. We consider a practical implementation
on a sphere of radius a = 1, resulting in a 10274 × 10274 G11 matrix after discretization. All the different blocks of the
H-matrix representation are represented by black squares. The blocks are thus admissible if the square is located above the
blue curve or the red curve. As a first illustration, see Figure 6, we consider Nleaf = 100 and four values of damping ratio:
αs = 0.01, 0.1, 1 and 100. The wavenumber is chosen to yield a fixed density of points of 10 points per wavelength, i.e.,
ksa = 18. We see that for a small damping ratio (αs = 0.01 and 0.1), the condition (10c) is not satisfied at all. For a larger
damping ratio αs = 1, some blocks satisfy (11) but none of them satisfies (12). In that case, (10c) is equivalent to (11). Even
if a greater number of blocks are admissible with respect to criterion (11) for αs = 100, criterion (12) is never fulfilled. In
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Fig. 5: Sparsification condition (10c): criterion (11) vs. criterion (12).

this setting, we conclude that condition (10c) is not satisfied when the damping ratio remains small. And, when the damping
ratio increases, it seems that (11) is the dominant criterion to realize condition (10c). These results are in agreement with our
expectation of a restrictive criterion for small damping ratios.

On the other hand, the fact that condition (10c) holds through (11) or (12) depends on the stopping criterionNleaf used in
the binary tree. Indeed, we observe that if the value of Nleaf is decreased, then one gets smaller clusters, i.e., with a smaller
diameter. So, we consider the same same geometry, now with Nleaf = 20. Figure 7 shows that for a small damping ratio
αs = 0.01, some blocks satisfy (12) but that none of them satisfies (11), so (10c) is equivalent to (12). For αs = 0.1 some
blocks satisfy both (12) and (11) criteria but (12) has become the dominant criterion. Then for αs = 1, some blocks satisfy
both (12) and (11) criteria, and (11) is the dominant criterion. Finally for αs = 100, a majority of blocks satisfy (11) and
there is a very small number of blocks which satisfy (12): (11) is the dominant criterion again. So, it appears that when Nleaf

is small, in the sense that a wider distribution of diameters towards 0 is at hand, the different scenarios expected in Figure 5
can actually be observed: condition (10c) is met even for a small damping ratio, and moreover either (11) or (12) is the
dominant criterion.

It is also possible to get the same kind of results by decreasing the frequency in order to change the referenced position
of both the blue curve and the red curve. Figure 8 presents the same results but when the frequency is divided by 10, leading
to about 100 points per wavelength. For the small damping levels αs = 0.01 and αs = 0.1, some blocks satisfy (12) but
none of the blocks satisfy (11), so condition (10c) is equivalent to (12). For α = 1, some blocks satisfy (12) and (11), but
the majority of blocks satisfy (12), thus (10c) is equivalent to (12). Finally for αs = 100, some blocks satisfy (12) and (11),
but the majority of blocks satisfy (11), thus (10c) is equivalent to (11). As a conclusion, it appears from these tests that
decreasing (respectively increasing) the frequency, and as a consequence the value of Re(ks), leads to a wider (respectively
tighter) parabola and to swap the dominant condition between (11) and (12).

At this point, it is important to sum up our understanding onH-matrices for oscillatory kernels with a complex wavenum-
ber. To our best knowledge, the only work on the subject in the literature is [12]. But this work is dedicated to the improvement
of directional H2-matrices for oscillatory kernels with a complex wavenumber. The tests we have performed show that the
proposed improvement is in fact to relax the third condition in this admissibility condition (the one that is specific to H2-
matrices) according to the level of damping in the kernel. However, it appears that this adaptation can still be improved on
two aspects since:
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(a) αs = 0.01 (b) αs = 0.1

(c) αs = 1 (d) αs = 100

Fig. 6: Sparsification condition (10c): criterion (11) vs. criterion (12) for different damping ratios [ Nleaf = 100 ; ksa = 18].

– its only aim is to relax the H2 part of the admissibility condition; In some sense it increases the number of admissible
blocks; However it remains more restrictive than standardH-matrices.

– it does not test non-admissible blocks to take advantage of the introduction of the complex wavenumber and thus one can
not obtain further gain by compressing some of those blocks.

In the next Section, we perform extensive numerical tests to check if our new admissible condition enables to take these
aspects into account and achieve better compression efficiency thanH2-matrices.
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(a) αs = 0.01 (b) αs = 0.1

(c) αs = 1 (d) αs = 100

Fig. 7: Sparsification condition (10c): criterion (11) vs. criterion (12) for different damping ratios [Nleaf = 20 ; ksa = 18].
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(a) αs = 0.01 (b) αs = 0.1

(c) αs = 1 (d) αs = 100

Fig. 8: Sparsification condition (10c): criterion (11) vs. criterion (12) for different damping ratios [Nleaf = 100, ksa = 1.80].
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4 Efficiency of the new admissibility condition for standardH-matrices

In this section, numerical experiments are conducted to compare both admissibility conditions ((6)+(9)) and their ”coun-
terpart” ((10b)+(10c)). To that aim, we study a wave propagation problem in a viscoelastic media containing an obstacle
represented by a sphere of radius a = 1.

4.1 Practical parameters for the sparsification condition from [12]

The additional condition (8) where m̃ = −1 enables to replace the admissible blocks by matrices of zeros in the approximated
Green’s tensor. By definition of rmin, we know that r ≥ rmin in (8). In the following we assume that 0 < εerror ≤ rmin. By
applying the log on both sides of the inequality and ”neglecting the constant”, i.e., setting C0ρ0 to 1, we obtain the sufficient
condition:

log

(
1

εerror

)
2

σr
≤ Im(k) (13)

By sufficient we mean that:

– condition (8) and condition (13) are equivalent if εerror ∼ r ;
– condition (13) implies condition (8) if εerror � r.

We now choose the value of σ to implement the condition (13) for our practical applications. To do that, we apply
the condition (13) with k = ks and εerror = rmin, in conjunction with the admissibility condition (10). The number of
discretization points isNc = 10274 (εerror = 0.0253), and a frequency corresponding to ksa = 18 (in order to have roughly
10 points per wavelength). For a damping ratio αs = 100, one finds by direct inspection that rmaxACA = 0 (and then all
admissible blocks can be replaced by matrices of zeros). Testing the condition (13) in the submatrix G11 for different values
of σ among {10−4, 10−3, . . . , 0.5, 1, 2, . . . , 104}, we find that it is satisfied for all admissible blocks and for all values of σ,
except 104. So, in the rest of the manuscript, we will keep the above condition with σ = 2, which simplifies to

log

(
1

εerror

)
1

r
≤ Im(k) (14)

as a practical implementation of the additional condition (8).

4.2 Practical choices and illustration of the new admissibility condition

The parameters used in all this section are given in Table 1. ω is chosen again to achieve about 10 points per wavelength λs.

Parameter type Material characteristics S and P waves Discretization H-matrices

Admissibility condition µ λ ν αs = Im(ks)/Re(ks) kp ksa Nc Nleaf η εACA

((6)+(9)) 1 2 1
3

{0, 0.01, 0.1, 1, 10, 100, 1000, 10000} ks/2 18 10274 100 η = 3 10−4

(10) 1 2 1
3

{0, 0.01, 0.1, 1, 10, 100, 1000, 10000} ks/2 18 10274 100
η1 = 10
η2 = 2
η3 = 1/2

10−4

Table 1: Parameters.

The first parameter is rlim that appears in the condition (9). For a fixed value εdecay in condition (7), we are able to
determine rlim by observing the evolution of exp(−Im(kp)r)/r

exp(−Im(kp)rmin)/rmin
with respect to r for different values of kp. Indeed,

comparing condition (7) with k = kp and k = ks, we observe that it is more restrictive with kp than with ks, because
0 < Im(kp) < Im(ks). We first conduct a numerical experiment to determine the influence on the overall accuracy of the
tolerance εdecay in (7). We perform the analysis with the conditions ((6)+(9)) and

αs = Im(ks)/Re(ks) ∈ {10, 11, 12, 13, 14, 15, 17, 20, 33, 66, 100, 1000, 10000}

Let Gapp be the approximated version of G in which the submatrices corresponding to admissible blocks are replaced by
their low-rank approximations and/or by matrices of zeros in case condition (9) is also considered. Importantly, we are not
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interested in representing G accurately but by obtaining an accurate solution of a BEM problem. We introduce Val, a random
vector whose values are drawn from the standard uniform distribution on ]0, 1[. We will consider two relative errors:

errrel1 =
||G11 − (G11)app||L2

||G11||L2

(15)

errrel2 =
||(G11 − (G11)app)Val||L2

||G11Val||L2

(16)

The first relative error might be too strict compared to the error observed in a BEM solver. It represents the upper bound of
the error obtained when a matrix-vector product is performed in the iterative solver. The second relative error should be more
representative for the ”mean” error carried in the solution of the BEM elastodynamic problem. In Table 2, we report errrel2
that is the average observed value over fifty values of errrel2 calculated with fifty random vectors Val.

In Table 2 we report these errors for three values of εdecay . We note that as expected, it has an effect on the accuracy of
the approximation. For εdecay = 10−10, the relative error on the Green’s tensor is always well below 10−3 for both errrel1
and errrel2 . In comparison, the relative approximation errors reach a maximum of errrel1 and errrel2 at about 1.5 10−2 for
a tolerance εdecay = 10−5 and about 3 10−2 for a tolerance εdecay = 10−3. We performed the same tests on larger problems
with Nc roughly equal to respectively 30 000, 60 000 and 100 000. In these cases, for εdecay = 10−10, both errrel1 and
errrel2 are below 10−16. These results seem to advocate in favour of the use of εdecay = 10−10. But the accuracy of the
low-rank approximation is not the only factor to take into account. This criterion has also an influence on the number of
blocks which can be replaced by matrices full of zeros and thus on the data compression rate. We will consider this aspect
next.

Damping ratio
errrel1/errrel2
εdecay = 10−3

errrel1/errrel2
εdecay = 10−5

errrel1/errrel2
εdecay = 10−10

11 2.48 10−2 / 2.51 10−2 1.66 10−4 / 1.67 10−4 4.25 10−10 / 4.26 10−10

12 2.88 10−2 / 2.93 10−2 2.00 10−4 / 1.98 10−4 1.40 10−10 / 1.40 10−10

13 2.81 10−2 / 2.85 10−2 1.51 10−4 / 1.49 10−4 7.32 10−9 / 6.79 10−9

14 2.72 10−2 / 2.77 10−2 1.13 10−4 / 1.11 10−5 2.76 10−9 / 2.56 10−9

15 2.63 10−2 / 2.68 10−2 8.39 10−5 / 8.28 10−5 1.22 10−9 / 1.16 10−9

17 2.45 10−2 / 2.49 10−2 1.18 10−2 / 1.19 10−2 1.10 10−9 / 1.23 10−9

20 2.16 10−2 / 2.20 10−2 1.41 10−2 / 1.42 10−2 1.48 10−9 / 1.49 10−9

33 1.04 10−2 / 1.05 10−2 9.10 10−3 / 9.11 10−3 1.62 10−7 / 1.66 10−7

66 1.72 10−3 / 1.66 10−3 1.55 10−3 / 1.50 10−3 6.09 10−4 / 6.13 10−4

100 3.50 10−4 / 3.38 10−4 3.45 10−4 / 3.33 10−4 3.41 10−4 / 3.29 10−4

1000 < 10−16 < 10−16 < 10−16

10000 < 10−16 < 10−16 < 10−16

Table 2: volution of errrel1 and errrel2 with respect to the damping ratio and tolerance in condition (7) [ksa = 18].

Now that we have an insight on the effect of εdecay on the accuracy, Figure 9 illustrates the behavior of the dominant
factor in the viscoelastodynamic Green’s tensor. This Figure shows in particular that, as expected, if the damping ratio
increases the required value of rlim decreases.

We now compare the effect of the additional condition (9) to complement the classic admissibility condition (6) on the
submatrix G11. On Figure 10a, admissible (and zero) blocks are in blue and red blocks represent non-admissible blocks.
In comparison, Figure 10b show the distribution if only condition (6) is enforced. A significant gain of storage is clearly
visible as the number of red blocks is quite smaller in Figure 10b than in Figure 10a. The observed data compression rates
are τ = 0.104 with the conditions ((6)+(9)) to be compared to τ = 0.202 with the standard condition (6).
We illustrate in Figure 11 three different tolerances εdecay for αs = 15 to show that the difference in the storage is not very
significant. In Table 3 we gather the data compression rates for different tolerances εdecay and damping ratios αs. Note that
in all the following tables (Table 3 to Table 8), compression rates are given in thousandths for more readability. In practice,
the tolerance has a very moderate influence on the data compression rate in this exhaustive comparison. Moreover, the best
result is almost always achieved with its smallest value. Based on these observations, we set εdecay = 10−10 in the following.
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Fig. 9: Evolution of the dominant factor in the visco-elastodynamic Green’s tensor with respect to the distance for tolerance
εdecay = 10−10 and different damping ratios [kpa = ksa/2 = 9].

(a) Improved condition - τ = 0.104 (b) Standard condition - τ = 0.202

Fig. 10: Illustration with coloured patches of the type of blocks represented when (a) conditions ((6) + (9)) are enforced and
(b) when only (6) is applied with a damping ratio αs = 100 ; tolerance is set to εdecay = 10−10 [ksa = 18].
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(a) εdecay = 10−3 - τ = 0.103 (b) εdecay10−5 - τ = 0.118

(c) εdecay = 10−10 - τ = 0.147

Fig. 11: Illustration with coloured patches of the type of blocks represented when conditions ((6)+(9)) are applied for a
damping ratio αs = 15 and different tolerances εdecay [ksa = 18].

Damping ratio αs
τ with

(6) only
τ with (6) + (9)
εdecay = 10−3

τ with (6) + (9)
εdecay = 10−5

τ with (6) + (9)
εdecay = 10−10

0 317 317 317 317
0.01 317 317 317 317
0.1 315 315 315 315
1 292 292 292 292

10 202 202 202 202
15 202 103 118 147
100 202 99.9 101 104

1000 202 95.4 96.5 97.5
10000 202 94.9 94.9 94.9

Table 3: Evolution of the data compression rate τ (expressed in thousandths for more readability) with respect to the damping
ratio and to the tolerance in condition (7) [ksa = 18].
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4.3 Influence of the condition (10c)

Now that all the practical choices have been made for the parameters, numerical experiments are conducted to compare both
admissibility conditions ((6)+(9)) and their more involved ”counterpart” ((10b)+(10c)). The present objective is to investigate
whether the additional admissibility condition (9) leads to better, or worse, data compression, compared to the conditions
((10b)+(10c)) and (14)k=ks .

The parameters used in this section are gathered in the Table 1. We use η2 = 2 as it is the optimal choice proposed in [10]
and η = 3 as it is the optimal choice of η resulting from the analysis detailed in [14].

First we consider the conditions ((6)+(9)). Figure 12 illustrates the evolution of the data sparse approximation (and gives
the corresponding data compression rate τ ) for different values of the damping ratio αs. We observe as expected that the
compression improves with the increase of the damping ratio. This is explained by the decrease of the value of rlim, cf.
condition (7) (see Fig 9).

(a) αs = 15 - τ = 0.147 (b) αs = 100 - τ = 0.104

(c) αs = 1000 - τ = 0.098

Fig. 12: Illustration with coloured patches of the type of blocks represented when conditions ((6)+(9)) are applied for
εdecay = 10−10, with different damping ratios αs [ksa = 18].

Now we consider the same configuration but use the more involved criterion ((10b)+(10c)+(14)). Figure 13 shows the
results for η2 = 2, while Figure 14 shows the results for η2 = 3. This latter case (see (10b)) is similar to the application
of the classical admissibility condition (6). It allows us to see more precisely the influence of (10c)+(14). By comparing
Figures 10b and 14b, it seems that η2 = 3 enables to have similar results between (6) and ((10b)+(10c)+(14)). To confirm
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these results, Table 4 gives the data compression rates for various admissibility conditions and damping ratio αs. It appears
that the condition ((10b)+(10c)+(14)) does not give results better than the ones obtained with (6).

To conclude, and based on all the previous numerical studies, it appears that the use of (9) in addition to the classical
condition (6) enables important storage reductions compared to the other approaches. These encouraging results on the
efficiency of standard H-matrices can be easily explained. Comparing the involved H2 ((10b)+(10c)+(14)) condition with
the improved, yet simpleH ((6)+(9)) condition, we emphasize two important aspects:

– The set of admissible blocks in the H2 case is, by definition, a subset of the set of admissible blocks in the H case. This
restriction is based on an a priori study, specifically designed to exclude blocks which are not low-rank. However, it
appears in the case with a complex wavenumber that the standard H condition is already efficient and does not need to
be restricted. Otherwise it leads to a less efficient approach.

– The proposed improved H condition further reduces the storage requirements by approximating by blocks full of zero
not only the admissible blocks but also a portion of non-admissible blocks (in the traditional sense of admissibility).

Due to its high efficiency and ease of implementation we advocate the use of standard ”improved”H-matrices for problems
with an oscillatory kernel and a complex wavenumber. In the next Section, we illustrate the practical efficiency of the pro-
posed approach for two possible configurations: visco-elastodynamic problems in the frequency-domain and purely elastic
problems in the time-domain.

(a) αs = 15 - τ = 0.278 (b) αs = 100 - τ = 0.278

(c) αs = 1000 - τ = 0.278

Fig. 13: Illustration with coloured patches of the type of blocks represented when conditions (10b) and (10c) are applied with
η2 = 2 for different damping ratios αs [ksa = 18].
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(a) αs = 15 - τ = 0.222 (b) αs = 100 - τ = 0.209

(c) αs = 1000 - τ = 0.209

Fig. 14: Illustration with coloured patches of the type of blocks represented when conditions (10b) and (10c) are applied with
η2 = 3 for different damping ratios [ksa = 18].

Damping ratio αs
τ with

(6) only
τ with(6) + (9)
εdecay = 10−10

τ with (10b) + (10c)
η2=2

τ with (10b) + (10c)
η2=3

0 317 317 1000 1000
0.01 317 317 1000 1000
0.1 315 315 1000 1000
1 292 292 799 799

10 202 202 278 254
15 202 147 278 222
100 202 104 278 209

1000 202 97.5 278 209
10000 202 94.9 278 209

Table 4: Evolution of the data compression rate τ (expressed in thousandths for more readability) with respect to the damping
ratio and parameter η2 [ksa = 18].
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5 Application in two configurations: visco-elastodynamic BEMs and Z-BEMs

5.1 Efficiency in the context of visco-elastodynamic BEMs

We consider first the case with a physical attenuation. We can write the constitutive equation for visco-elasticity as the
convolution product of the relaxation tensor and the strain rate:

σ(x, t) = C(t) ∗ ε̇(x, t) = Ċ(t) ∗ ε(x, t) (17)

For a homogeneous isotropic visco-elastic medium, the relaxation tensor Cijkl(t) is written in terms of two independent
Lamé-type coefficients:

Cijkl(t) = [λ(t)δijδkl + µ(t)(δikδjl + δilδjk)]H(t) (18)

where H(.) is a Heaviside step function. The rewriting of the visco-elastic constitutive law in the frequency domain, see [17]
for more details, leads to:

σij(x, ω) = Ĉijkl(ω)εkl(x, ω), Ĉijkl(ω) = λ̂(ω)δijδkl + µ̂(ω)(δikδjl + δilδjk) (19)

where λ̂(ω) and µ̂(ω) are respectively the Fourier transforms of λ(t)H(t) and µ(t)H(t). This highlights the analogy between
the linear visco-elastic and the linear elastic time-harmonic configurations. Equality (19) shows that the main difference
between the two situations is that the Lamé coefficients and consequently wave velocities and wavenumbers are complex-
valued and frequency-dependent in the visco-elastic case. Following [18], we consider complex wavenumbers of the form:

k̂2(ω) =
ρω2

M̂
(20)

where M̂(ω) = Mr(ω) − iMi(ω), with Mr > 0 and Mi ≥ 0, corresponds either to M̂ = λ̂ or µ̂. These complex
wavenumbers can be written as:

k̂(ω) = ω

√
ρ(|M̂ |+Mr)

2|M̂ |2
+ iω

√
ρ(|M̂ | −Mr)

2|M̂ |2

= ω

√
ρ(|M̂ |+Mr)

2|M̂ |2

(
1 + i

√
|M̂ | −Mr

|M̂ |+Mr

)
= Re(k̂(ω))(1 + iα(ω))

α(ω) corresponds to the ratio of the imaginary part over the real part of the complex wavenumber for physical configuration
in case of real soils. We denote Q−1 the damping coefficient associated with the physical material attenuation given by

Q−1 =
Mi(ω)

Mr(ω)
(21)

It can be defined through empirical models, e.g., rheological models (Maxwell, Kelvin-Voigt, Zener) which are able to give
the frequency-depend expression of the equivalent visco-elastic modulus (see [35] for more details on rheological models).
Rewriting the expression of the attenuation factor α(ω) as a function of Q−1 we obtain:

α(ω) =

√√√√√
(√

1 + (Q−1)2 − 1
)

(√
1 + (Q−1)2 + 1

) (22)

Damping in real soils follows the weak-dissipation assumption such as we could consider Q−1 � 1. Thus, truncating the
Taylor of α at the first order yields to the approximation under the weak-dissipation configuration:

α ' 1

2
Q−1 (23)

Since M̂ in (20) can be equal to λ̂ or µ̂, and given (21) it follows that under the weak-dissipation assumption

µ̂ = Re(µ̂)(1− 2iαµ) and k̂s = ω

√
ρ

Re(µ̂)
(1 + iαµ) (24)

For the sake of simplicity in this work, the material damping ratios are assumed to be the same, i.e., αµ = αλ. The complex
P-wavenumber k̂p and the complex Poisson’s ratio ν̂ are given by (note that the Poisson’s ration thus reduce to the real
Poisson’s ratio):

k̂p = k̂s

√
Re(µ̂)

Re(λ̂) + 2Re(µ̂)
, ν = Re(ν̂) =

Re(λ̂)

2(Re(λ̂) +Re(µ̂))
(25)
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It follows that αµ = αλ = αs. In practice, to consider weak dissipation, values of attenuation should be contained in the range
0 6 Q−1(ω) 6 0.2, which implies 0 6 α(ω) 6 0.1. Damping in real soils follows in fact the weak-dissipation assumption,
with typical values in the range αs ∈ [0.03, 0.06]. Table 5 gives the compression rates τ (expressed in thoussandths for more
readability) for various admissibility conditions and realistic damping ratios αs.

Damping ratio αs
τ with ks = 18

(6) only

τ with ks = 18
(6) + (9)

εdecay = 10−10

τ with ks = 18
(10b) + (10c)

η2=2

τ with ks = 18
(10b) + (10c)

η2=3

τ with ks = 90
(6) only

τ with ks = 90
(6) + (9)

εdecay = 10−10

τ with ks = 90
(10b) + (10c)

η2=2

τ with ks = 90
(10b) + (10c)

η2=3

0 317 317 1000 1000 33.2 33.2 404 250
0.03 317 317 1000 1000 32.5 32.5 310 160
0.04 317 317 1000 1000 32.0 32.0 291 160
0.05 317 317 1000 1000 31.4 31.4 267 160
0.06 316 316 1000 1000 30.7 30.7 235 157

Table 5: Evolution of the compression rate τ (expressed in thousandths for more readability) with respect to the damping
ratio for different admissibility conditions [ksa = {18, 18× 5} with 10 points per λs, Nleaf = 100].

We understand at this point that if some savings will be obtain in the case of viscoelastodynamic problems compared to
the same purely elastic problem, it is not the most interesting domain of application of the proposed new criterion. Hopefully,
this approach can be very efficient for purely elastic time-domain problems.

5.2 Efficiency of the approach in the context of the convolution Quadrature Method for 3D time-domain elastodynamics

Another interesting configuration in which purely elastodynamic problems are consider with a complex wave number is when
a CQM-based approach is used to reformulate the time-domain BIE in terms of BIEs in the (complex) frequency domain. The
approach can conveniently be presented by focusing on the evaluation of the single-layer integral operator G{f} for a given
causal density f (see [28] for more details in the context of Helmholtz problems). It is based on a numerical approximation
of convolution integrals such as:

f ∗ g(x) =

∫ x

0

f(x− t)g(t)dt, x ≥ 0

by quadrature rules. This method has been introduced in [26] where the theoretical procedure to obtain an approximation of a
convolution product at discrete times (with constant time-step) is obtained and then extended in [25] with variable time-steps.
[27] gives the numerical evaluation of the quadrature weights. Using the CQM, the influence of the damping in case of visco-
or poroelasticity can be taken into account (see [34], [33]). The Z-BEM method refers to the whole solving procedure used
here. The use of Z-transform in the context of the CQM eases the approximation of convolution products appearing in the
initial time-domain problem. The inverse Z-transform is used to express the discrete time-domain solution obtained once the
BIE is solved. This procedure is detailed in an acoustic configuration in [28].

We consider a classical elastodynamic problem in the time-domain. For a given force distribution F(y, t) over the ge-
ometry studied, an elastodynamic state is any triplet (u,σ,F) satisfying the linear elastic constitutive equation and the
fundamental equation of motion

σ = λ(divu)1 + µ
(
∇u +∇Tu

)
divσ + ρ(F− ü) = 0 ∀(y, t) ∈ Ω × [0, T ]
u(y, 0) = u0(y) u̇(y, 0) = v0(y)
+ prescribed boundary conditions

(26)

From (26), we deduce the integral representation for an elastodynamic state [5]

uk(x, t) +

∫
∂Ω

{T ki (x, t,y) ∗ ui(y, t)− Uki (x, t,y) ∗ ti(y, t)}dSy =

∫
Ω

ρUki (x, t,y) ∗ Fi(y, t)dVy

+

∫
Ω

ρ{v0i(y)Uki (x, t,y) + u0i(y)U̇ki (x, t,y)}dVy (27)

where T ki = Σk
ijnj are the components of the traction vector associated with the fundamental solution. By applying a

limiting process [5], we obtain the following regularized displacement integral equation [5]∫
∂Ω

[
T ki (x, t,y) ∗ ui(y, t)− ui(x, t)T ki (x,y)

]
dSy −

∫
∂Ω

Uki (x, t,y) ∗ ti(y, t)dSy = 0 (28)
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To present the Z-BEM approach [28] to solve (28) in the time domain we focus on the evaluation of the single-layer integral
operator:

q(t) =

∫
∂Ω

Uki (x, t,y) ∗ ti(y, t)dSy =

∫
∂Ω

∫ t

0

Uki (x, t− τ,y) ∗ ti(y, τ)dτdSy

The starting point is to note that Uki (x, t − τ,y) may be expressed in terms of its Laplace transform Ūki (assuming it is
well-defined), so that for x and y fixed:

q(t) =

∫ t

0

(
1

2πi

∫ γ+i.∞

γ−i.∞
Ūki (s)es(t−τ)ds

)
ti(τ)dτ =

1

2πi

∫ γ+i.∞

γ−i.∞
Ūki (s)h(τ ; s)ds, with h(t; s) :=

∫ t

0

es(t−τ)ti(τ)dτ.

(29)
Considering a sequence of discrete time instants tn = n∆t, n ∈ N, where ∆t is the constant time step, the CQM is
developed as a means to evaluate the sequence (qn)n≥0 of convolution values qn := q(tn), over a finite discrete time interval
{0, ∆t, 2∆t . . . , T = M∆t}, given the sequence (tin) := (ti(tn))n≥0 and the fundamental solution Uki . The key point of
the CQM consists then in remarking that the function t −→ h(t; s) introduced in (29) satisfies the initial-value problem:{

dh
dt (t; s) = sh(t; s) + ti(t)

h(t 6 0; s) = 0
(30)

We can numerically solve the ordinary differential equation (30) for the time-discrete approximation: hn(s) := h(tn, s) of
h(t; s) (with fixed s) by applying for example a linear multi-step method to (30) such that{

dhn(s)
dt ' 1

∆t

∑k
j=0 αjhn+j−k(s) =

∑k
j=0 βj(shn+j−k(s) + tin+j−k), ∀n ∈ N,

h−p = ti−p = 0 ∀p ∈ [|1, k|]
(31)

where the coefficients αj and βj are the constants of the multistep method (for instance, k = 2, α0 = 1, α1 = −4, α2 =
3, β0 = β1 = 0, β2 = 2 for the Backward Differentiation Formula of order 2 (BDF2) method). The Z-transform Z[(xn)](ξ)
of a discrete-time signal (xn) is given for |ξ| 6 % (with % the radius of convergence of the series) by

Z : (xn) = {x0, x1, . . . } −→ Z[(xn)](ξ) =

∞∑
n=0

xnξ
n ≡ X(ξ), ξ ∈ C (32)

Multiplying by ∆tξn, taking the Z-transform of (31) and taking the sum over n, we obtain after some manipulations

k∑
j=0

αjξ
k−jH(ξ; s) = ∆t

k∑
j=0

βjξ
k−j(sH(ξ; s) + Ti(ξ)) (33)

such that

H(ξ, s) =
1

p(ξ)
∆t − s

Ti(ξ) with p(ξ) =

∑k
j=0 αjξ

k−j∑k
j=0 βjξ

k−j
(34)

p is characteristic of the multistep method chosen: p(ξ) = (3−4ξ+ξ2)/2 for the BDF2 method and p(ξ) = (11−18ξ+9ξ2−
ξ3)/6 for the BDF3 method. With the help of the Cauchy’s residue theorem, we obtain an approximation of the Z-transform
of the convolution product

Q(ξ) = Ūk
i

(
p(ξ)

∆t

)
Ti(ξ). (35)

We can then extend this result to the whole BIE (28). It involves the numerical resolution of distinct BIEs in the complex
frequency domain given by the discrete values of s: sp = p(ξp)/∆t with ξp = ρe2iπp/L, L complex numbers taken on the
circle of radius ρ in the complex space. Once the solution Ui(., ξ) is obtained, the time discrete physical unknowns ui(., tn)
are obtained by taking the inverse Z-transform of Ui(., ξ) given by:

ui(., tn) =
1

2iπ

∫
C

Ui(., ξ)ξ
−k−1dξ ' 1

L

L−1∑
p=0

Ui(., ξp)ξ
−k
p , ∀k ∈ [|0,M |] (36)

with M the total number of time steps. Figure 15 illustrates the complex frequencies sp at which the solution of the BIE
is required for ∆t = 10−4 and for the BDF2 (Fig. 15a) and BDF3 (Fig. 15b) linear multistep methods in (31). Figure 15
illustrates that the Z-BEM implies the solutions of BEM problems with complex wavenumbers for which the decay ratio
αs = Im(ks)/Re(ks) is taken in a large range.

For our examples with ∆t = 10−4, minαs = 0, maxαs = 215 for BDF2 and maxαs = 16240 for BDF3. Due to
the definition of sp, these numbers will increase if ∆t is decreased. For each integration contour in Figure 15, Table 6 gives
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(a) sp values for the BDF2 linear multistep method (b) sp values for the BDF3 linear multistep method

Fig. 15: Complex frequencies sp for which BEM problems have to be solved in the Z-BEM for two different linear multistep
methods and a time step ∆t = 10−4.

the number of complex frequencies lying inside some damping ratio intervals. It illustrates the repartition of the interesting
damping ratios for this application. Finally, Tables 7 and 8 give the compression rates τ (expressed in thousandths for more
readability) for various admissibility conditions and the damping ratios αs observed in Figures 15a and 15b respectively,
with the help of Table 6. As expected, we observe that the compression increases with the frequency. Another interesting
behaviour is that the standard admissibility condition (6) produces similar results than (10b) + (10c). Importantly, when the
damping ratio increases, we observe that the obtained compression reaches a plateau. Thus the introduction of more damping
does not change the compression rate. On the other hand, the proposed approach with (6) + (9) enables an increase of the gain
as the damping ratio increases. This means that the additional compression is obtained by approximating the non-admissible
blocks. For the largest damping ratios, we notice that the proposed approach enables to divide by a factor up to three the
storage requirements. These results confirm the interest of the proposed approach in the context of Z-BEM.

Intervals of αs

Number of complex frequencies
for BDF2 integration contour

Figure 15a

Number of complex frequencies
for BDF3 integration contour

Figure 15b

[0,1] 6850 6580
[1,10] 8080 10702

[10,30] 1830 1826
[30,60] 898 448
[60,100] 646 178

[100,600] 1696 222
[600,17000] 0 44

Table 6: Number of complex frequencies lying in some damping ratio intervals for BDF2 and BDF3 integration contours.

Damping ratio αs
τ with ks = 18

(6) only

τ with ks = 18
(6) + (9)

εdecay = 10−10

τ with ks = 18
(10b) + (10c)

η2=2

τ with ks = 18
(10b) + (10c)

η2=3

τ with ks = 90
(6) only

τ with ks = 90
(6) + (9)

εdecay = 10−10

τ with ks = 90
(10b) + (10c)

η2=2

τ with ks = 90
(10b) + (10c)

η2=3

0 317 317 345 345 33.2 33.2 404 250
5 205 205 278 254 6.57 6.57 11.0 11.0
10 202 202 278 209 6.17 6.17 8.67 7.87
20 202 141 278 209 6.16 4.73 8.67 6.44
30 202 130 278 209 6.16 4.44 8.67 6.44
40 202 119 278 209 6.16 4.22 8.67 6.44
50 202 117 278 209 6.16 4.07 8.67 6.44

100 202 104 278 209 6.16 3.54 8.67 6.44
130 202 103 278 209 6.16 3.42 8.67 6.44
160 202 103 278 209 6.16 3.33 8.67 6.44
200 202 102 278 209 6.16 3.25 8.67 6.44
215 202 102 278 209 6.16 3.22 8.67 6.44

Table 7: Evolution of the compression rate τ (expressed in thousandths for more readability) with respect to reachable
damping ratios in BDF2 integration’s contour Figure 15a for different admissibility conditions [ksa = {18, 90}, with 10
points per λs, Nleaf = 100].
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Damping ratio αs
τ with ks = 18

(6) only

τ with ks = 18
(6) + (9)

εdecay = 10−10

τ with ks = 18
(10b) + (10c)

η2=2

τ with ks = 18
(10b) + (10c)

η2=3

τ with ks = 90
(6) only

τ with ks = 90
(6) + (9)

εdecay = 10−10

τ with ks = 90
(10b) + (10c)

η2=2

τ with ks = 90
(10b) + (10c)

η2=3

0 317 317 345 345 33.2 33.2 404 250
5 205 205 278 254 6.57 6.57 11.0 11.0
10 202 202 278 209 6.17 6.17 8.67 7.87
20 202 141 278 209 6.16 4.73 8.67 6.44
30 202 130 278 209 6.16 4.44 8.67 6.44
40 202 119 278 209 6.16 4.22 8.67 6.44
50 202 117 278 209 6.16 4.07 8.67 6.44

100 202 104 278 209 6.16 3.54 8.67 6.44
130 202 103 278 209 6.16 3.42 8.67 6.44
160 202 103 278 209 6.16 3.33 8.67 6.44
200 202 102 278 209 6.16 3.25 8.67 6.44
500 202 99.5 278 209 6.16 3.06 8.67 6.44
1000 202 97.5 278 209 6.16 2.92 8.67 6.44

10000 202 94.9 278 209 6.16 2.78 8.67 6.44
16240 202 94.9 278 209 6.16 2.78 8.67 6.44

Table 8: Evolution of the compression rate τ (expressed in thousandths for more readability) with respect to reachable
damping ratios in BDF3 integration’s contour Figure 15b for different admissibility conditions [ksa = {18, 90} with 10
points per λs Nleaf = 100].

6 Conclusion

In this work, we have evolved the admissibility condition in the H-BEM to simulate 3D elastodynamic problems with
complex wavenumbers. This evolution, which consists in adding condition (9) to the classical condition (6), is a way to
obtain improved data-sparse approximations of the discretized Green’s tensor. It takes into account the influence of the
imaginary part of the complex wavenumbers on the exponential decay induced in the Green’s tensor. This exponential decay
has a moderate influence on the data-sparse approximation of the matrix in the viscoelastodynamic regime. However it has a
much stronger influence on the data sparse approximation of the matrix in the context of the convolution quadrature method
for BEMs 3D elastodynamics. The literature on this topic is so far quite limited. In [12] a new admissibility condition to study
highly-oscillatory Helmholtz kernels with complex wave numbers in the context of directionalH2-matrices is proposed. We
have shown that our new admissibility condition is simpler to implement and allows one to achieve improved compression
rates with a controlled loss of accuracy. We use the sound theoretical background proposed in [12] to back up the efficiency
of our approach.

It is the authors’ belief that the present study could have a real impact on the efficiency of the Z-BEM approach for
3D elastodynamics (and Helmholtz) in the time domain. Among others, we have shown that the gain in terms of memory
requirements becomes significant when the damping ratio is above a threshold value. In such configurations, the storage
requirement converges towards a minimal storage representative of non-admissible blocks only. Indeed, the non-admissible
blocks have a fixed position in the matrix, and the discretized Green’s tensor can be accurately approximated by these non-
admissible blocks only, as the strong exponential decay allows one to approximate all the admissible part of the matrix by
matrices of zeros. Figure 16 summarises the range of values reached by αs when the Z-BEM approach is used for purely
elastic problems and for viscoelastodynamic problems.

Fig. 16: Values taken by αs in case of the Z-BEM approach for time-domain elastodynamics and for viscoelastodynamic
problems.
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12. S. Börm, M. Lopez-Fernandez, and S.A. Sauter. Variable Order, Directional H2-Matrices for Helmholtz Problems with Complex Frequency. IMA

Journal of Numerical Analysis, 12 2020. draa046.
13. S. Chaillat and M. Bonnet. Recent advances on the fast multipole accelerated boundary element method for 3d time-harmonic elastodynamics. Wave

Motion, 50(7):1090–1104, 2013.
14. S. Chaillat, L. Desiderio, and P. Ciarlet. Theory and implementation of H-matrix based iterative and direct solvers for Helmholtz and elastodynamic

oscillatory kernels. Journal of Computational Physics, 351:165–186, December 2017.
15. E. Darve. The fast multipole method: numerical implementation. Journal of Computational Physics, 160(1):195–240, 2000.
16. G.H. Golub and C.F. Van Loan. Matrix computations. JHU Press, 3rd edition, 2012.
17. E. Grasso. Modelling visco-elastic seismic wave propagation : a fast-multipole boundary element method and its coupling with finite elements.
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