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Abstract: Postfilamentation channel resulting from filamentation of freely propagating 744-nm, 5-mJ,
110-fs pulse in the corridor air is examined experimentally and in simulations. The longitudinal
extension of postfilament was determined to be 55–95 m from the compressor output. Using single-
shot angle-wavelength spectra measurements, we observed a series of red-shifted maxima in the
spectrum, localized on the beam axis with the divergence below 0.5 mrad. In the range 55–70 m,
the number of maxima and their red-shift increase with the distance reaching 1 µm, while the pulse
duration measured by the autocorrelation technique is approximately constant. Further on, for
distances larger than 70 m and up to 95 m, the propagation is characterized by the suppressed
beam divergence and unchanged pulse spectrum. The pulse duration increases due to the normal
air dispersion.

Keywords: femtosecond filamentation; postfilament; angle-wavelength spectrum; pulse autocorrela-
tion function

1. Introduction

Nonlinear propagation of a collimated high-power ultrashort laser pulse in ambient
air [1] results in the beam collapse [2,3] and filamentation [4–6]. During filamentation,
the laser radiation localizes into single or multiple filaments due to the dynamic equilibrium
between Kerr self-focusing and defocusing in the self-induced plasma [7–12]. Applications
of filamentation in air include atmospheric remote sensing [13–18], triggering and guiding
of high-voltage discharges [19–22], lightning control [23–25], filament-induced breakdown
spectroscopy [26–29].

The filament in air produced by Ti:sapphire laser pulses is characterized by the key
parameters such as the clamped intensity of about 100 TW/cm2 [30–32], plasma density
of 1016–1017 cm−3 [33,34] and diameter of ∼100 µm [4,35]. By the filament we mean
spatio-temporally localized light structure accompanied by plasma channel. Therefore,
the filament length is equal to the plasma length. The light channel induced by the
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same femtosecond pulse can be much longer than the plasma channel and it can reach
tens to hundreds of meters [36–38]. Within extended light channels the bursts of plasma
separated by the light channels were detected up to 1.5 km [36]. More than fifteen-meter
uninterrupted light channels formed by sub-terawatt ultraviolet pulse were reported in [39].
In the case of 60-GW 744-nm pulse filamentation in the 100-m corridor, the plasma channel
was only 0.5 m long [40].

Filamentation is accompanied by significant broadening of the angle-wavelength
spectrum [4–6]. The initially ∼20-nm-width spectrum of the ∼800-nm pulse was reported
to expand to∼15 µm [41] in the infrared and to∼250 nm in the ultraviolet [42] ranges. One
or several separated Raman humps were formed in the infrared part of the spectrum [43,44].
The angular distribution of femtosecond pulse in the filament is represented by shorter
wavelengths propagating at larger angles. For a single filament the color rings surround
the beam propagation axis [5,6]. In opposite, the infrared wing of the spectrum tends to
converge towards the axis producing a light bullet [45–47]. In the temporal domain the
pulse is self-compressed down to ∼10 fs pulse in atmospheric pressure gases and in the
collimated beam geometry [48,49].

The angle-wavelength spectrum of the pulse in the air filament has been studied on a
several-meter propagation path under loose focusing and allowed the authors of [45,47]
to experimentally observe the conical blue-shifted as well as the infrared on-axis part of
the spectrum. In [45] the measurements were conducted with averaging over 50 laser
shots, while in [47] each angle-wavelength spectrum was taken in single laser shot, which
allowed clear observation of Stockes-shifted on-axis humps in the spectrum. In the case
of the long-range filamentation an essential fraction of the light channel is represented by
postfilament, characterized by the intensity of a few TW/cm2, the lack of detectable plasma
and low angular divergence [38,50]. The unprecedently long high-intensity zone causes
nonlinear transformation of supercontinuum produced in the plasma channel into multiple
infrared spectral humps [40], the angular distribution of which is not known as for now.
The nonlinear pulse transformation in the collimated beam geometry makes it possible
to explicitly observe angular redistribution of the new wavelengths born in the plasma
channel. The information on directionality of the infrared humps in the postfilament is
important for remote sensing applications.

In this work we launch 5-mJ, 110-fs, 744-nm pulse onto a 100 m path in air in a single-
filament regime and experimentally study single-shot angle-wavelength spectra of the
postfilament. We observed the localized spectral maxima spanned till 1 µm with angular
divergence of about 0.5 mrad. The number of maxima increases from one to about five
as the distance increases from 55 to 70 m. The autocorrelation traces show the constant
pulse duration within the same 55–70 m range. In order to locate the postfilament on the
propagation path we recorded transverse fluence distributions at the distances 40–150 m
from the laser system output and showed that the Kerr nonlinearity keeps the self-cleaned
beam with almost the same radius below 1 mm from 55 to 95 m. Numerical (t, r) + z
simulations on a 100-m path reproduce angle-wavelength spectra and autocorrelation
traces in agreement with the experiment.

2. Materials And Methods
2.1. Experiment

In the experiment we used pulses from commercial Ti:Sapphire laser system (Avesta
ltd.) with central wavelength of 744 nm, duration of about 110 fs (at e−1 level) and energy
of ∼5 mJ. The initial beam diameter was 8 mm (full width at e−1 of fluence maximum).
After the set of high-reflective mirrors, the last of which was located at a distance of about
z = 11 m from the laser system output, the beam propagated freely inside the corridor up
to the distance of z = 95 m. At this distance the comparatively low-intensity beam was
reflected by another high-reflective mirror without damaging it. Thus, the propagation
path was elongated to 150 m available for measurements.
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The beam was initially elliptic with the eccentricity of 0.65± 0.05 due to the presence of
the off-axis telescope in the laser system. The telescope introduced wavefront astigmatism
and caused different divergence along the vertical and horizontal beam axes. The average
geometrical divergence of the beam was equivalent to the focal distance of about −50 m.
The described beam configuration combined with our laser pulse duration and energy
enabled us to avoid self-focusing collapse within the first 11 m of the optical path in the
corridor. Figure 1 represents the initial angle-wavelength spectrum of laser radiation (a)
and transverse fluence distribution (b) at the beginning of the corridor path.

Figure 1. Experimentally measured initial (a) angle-wavelength spectrum and (b) transverse fluence
distribution with its slice at x = 0 (white curve) at z = 13 m from the compressor output.

The transverse fluence distribution in our beam was taken with the CCD-camera
Ophir Spiricon SP620U. As the beam diameter eventually was larger than the size of
our CCD camera matrix, we used the visualization system based on the luminescence
phenomenon (Figure 2b). The laser beam hit the screen (LS) and the luminescence of this
screen was projected to the CCD surface (CCD) by the objective lens (OL). We used the
preliminary performed calibration of this screen luminescence to obtain the transverse
fluence distribution from the luminescence data. In order to attenuate laser radiation and
prevent the screen from damage, we sent the Fresnel reflection of the beam from the front
face of the wedge (W) to this luminescent screen. To attenuate the light efficiently, we chose
the reflection angle to be close to the Brewster’s one. Therefore, small deviations in the
angle of incidence led to the essential change in the reflection coefficient. That is why the
comparison between the fluence values obtained from the experimentally measured beam
profiles at different distances was not possible. The distance between the wedge and the
luminescent screen was about 5 cm. The propagation of this attenuated beam led to the
beam core divergence, so the values of the beam radius are slightly overestimated in the
experimental data. The described beam divergence explains the fact that the minimum
beam diameter of ∼1 mm measured by us is larger than the filament core diameter of less
than ∼200 µm [51]. At each distance we took 32 profiles (see examples in Figure 3) and for
each realization found vertical and horizontal beam radius. From these data we calculated
average value and standard deviation that are shown in Figure 4.

In order to characterize spectra at different distances along the postfilament, we used
spectrometer Avesta ASP-150 (Avesta Project Ltd.) and imaging spectrometer SOLAR
Laser Systems M150i equipped with the CCD-camera TheImagingSource dmk33GX249
(12 bit/px). The scheme of the angle-wavelength spectra measurement setup is shown
in Figure 2a. The glass wedge W1 terminates nonlinear beam propagation at a desired
distance. Wedges W1 and W2 direct the beam to the spectrometer. We aligned the beam
using two diaphragms D1 and D2 and removed them before the measurements so as to
ensure the same propagation geometry inside the spectrometer through all the sets of
data collection. After attenuation by neutral density filters NF, the beam was directed by
aluminium-coated 2-inch mirrors M1 and M2 to the centre of the spherical mirror S. Such
geometry provides the least angle of incidence and thus the smallest aberrations. Imaging
spectrometer’s slit was in the focus of the spherical mirror S, and the beam was aligned to
enter the spectrometer perpendicular to the plane of the entrance slit.
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Figure 2. (a) The angle-wavelength spectra measurement setup scheme (W1, W2—wedges, D1,
D2—diaphragms, NF—neutral filter (attenuator), M1, M2—aluminium-coated mirrors, S—spherical
mirror). (b) The transverse fluence profile measurement setup scheme (W—wedge, LS—luminescent
screen, OL—objective lens.

Figure 3. Experimentally measured transverse fluence distributions at different propagation dis-
tances z. White curves show their slice at x = 0.

40 50 60 70 80 90 100 110 120 130 140 1500
1
2
3

 = 0.008 mrad
 Experimental data Linear fit Gaussian beam w0=0.55 mm

Propagation distance z, m

 = 0.8 mrad

Beam r
adius, m

m

Figure 4. The dependence of the average beam radius on the distance z (squares) and its linear fit
in the range z = 65–95 m (blue line). The green horizontal band shows the minimum value of the
radius. Yellow rectangle is the range z = 55–95 m, where the beam propagates in postfilamentation
regime. Radius of Gaussian beam at e−1 with waist w0 = 0.55 mm (red line) vs. z.

Imaging spectrometer provides angle- and wavelength-resolved intensity distribution
in a single laser shot, therefore, being a powerful tool for filamentation studies. However,
our opportunities to employ this technique were limited by the following two factors.
On the one hand, there was a part of our propagation path extended from 50 to 60 m where
we were unable to measure the angle-wavelength spectra without damaging the first glass
wedge. On the other hand, starting from 100 m, the beam size started growing noticeably
and did not fit into the angle-wavelength measurement setup. Therefore, we were able to
obtain the angle-wavelength spectra only in the limited range of distances from 60 m to
95 m (Figure 5, right column, Figure 6) and before the collapse at 13 m (Figure 1a).
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To complete our studies with the data from shorter (as compared with 60 m) and
longer distances (up to 150 m), we recorded spectra without angular resolution. The beam
was reflected from a glass plate and directed to the spectrometer. The spectrometer entrance
slit was aligned with the brightest spot in the transverse distribution so as to detect the
part of the beam, which experienced the strongest nonlinear transformation. At each
distance, we recorded 10 to 20 spectra and processed them to extract the wavelength with
the brightest red-shifted separated maximum (hump) (Figure 7).

The autocorrelation functions were obtained using autocorrelator Avesta ASF 20
CrossCorrel. The laser beam reflected from a glass wedge was directed to the autocorrelator
entrance. As the beam wandering in the transverse direction took place, we chose only the
shots with the autocorrelation function located near the centre of the autocorrelator’s CCD
matrix (i.e., the ones with the best alignment).

Figure 5. The angle-wavelength spectra obtained in numerical simulations (left column) and in the
experiment (right column) at the distances from 60 m to 95 m.

Figure 6. The angle-wavelength spectrum obtained in the experiment in two separate shots for
500–725 nm and 775–1015 nm ranges at the distance 65 m.
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Figure 7. The dependence of the brightest red-shifted hump wavelength obtained by the spectrome-
ter (black squares) and the imaging spectrometer (magenta stars) on the propagation distance. Error
bars represent the standard deviation of the longest red shift over 10–20 realizations.

2.2. Simulations

Numerical simulations are based on the Forward Maxwell Equation (FME) [52–54],
a paraxial carrier-wave-resolved propagation equation for the time-domain Fourier har-
monics Ê(ω, r, z) of the electric field E(t, r, z):

∂Ê(ω)

∂z
= −i

(
k(ω) +

∆⊥
2k(ω)

)
Ê(ω)− 2π

c
Ĵ(ω), (1)

where t is the time, ω is the angular frequency, r is the transverse coordinate, z is the
propagation distance, k(ω) = ωn(ω)/c is a wave number, n(ω) is the refractive index of
air, c is the speed of light in vacuum, and ∆⊥ = r−1∂/∂r(r ∂/∂r).

As the energy of the laser pulse is moderate, and we observe formation of a single
filament, the simulations were carried out in axially-symmetrical (t, r) + z geometry in the
experimental conditions for the linearly polarized input field:

E(t, r, z = 0) = E0 exp

(
− r2

2a2
0
− t2

2τ2
0

)
cos(ω0t) (2)

where E0 is the electric field amplitude corresponding to the energy of 6 mJ, 2τ0 = 108 fs is
pulse duration; the input beam diameter is 2a0 = 8 mm.

The nonlinear current in Equation (1) J(t) = Jfree + Jabs + ∂Pinst/∂t+ ∂Prot/∂t includes
free electron Jfree(t) and absorption Jabs(t) currents, the third-order instantaneous Pinst(t)
and delayed Prot polarization, see the details in Ref. [55]. Technical details about the grids
used can be found in Ref. [40].

3. Results And Discussion
3.1. Postfilament Length

Figure 3 shows transverse fluence distributions of the pulse in the corridor within
the distance range z = 40–150 m from the compressor output. Within the distance range
13–40 m the beam contracts due to self-focusing. This contraction is accompanied by
significant increase of the beam eccentricity due to the initial ellipticity and astigmatic
phase (compare Figures 1b and 3, z = 40 m). Moreover, self-focusing causes faster
beam collapse along the shorter ellipse axis due to the higher intensity gradient along
it, that additionally increases beam eccentricity while approaching the nonlinear focus.
Between 40 and 55 m, the initially elliptical beam transforms to the axially symmetrical
one [56]. It is a manifestation of spatial mode self-cleaning process [57]. Indeed, the initial
pulse peak power of ∼50 GW exceeds the critical power for self-focusing by a factor
of 5, which is enough for elliptical beam self-focusing but insufficient for the second
filament formation [58]. In the range of distances 50–60 m, the average beam radius r
(Figure 4) abruptly decreases from ∼1.5 to ∼1 mm. We associate this radius decrease
with the presence of the nonlinear focus and formation of a short single filament and the
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corresponding ∼0.5-m plasma channel [40] at ∼55 m. The presence of plasma is evidenced
by the conical emission in the angle-wavelength spectra (Figure 5, z = 65 m, and Figure 6).
The uncertainties of the beam radius, estimated as a standard deviation over 32 laser shots,
constitute 50% for z < 55 m and 30% in the range of distances z = 55–63 m. The ∼50%
error values are due to the significant scattering of the collapsing beam radius induced by
∼5% fluctuation of the initial pulse energy. The variation of the nonlinear focus position,
estimated from Marburger equation [3], reached ∼3 m.

At the distance z = 65 m the beam radius r reached its minimum of rmin = (0.55±
0.10) mm and preserved this size till about 95 m (Figure 4). The circular beam profile
obtained due to self-cleaning in the filament was preserved up to 130 m (Figure 3). The un-
certainty of the radius r was below 20% in this range of distances (Figure 4). So, behind the
nonlinear focus located at z ≈ 55 m, a low-divergent light channel with the length of
∼40 m was formed. Reduced uncertainties of the beam radius for z > 55 m indicate that
the effect of the initial pulse energy fluctuations on the pulse propagation is limited as
compared with the initial stage of the filament formation.

Let us estimate the postfilament length as the zone after the collapse at z ≈ 55 m,
where the beam radius reached its minimum value rmin within the error, and till z ≈ 95 m,
where the beam started to diverge again. This part of the path covering 55–95 m of the
propagation without divergence is marked by yellow in Figure 4. The beam radius within
the postfilament zone is smaller than rp f = 1 mm. The corresponding diffraction length
is ld = 2πr2

p f /λ ≈ 8.5 m, where λ = 744 nm is the central laser wavelength. The 40-m
postfilament is much longer than ld.

The angular divergence of the postfilamentation channel at distances from 65 to 95 m is
given by the best linear fit slope coefficient γ = (8± 2)× 10−6 rad (Figure 4, blue line). This
divergence is in reasonable agreement with the postfilament channel divergence reported
in [50]. To estimate the divergence of such a beam in the case of linear propagation, we took
a Gaussian beam with the waist radius (parameter w0) of 0.55 mm (Figure 4, red line). This
Gaussian beam has an asymptotic divergence of γ ≈ 8× 10−4 rad. The difference between
‘linear’ (Gaussian beam) and ‘nonlinear’ (postfilamentation channel) divergence is about
two orders of magnitude. The suppressed divergence of the beam in the postfilament
results from the interplay between linear diffration/dispersion and nonlinearity. The latter
can be instantaneous and delayed third-order response owing to relatively high, though,
below the ionization threshold intensity in the postfilament equal to ∼1 TW/cm2 [50].

3.2. Angle-Wavelength Spectra

Filamentation of a femtosecond pulse in air is accompanied by supercontinuum
generation [4–6]. The angle-wavelength spectrum of the supercontinuum is essentially
asymmetrical even in the case of our short ∼0.5-m plasma channel [40] followed by long
40-m postfilament (Figure 5). The conical emission [6] due to the nonlinear ionization of
air molecules is clearly seen in the short-wavelength side of the spectrum (see Figure 5,
right column, z = 65 m). The presence of the conical emission is clearly seen in the left
panel of Figure 6, where the fundamental wavelength is blocked allowing us to enhance
the low-intensity supercontinuum. In the experiment, the divergent short-wavelength
components were recorded up to the propagation distance z = 65 m. At larger distance
they escaped the imaging spectrometer entrance aperture.

The long-wavelength components of the supercontinuum propagate along the beam
axis [47,59] and, hence, are clearly seen in the experiment through all the postfilament
channel (Figure 5). They emerge after the nonlinear focus (z = 60 m), then shift further
into the infrared range. Within the range z = 60–75 m the infrared wing of the spectrum
continues to broad producing the Raman humps [40]. The most pronounced spectrum
modulation is obtained in both experiment and simulations at z = 75 m. The modulated
spectra remain almost unchanged up to the end of the postfilament at z = 95 m.

It is worth mentioning, that the angle-wavelength spectral measurements for the case
of focused filamentation geometry were conducted in [47], reporting the formation of the
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Raman humps series on the filament axis. The central wavelength of the humps increased
with propagation, and, in addition, formation of the off-axis red-shifted components was
observed. In the present work, on the contrary, the angle-frequency spectra taken at
z = 75 and 95 m shown that the long-wavelength components stay on the propagation axis
with the overall angular divergence . 0.5 mrad. Thus, we have explicitly shown in the
experiment that red-shifted humps are located in the axis.

In the current experiment the angle-wavelength spectra (Figure 5, right column), only
humps with the wavelengths . 850 nm were observed due to the limited dynamic range
of the detector, while the simulations predict the presence of humps with lower spectral
intensity at larger wavelengths as well. In order to detect the low-intensity radiation at
higher wavelengths, we changed (by spectrometer grating rotation) the central wavelength
of the detected range, so that the most intense part of the radiation (at about 740 nm) could
not enter the CCD. This procedure allowed us to reduce the number of ND filters before
the spectrometer (see Figure 2a) and observe the spectral components that otherwise were
not seen. The same procedure was carried out in order to get the blue part of spectrum
in details. Figure 6 demonstrates an angle-wavelength spectrum at z = 65 m composed
of two separately measured spectra, one of which includes the shorter-wavelength side
of the supercontinuum only, while the other one shows the result of measuring the long-
wavelength side only. These measurements confirm that the postfilament spectrum reaches
at least 1 µm and is represented by several more humps after the brightest one, in agreement
with the simulations. Detection of the longer-wavelength components is constrained
by the detection limit of silicon-based CCD. As for the blue wing of the spectrum, we
clearly observed conical emission with the pronounced dependence of wavelength on the
angle, proving the presence of plasma during prior beam propagation. On the axis we
observed a couple of humps, the furthest of which is shifted for more than 100 nm from
the 744 nm driver.

As mentioned earlier, the angular divergence of conical emission soon leads to its
escaping our imaging spectrometer, so we cannot see it in the angle-wavelength spectra.
However, the absence of conical emission at z = 75 m and further on indicates that beam
refocusing did not take place on our propagation path.

Stars in Figure 7 represent the spectral position of the brightest Raman humps λS
estimated from the measured angle-wavelength spectra shown in Figure 5. Since the
adjustment of the imaging spectrometer is complicated on the 100-m path, we demonstrate
the wavelength λS only at four propagation distances z. The adjustment of the spectrom-
eter Avesta ASP-150 (non-imaging) is much easier, so we recorded the pulse spectra at
39 positions along the propagation direction z, with the step as small as 1 m in the range
where the spectrum changes most rapidly. The dependence λS(z) found from the spectra
without angular resolution is shown in Figure 7 by squares. It is in excellent agreement
with the estimation from the angle-wavelength spectra.

Figure 7 shows, that the formation of the Raman humps starts at the beginning of
the postfilament z = 55 m and stops at z = 65–70 m. For z > 70 m the intensity is too
low for new Raman humps to emerge; however, exceptionally low radiation divergence is
maintained for further 25 m due to the Kerr nonlinearity. Therefore, the 40-m postfilament
can be divided into two zones. In the first one from∼55 to∼70 m (we called it the Stokes zone
in our previous work [40]), the infrared components of the spectrum experience significant
nonlinear transformation, which includes the spectral broadening and the splitting of the
spectrum into several Raman humps. In the second zone from 70 to 95 m, the spectrum
stabilizes and remains almost unchanged till the end of the postfilament. The beam does
not diverge in that zone due to the Kerr nonlinearity.

3.3. Estimations of Pulse Duration on the ∼100-m Path

Filamentation in the collimated beam geometry results in the pulse self-compression
down to ∼10 fs in the vicinity of the nonlinear focus [48,49]. The actual duration of the
compressed pulse should be measured by using FROG or SPIDER technique. However,
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the application of such fine methods on a ∼100-m path is complicated. So, we used the
autocorrelation measurements. An autocorrelation method cannot provide the information
on the shortest pulse in the high-intensity region, however it is suitable for our study of a
relatively long pulse duration in the postfilament.

Figure 8a,b shows the experimentally measured intensity autocorrelation functions
(black dots) and the ones (red curves) calculated from the on-axis light field distributions
[Figure 8c,d] obtained in (t, r) + z carrier-wave-resolved numerical simulations at sev-
eral propagation distances z. We found doubled root-mean-squared (rms) width of the
autocorrelation functions τa from the experiment and simulations. The uncertainties of
τa estimated from the experimental results come from the asymmetry of the measured
autocorrelation functions.
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Figure 8. (a,b) Intensity autocorrelation functions obtained in the experiment (black dots) and
numerical simulations (red curves); (c,d) simulated on-axis temporal distributions of the light field
at several z. (e) Evolution of the doubled root-mean-squared width τa of autocorrelation function
with distance z obtained in the simulations (red line) and the experiment (black circles). Inset in (e)
shows simulated on-axis temporal distribution of the light field at z = 55 m corresponding to the
local minimum of the red curve in (e).

The measured dependence τa(z) agrees with the simulated one [cf. black circles with
red curve in Figure 8e]. Indeed, till the nonlinear focus, the measured autocorrelation
function has a nice bell shape in agreement with the simulated one [z = 37 m, Figure 8a].
Its doubled rms width τa is 108 fs and coincides with the full width at e−1 level of maximum
of the initial pulse with Gaussian temporal profile.

The shortest pulse was formed in the filament at 55 m. It can be seen as the local
minimum in the rms pulse duration. However, the rms duration estimated from the
autocorrelation functions drops down to ∼50 fs only and does not represent the duration
of the self-compressed pulse. In the simulations, at z = 55 m, the pulse is compressed
down to 8 fs, see the inset in Figure 8e.

After the filament termination at z ≈ 55 m the doubled rms width of autocorrelation
function τa is almost unchanged with slightly non-monotonic variations yielding the
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maximum at z = 65 m and minimum at z = 73 m, Figure 8e. The rapid monotonic
growth in the dependence τa(z) starts from z ≈ 75 m. This evidences, that the third-order
nonlinearity affects the pulse temporal transformation from 55 to 75 m. These first 15–20 m
of the postfilament correspond to the notable transformation of the angle-wavelength
spectra (see Figure 5). After stabilization of the spectrum at 70–75 m the rms pulse duration
undergoes monotonous increase mainly due to the material dispersion.

4. Conclusions

In conclusion, we experimentally studied the postfilament of the femtosecond pulse
(5 mJ, 110 fs, 744 nm) on ∼100-m air path in spectral, spatial and time domains. We
traced (for the first time to the best of our knowledge) the angle-wavelength spectrum
evolution in postfilament obtained without external focusing on the 100-meter-long path
in air. Single-shot measurements allowed us to resolve a series of Stokes humps on the
filament axis. Our results include spectra (without angular resolution), autocorrelation
functions, transverse beam profile measurements, and numerical simulations.

The postfilament with minimal beam divergence and beam radius below 1 mm starts
from the beam collapse at z ≈ 55 m and continues till z ≈ 95 m. The instantaneous and
delayed Kerr nonlinearities balance the beam diffraction during∼40 m, and allow the beam
to propagate for approximately five diffraction lengths with almost the same radius and
self-cleaned shape, lowering beam divergence by two orders of magnitude in comparison
with linear propagation.

Through measurements of the angle-wavelength spectra, we have shown that the
Raman humps propagate on the beam axis, have a unimodal angular shape and emerge
during the first 15–20 m of the postfilament (Stokes zone covering the range from ∼55
to ∼70 m). The pulse duration measured by autocorrelator remains constant within the
experimental error in the Stokes zone. From z = 70–75 m, the spectrum stops changing,
and the pulse broadens due to material dispersion in air.

So, the Kerr nonlinearity governs the spectral/temporal composition of the pulse,
the transverse beam distribution in the postfilament regime and continues to influence the
Stokes side of the spectrum, which was originally produced in the filament plasma channel.
At the same time, the beam radius keeps its minimal value, diffraction is not detectable,
and one could make a cautious conclusion about the formation of the spatial quasi-soliton.
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