
HAL Id: hal-03428661
https://ensta-paris.hal.science/hal-03428661v1

Submitted on 9 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multi-objective optimization for VM placement in
homogeneous and heterogeneous cloud service provider

data centers
Rym Regaieg, Mohamed Koubàa, Zacharie Alès, Taoufik Aguili

To cite this version:
Rym Regaieg, Mohamed Koubàa, Zacharie Alès, Taoufik Aguili. Multi-objective optimization for VM
placement in homogeneous and heterogeneous cloud service provider data centers. Computing, 2021,
103 (6), pp.1255-1279. �10.1007/s00607-021-00915-z�. �hal-03428661�

https://ensta-paris.hal.science/hal-03428661v1
https://hal.archives-ouvertes.fr


Multi-Objective Optimization for VM Placement in
Homogeneous and Heterogeneous Cloud Service

Provider Data Centers
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Abstract

We address the Virtual Machine Placement (VMP) problem that arises in Cloud Service Providers
data centers. We purpose, a Multi-Objective Integer Linear Programming model which aims at
optimizing simultaneously the number of hosted Virtual Machines (VM), the resource wastage and
the number of active Physical Machines (PM) in order to minimize power consumption. This new
combination of objectives enables to maximize the client satisfaction rate with minimizing the Data
Center (DC) operational costs. We modelize this problem with a multi-objective integer linear
program and solve it through two different methods. The first method computes a unique solution
for a given preference order over the objectives whereas the second computes a set of non-dominated
solutions. Both methods are compared through extensive simulation scenarios. We consider two
DC architectures: homogeneous DCs (i.e., a DC with PMs having the same amount of resources)
and heterogeneous DCs. We study the impact of each DC configuration on the performances of the
solutions. We show that the second method leads to solutions with a reduction of up to 30% over
the number of used PMs and that the heterogeneous DCs outperforms the homogeneous one across
all objectives.

Keywords: Virtual Machine Placement, MILP model, weighted sum method, Knee point
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1 Introduction

Cloud Computing offers new models where configurable computing resources such as computing power,
Internet applications, network and storage can be shared as services through the Internet. The computing
resources are pooled to meet the demand of the users in Data Centers (DC) which are overseen by Cloud
Service Providers (CSP). The CSP offers three main types of service models to its users known as
Infrastructure as a Service (IaaS), Software as a Service and Platform as a Service [1, 2, 3]. In the IaaS
model, virtualized computing resources (e.g., processing, memory, storage, network bandwidth, . . . ) are
offered as a service and their utilization is expected to comply with a Service Level Objectives (SLO)
which entails the CSP to provide several group metrics such as security metrics [4] and quality of service
metrics (performances, availability, reliability [5], . . . ). The virtualization technology is the cornerstone
of the IaaS model. This technology allows a physical computing system to be divided into separate and
secure environments known as Virtual Machines (VMs where each VM can perform computing tasks [6]).
These VMs are characterized by resource requirements (e.g., processing, memory, storage, . . . ) which
are defined either by the cloud user or by the CSP [7]. The process of selecting where the VMs should
be placed in each Data Center Physical Machines (PM) is known as the Virtual Machine Placement
(VMP) problem [8]. In light of the adaptable and versatile administration that the IaaS model provides
a considerable number of companies, which, beforehand deployed their businesses locally, has now moved
to the cloud.

The VMP process differs from one DC to another according to the CSPs’ end-goals. For instance, some
CSPs aim at minimizing the energy consumption in the DC as it represents one of the main causes for
the high operational cost (OPEX). Other try to minimize the SLO violation [9] (i.e., resource capacities,
response time, etc. . . ) in order to avoid incurring penalties. Moreover, CSPs can also minimize the inter-
server bandwidth consumption required for inter-VM communications due to the relatively scarce higher
level bandwidth. With the expansion of cloud market, CSPs may have to combine two or more placement
goals in order to stay competitive. Thus, in our previous work [10], we proposed a two-objective VMP
solution, aiming at simultaneously maximizing the number of hosted VMs while minimizing the number
of used PMs. Maximizing the number of hosted VMs may allow the CSP to obtain a higher customers’
satisfaction rate. The minimization of the number of used PMs may lead to a lower power consumption.
From our previous simulation results, we observed that even the proposed solutions which minimized
the number of used PMs, had unused resources on their active PMs. Thus, the minimization of the
number of used PMs does not necessarily always lead to the minimization of the resource wastage. This
observation motivates us to propose a new multi-objective VMP problem where one of the objectives is
dedicated to the minimization of resource wastage.

We modelize this problem with a new Multi-Objective Integer Linear Programming (MOILP) model
which simultaneously optimizes the number of hosted VMs (O1), the amount of resource wastage (O2)
and the number of used/active PMs (O3). Objective O1 also corresponds to the client’s satisfaction rate.
This is the first time, to our knowledge, that this combination of objectives is considered. We solve the
MOILP model with two optimization methods. The first one, called Method 1, is the lexicographical
preference/ordering method. It computes a VMP solution by successively solving the VMP problem
for each objective according to the preference order O1, O2 and O3. For this purpose, constraints are
added to ensure that the values of the previously considered objectives are not deteriorated. Objective
O1 has the priority as the main concern of the CSP is to satisfy a maximal number of VMs requests.
As the minimization of the number of used PMs generates huge amounts of wasted resources, objective
O2 has a higher priority order than O3. We observe through extensive experiments that Method 1
provides poor compromise between the three conflicting objectives. As a consequence, we also consider
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the Weighted Sum (WS) method (Method 2). It computes a set of non-dominated solutions where each
one is obtained through a weight combination of the objectives. The weights reflect the preferences
towards the objectives. Providing a set of solutions allows a CSP to choose the one which suits the best
its requirements. Whenever, a unique solution is required, we consider a knee point method to select
a solution which provides a good trade-off between the objectives [12]. For each optimization method,
we consider two DC architectures. A DC is said to homogeneous if all its PMs are identical, otherwise
it is heterogeneous. Homogeneous DCs avoid additional maintenance costs due to the usage of different
PMs types while, heterogeneous DCs enable better pricing and resource management modes. These two
architectures allow to study the impact of the resource diversity on the VMP performances.

The rest of the paper is organized as follows. Section 2 formally presents the problem tackled in this
paper. Related works are described in Section 3. In Section 4, we define the proposed model. Section 5
shows the simulation results and Section 6 concludes the paper.

2 Description of the problem

Let consider a set of VMs and a set of PMs where a machine m (physical or virtual) is defined by a
vector Vm = (C,R, S) which components represents its CPU, memory and storage, respectively. A set
of VMs V = {(Ci, Ri, Si)}Ni=1 can be placed on a physical machine Vm = (Cm, Rm, Sm) if the cumulated

resources of the VMs do not exceed any of the PM resources (i.e., if
∑N
i=1 Ci ≤ Cm,

∑N
i=1Ri ≤ Rm and∑N

i=1 Si ≤ Sm). A virtual machine placement problem consists in finding a valid placement of VMs on
the PMs which optimizes a given placement goal. We assume that all the PMs are initially not hosting
any VM. As the VM requests are known a priori, the problem is also called the offline VMP problem as
opposed to the online/dynamic VMP problem. A VM request can be rejected (i.e., assigned to no PM).

Figure 1 shows an instance of a VMP problem with 3 VMs and 3 PMs (Figure 1(a)) having the same
resource characteristics and one possible solution using only two PMs (Figure 1(b)), where the placement
goal is to maximize the number of hosted VMs. The height of the white bar in Figure 1 (b) corresponds
to the total amount of CPU initially available at the PM whereas the height of the black bar matches
the amount of consumed resources. VM1 and VM2 are hosted by PM1 whilst VM3 is hosted by PM2

due to a lack of memory and storage of PM1. This VMP solution produces a large amount of wasted
resources due to the non utilization of about 40% of the CPU resource of PM1 and more than 50% of all
the resources of PM2. One of the contribution of this paper is to introduce a new objective dedicated
to the minimization of resource wastage.

3 Related Work

3.1 VMP approaches

Different approaches have been considered to tackle VMP problems in terms of placement objectives and
optimization methods.

3.1.1 Placement objectives

Multiple VMP metrics have been considered [8, 13]:
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(a) The three VM requests

(b) An instance of VMP over the three PMs of the DC

Figure 1 The VMP problem.
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• Energy consumption: CSPs try to minimize energy consumption, mainly by using as few PMs as
possible. They can also favor the PMs with the best power efficiency since the energy consumption
per instruction can be different. However, a PM’s power consumption is not constant but depends
on its load [14], which complicates the problem.

• Application performance: aggressive VM consolidation may lead to congestion or overload of a
PM’s resources. In that case, the accommodated VMs cannot obtain the amount of resources they
would need, resulting in performance degradation of the applications running in those VMs, which
in turn likely leads to violation of SLOs and thus financial penalty for the CSP. In addition, SLO
violation is likely to adversely impacts customer satisfaction [20, 21].

• Economical revenue: the maximization of the CSP’s economical revenue can be achieved by either
minimizing the total economical penalties for SLO violations, minimizing the operational costs or
even by maximizing the total profit for leasing resources [22, 30].

• Network traffic: the huge amount of intra-data center traffic is primarily generated by the VMs
that are correlated to each other (i.e., VMs which are assigned to several PMs). Thus, the resource
of bandwidth can become a bottleneck in the DC and cause multiple problems such as congestion,
link overloads and connection disruptions [15]. The principal ways to minimize the network traffic
are the minimization of the data transfer time, the minimization of the average traffic latency and
the maximization of the network performance.

• Resource utilization: the resource utilization of servers (such as CPU, memory, disk, etc . . . ) is a
critical performance metric in DCs because a poor resource allocation scheme could lead to higher
operational costs. Typically, underutilized servers consume approximately 70% of their peak power,
resulting in a higher power consumption in the DC [16]. Therefore, a resource utilization efficiency
could be achieved by the minimization of the total amount of resource wastage or the maximization
of the resource usage in the DC.

3.1.2 Optimization methods

Optimization methods fall under one of the following categories:

• Exact methods : they provide an optimal solution for the combinatorial optimization problem.
However, they require a large execution time on large instances [15, 8].

• Heuristic methods : these methods could not guarantee the solutions optimality, but they may find
a near-optimal solution within an acceptable execution time [15, 8].

3.2 The mono-objective VMP problem

The Mono-objective VMP problem has been well studied in the literature and aims at optimizing one
objective function. Table 1 gives an overview on the most interesting solutions proposed in this context.
In [19], Tang. et al., have considered minimizing power consumption. They propose an hybrid genetic
algorithm to solve the energy-efficient VMP problem. The proposed solution is evaluated with VMs of
random resource configurations in a heterogeneous DC. The authors have demonstrated that the proposed
VMP approach was practical for the offline VM placement in both small and/or medium data centers.
The results showed that the proposed algorithm works better than others algorithms of the literature

5



and guarantees the VM performance. In [21], the authors have proposed a performance-aware VM
placement algorithm to solve the VMP problem. The performances were evaluated with predefined VM
configurations in a heterogeneous DC. In [22], the authors have considered maximizing the cloud provider
revenues. An Integer Linear Programming formulation is proposed to compute the exact solution. The
performances were evaluated with random VM configurations in a homogeneous DC. The authors have
demonstrated that the proposed VMP approach was practical for the offline VM placement in both small
and/or medium data centers.

3.3 The multi-objective VMP problem

The Multi-objective VMP problem (MOVMP) has been well studied in the literature and aims at op-
timizing multiple objective functions at a time. Table 1 gives a condensed overview of the principal
MOVMP approaches proposed. We observe that:

• The combination of the maximization of resource utilization and the minimization of energy con-
sumption is the predominant approach [24, 25, 26, 27, 28]. This can be explained by the fact that
these two objectives help reducing the DC operational costs [17].

• Most of the works use heuristics and meta-heuristics such as Ant Colony Optimization (ACO) [33],
Particle Swarm Optimization (PSO) [31] and Genetic Algorithms (GA) [32]. This is due to the
NP-hardness of the VMP problem [8, 18, 28].

• Homogeneous DCs and predefined VM configurations are generally considered. This is due to the
fact that the MOVMP problem is easier to model and solve with these types of DC and VM.

3.4 Contributions

The main contributions of this paper are given as follows:

• A Multi-Objective ILP model (MOILP) based on a new combination of objective functions is
proposed to solve the VMP problem. The objectives are the maximization of the number of hosted
VMs, the minimization of the amount of resource wastage and the minimization of the number
of used PMs. This combination of objectives is chosen in order to provide to the CSPs a VMP
solution achieving a higher client satisfaction rate with lower DC operational costs.

• Two optimization methods are used to solve the MOILP model. Method 1 computes an optimal
VMP solution considering a preference order over the objectives. Its drawback is that it generally
does not provide a good compromise between the conflicting objectives. Method 2 which computes
a set of non-dominated solutions. Through a method called Knee point, a VMP solution which
achieves a maximum trade-off between the considered objectives can be selected among the returned
solutions.

• A comparative study is established between the two optimization methods.

• Both homogeneous and heterogenous DCs are considered to study the impact of the PM diversity
on the performances.
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Table 1 VMP approaches in the literature.

Objective group
Optimization methods

Simulation context
DC Architectures VM Configurations

Exact Heuristic Homogeneous HeterogeneousPredefined Random

Mono-objective
Energy consumption minimization[18] [18, 19] [18, 19] [18, 19]
Performance maximization [20, 21] [20] [21] [21] [20]
Economical revenue maximization [22, 23] [22, 23] [22, 23]

Multi-objectives

Energy consumption minimization[24, 27, 28] [24, 25, 26, 28,
29, 30]

[24, 28, 30] [25, 26, 27, 29][25, 26, 27,
28, 29, 30]

[24]

Network traffic minimization [28] [28, 31, 32] [28, 31] [32] [28, 31] [32]
Economical revenue maximization [27] [30] [30] [27] [27, 30]
Performance maximization [24, 27, 28, 33] [24, 25, 26, 28][24, 28] [25, 26, 27] [33][25, 26, 27,

28, 33]
[24]

Resource utilization maximization [29, 31, 32, 33][31, 29] [32, 33] [31, 29, 33] [32]

4 The Multi-Objective Integer Linear Programming Model

We propose to solve the MOILP model with two optimization methods. The first one, called Method 1,
is the lexicographical preference/ordering method. Method 1 computes the VMP by successively solving
the VMP problem for each objective according to the preference order O1, O2, O3. Constraints are
added to ensure that the values of the previously considered objectives are not deteriorated. The second
one is called the Weighted Sum (WS) method (Method 2) which computes a set of non-dominated VMP
solutions where each one is obtained through the combination of objectives with a given set of weights.
The main difference between the two methods is that Method 2 provides a set of non-dominated solutions
which may lead to a higher trade-off between the considered objectives.

4.1 Notations

In the following, we use the following notations and typographical conventions:

• i and j as subscripts denote a virtual machine request and a physical machine index respectively.

• N denotes the number of VM requests. The ith VM is denoted by vi, and defined by the triplet
(ci, ri, si) where ci, ri and si are the CPU, the memory and the storage requirements of the VM,
respectively.

• M denotes the number of physical machines in the DC. The jth PM, denoted by Pj is characterized
by the triplet (Cj , Rj , Sj) where Cj , Rj and Sj are the CPU, the memory and the storage capacities
of the PM, respectively.

• binary variable λij is equal to 1, if vi is hosted by Pj and 0, otherwise.

• binary variable φj is equal to 1, if there is at least one virtual machine hosted by Pj and 0, otherwise.

4.2 Lexicographical preferences method

In the first method, the objectives are optimized successively in three different MILP, as shown in Figure
2. The formulations associated with Step 1, Step 2 and Step 3 are given in Table 2.
Step 1 optimizes the VM-PM mapping with the objective of maximizing ψmax, the number of hosted
VM requests. Equation (2) ensures that each VM request vi is hosted by at most one physical machine
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Pj . Equation (3) ensures that the total amount of CPU consumed by the VMs hosted on Pj is at most
equal to Cj . Equations (4) and (5) are similar to (3) for the CPU resource is replaced memory and
storage resources, respectively. There may be multiple solutions with an optimal number of hosted VM
requests. Step 2 selects one which in addition, minimizes the resource wastage, δmin. The amount of
wasted resources is computed as the total amount of unused resources on active PMs [34]. Equation
(8) ensures that the number of hosted VM requests is still optimal. Equations (9) and (10) define φj
variables. Once again, many equivalent solutions may exist at the end of Step 2. The last step selects
one of them which, in addition, minimizes the total number of used PMs in the DC, θmin. Equation (13)
ensures that the total amount of wasted resources in the DC is not deteriorated.

Objective O3 may seem redundant with O2 as they both minimize the sum of φj but it is not. Indeed,
an optimal solution for O2 may not be optimal for O3. To highlight this, we consider a simple example
in which, for the sake of simplicity, we assume that a machine (physical or virtual) is only characterized
by its CPU resource. Let us consider the two VMs and three PMs represented in Tables 3 and 4. Figure
3 shows two solutions S1 and S2 which are optimal for O2.

Solution S2 is not optimal for O3, since it uses two PMs whereas S1 only uses one. Consequently, O2

does not necessarily minimize the number of PM used.

4.3 Weighted-Sum method

The weighted-sum is a generic method to obtain non-dominated solutions of a multi-objective problem.
The objectives are aggregated in a linear combination as examplified in Table 5. In this table, W1, W2,
W3 are the weight coefficients associated to the number of hosted VMs, the amount of resource wastage
and the number of used PMs objectives, respectively. In this article, we consider the weighted-sum
approach implemented in the Julia package MultiJuMP. This method normalizes the objectives in order
to avoid scaling deficiencies [43]. Each objective o is replaced by:

z(o) =
o− fmin

fmax − fmin
(14)

where fmax and fmin represent the maximal and minimal value that could be set to o, respectively.
The combinations of coefficient weights are then obtained by creating a uniform grid. Each point on

Figure 2 Method 1.
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Table 2 The MOILP models of Method 1.

Step 1

Given N, M, Cj , Rj , Sj , ci, ri and si

Maximize ψmax =

N∑
i=1

M∑
j=1

λij (1)

Subject to :

M∑
j=1

λij ≤ 1, ∀1 ≤ i ≤ N (2)

N∑
i=1

ciλij ≤ Cj , ∀1 ≤ j ≤M (3)

N∑
i=1

riλij ≤ Rj , ∀1 ≤ j ≤M (4)

N∑
i=1

siλij ≤ Sj , ∀1 ≤ j ≤M (5)

λij ∈ {0, 1}, ∀1 ≤ i ≤ N, ∀1 ≤ j ≤M
(6)

Step 2

Given N, M, D, Cj , Rj , Sj , ci, ri, si and ψmax

Minimize

δmin =
M∑
j=1

(
3φj −

N∑
i=1

(
ciλij

Cj

+
riλij

Rj

+
siλij

Sj

))
(7)

Subject to :

ψmax ≤
N∑

i=1

M∑
j=1

λij (8)

λij ≤ φj , ∀1 ≤ i ≤ N, ∀1 ≤ j ≤M (9)

φj ≤
N∑

i=1

λij , ∀1 ≤ j ≤M (10)

(2), (3), (4), (5) and (6)

φj ∈ {0, 1}, ∀1 ≤ j ≤M (11)

Step 3

Given N, M, D, Cj , Rj , Sj , ci, ri, si, ψmax and δmin

Minimize θmin =

M∑
j=1

φj (12)

Subject to :

M∑
j=1

(
3−

(
N∑

i=1

(
ciλij

Cj

+
riλij

Rj

+
siλij

Sj

)))
− 3

M − M∑
j=1

φj

 ≤ δmin (13)

(2), (3), (4), (5), (6), (8), (9), (10) and (11)

Table 3 The VM configurations.

VM CPU(units)

1 90
2 90

Table 4 The PM configurations

PM CPU (units)

1 100
2 225
3 100
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(a) A VMP solution S1 with 20% of resource wastage
and one used PM.

(b) A VMP solution S2 with 20% of resource wastage
and two used PMs.

Figure 3 The VMP problem

the grid where the sum of the coordinates components are equal to one, is selected as a combination
of coefficients weights. Solving such a model for a given value of the weights leads to a non-dominated
solution of the problem.
Weighted-sum method solves the aggregated problem for different values of the weights in order to
generate a subset of the Pareto front. For each combination of weights generated, we solve the MOILP
model given in Table 5 and obtain a VM-PM mapping which minimizes γmin, the linear aggregation
function of the objectives.

Table 5 The MOILP model of Method 2.

Given N, M, Cj , Rj , Sj , ci, ri , si, W1, W2 and W3

Minimize γmin = −W1ψmax +W2δmin +W3θmin (15)

Subject to :

(2), (3), (4), (5), (6), (9), (10) and (11)
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5 Simulation Results

5.1 Simulation parameters

We generate VMP instances with 20 to 220 VM requests. For each considered value of N , we randomly
generate a set of VMs from a predefined set of VM types referred to as Small (S), Medium (M), Large (L)
and XLarge (XL) in accordance with Amazon Elastic Computing Cloud (EC2). Thus, in the following,
each value of N is associated with one instance. The characteristics of the VM types are given in Table
6 [35]. Figure 4 represents the number of generated VMs of each type in the instances. We consider the
two DC configurations depicted in Table 7. The homogeneous DC contains 5 identical PMs while the
heterogenous DC is composed of 8 PMs of 4 different types. The PM configurations of the homogeneous
and heterogeneous DCs are given in Table 8. Note that both DC configurations have the same total
amount of resources even if the total number of PMs are different.
The two optimization methods are implemented through Julia Language (JL) [40]. We use the Multi-
JuMP package which implements the weighted-sum method described in Section 4.3 [41]. Both methods
use CPLEX 12.6.3 [42] to solve the MOILP models on a Linux server with 32 Intel Xeon Cores 2.0 GHz
and 256GB of RAM.

Table 6 The VM configurations [35].

VM CPU(Core) RAM(GB) DISK(GB)

S 2 2 20
M 2 4 40
L 2 8 80

XL 4 16 120

Figure 4 Number of generated S, M, L and XL w.r.t. N.

Table 7 The DC architectures.

DC architectures

Number Number Number Number
of PM1 of PM2 of PM3 of PM4

Homogeneous DC 0 0 0 5
Heterogeneous DC 2 2 1 3

Table 8 The PM configurations [36, 37, 38, 39].

PM Type
CPU RAM DISK

(Core) (GB) (GB)

DELL P. EDGE R440 (PM1) 12 32 320
HPE P. DL380 Gen9 (PM2) 42 112 1120
HPE P. DL580 Gen10 (PM3) 60 160 1600
DELL P. EDGE R510 (PM4) 84 224 2240

5.2 Discussion

In the following, all the objectives are normalized using Equation 14.

11



5.2.1 MOILP solutions

We remind that O1 corresponds to the maximization of the number of hosted VMs, O2 corresponds
to the minimization of the amount of resource wastage and O3 corresponds to the minimization of the
number of used PMs.

(a) Solutions of I1. (b) Solutions of I2.

Figure 5 Objectives values of the non-dominated solutions obtained with Method 2 for two instances
I1 and I2.

Figure 6 Non-dominated solutions obtained through I1 and I2.
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Figure 5 represents the non-dominated solutions obtained with Method 2 on two heterogeneous
instances I1 and I2 of size 80 and 160, respectively. The resources in the DC enable to satisfy all the
VM requests in I1, but not in I2. Figure 5 corresponds to the value of the objectives of the 9 solutions
obtained for I1 and the 13 solutions of I2. Each solution is represented by three bars which correspond
from left to right to the normalized value of O1, O2 and O3, respectively. We can observe that at least
5% of the VMs are rejected in I2. The number of solutions obtained in I2 is higher than in I1. This may
be explained by the fact that the VM resource requirements exceed the resource capacities of the DC,
leading to more possibilities for distributing VMs across the PMs. Figure 6 shows the solutions obtained
for both instances. The solutions of I1 covers a wider area than that of I2. The hashed groups of three
bars represent the VMP solution obtained by Method 1 for each instance. Method 2 provides a variety
of trade-offs over the performances of the objectives. For example, for I1, the selection of the 1st solution
leads to a preference towards the number of hosted VMs. A gain of up to 59% can be achieved for this
objective. Solution 5 leads to a preference towards the amount of resource wastage which leads to an
improvement of up to 25%. Finally, the selection of the fourth solution leads to a preference towards
the number of used PMs. A gain of up to 80% can be obtained. Similar observations are obtained when
considering a homogeneous DCs.

Figures 7, 8 and 9, respectively, show the number of variables, of constraints and the execution times
required to model and solve the instances of each DC architecture. The NP-hardness of the problem
explains why the execution time quickly increases with N .

Figure 7 Number of variables w.r.t. N. Figure 8 Number of constraints w.r.t. N.

5.2.2 Performance comparison between Method 1 and Method 2

In order to compare the performances of Method 1 and Method 2, we select one solution provided by
Method 2. For this purpose, we choose the knee point which is likely to represent the maximal trade-off
between the objectives [44]. Multiple methods for knee point recognition supporting high dimensional
spaces, are proposed in the literature [45]. We use a trade-off worth metric defined in [44]. The expression
of the trade-off information for a pair of optimal solutions xi and xj [45] is given by:
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Figure 9 Execution time w.r.t. N.

T (xi, xj) =

∑M
m=1 max

[
0,

fm(xj)−fm(xi)
fmax
m −fmin

m

]
∑M
m=1 max

[
0,

fm(xi)−fm(xj)
fmax
m −fmin

m

]
where fm(xi) corresponds to themth objective value of solution xi and fmax

m /fmin
m the maximal/minimal

value of the mth objective in the set of non-domianted solutions S. In the above equation, all the values
have been normalized. Based on this equation, the following expression is used to compute the worth of
a solution xi, in the S [44]:

µ(xi, S) = min
xj∈S\xi 6=xj ,xj 6=xi

T (xi, xj)

where µ(xi, S) expresses the least amount of improvement per unit of deterioration by substituting
any alternative xj from the S with xi. The solution representing the knee point is argmax

xi∈S
µ(xi, S).

Figure 10 shows the performances of the MOILP solutions computed by Method 1 and Method 2 in
the two DC architectures. Each group of six bars in this plot shows the performances of both optimization
methods for each value of N , over one instance. The two first bars correspond to the normalized number
of hosted VMs computed by Method 1 and Method 2, respectively. The next two bars depict the
normalized amount of resource wastage and the last two bars present the normalized number of used
PMs. Method 2 achieves average gains of 34% and 10% over Method 1 in the homogeneous DC over
the amount of resource wastage and the number of used PMs, respectively, while an average loss of 3%
over the number of hosted VMs is observed. For the heterogeneous DC, Method 2 achieves an average
gain of 30% over the number of used PMs and average losses of 2% and 9% over the number of hosted
VMs and amount of wasted resources, respectively. These last results, stress the effectiveness of Method
2 over Method 1 as it achieves, in both DC architectures, a significant improvement over the number of
used PMs with only a small deterioration over the other objectives.
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Figure 10 Performances of Method 1 and Method 2 for the two DC architectures.

5.2.3 The impact of DC architectures on the performances of MOILP model

As Method 2 showed better results than Method 1 in the previous section, we consider the solutions
provided by Method 2 to compare the performances of the two DC architectures. Two DC configurations
are considered for each architecture, which lead to a total of four DC configurations C1, C2, C3 and C4
represented in Table 9 and Table 10.

Table 9 The homogeneous DC configurations.

The homogeneous DC configurations.

Number Number Number Number
of PM1 of PM2 of PM3 of PM4

C1 0 10 0 0
C2 0 0 0 5

Table 10 The heterogeneous DC configura-
tions.

The heterogeneous DC configurations

Number Number Number Number
of PM1 of PM2 of PM3 of PM4

C3 2 2 1 3
C4 4 4 2 1

Figure 11 shows the computed solutions for each DC configuration on an instance with 100 VMs. We
can see that more solutions are obtained for the heterogeneous DCs. Indeed, the heteregeouns DCs are
composed of PMs with different resource configurations which enable more variability in the placement of
the VMs. Such a variability results in the generation of different trade-offs over the considered objectives
and hence, a higher number of non-dominated VMP solutions are obtained.

Figure 12 plots the knee points obtained on four instances of size 80, 100, 120 and 140 for each
of the four DC configurations. For each value of N , a quadruplet of bars presents the performances
of an objective for the four DC configurations. From left to right the quadruplets correspond to the
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Figure 11 Non-dominated solutions computed for the four DC configurations, N = 100.

normalized number of hosted VMs, the normalized amount of resource wastage and the normalized
number of used PMs. Heterogeneous DCs achieve average gains of up to 2%, 27% and 34% over O1, O2
and O3, respectively, over homogeneous DCs. This is mainly due to the diversity of the PM types in
the heterogeneous DCs which enables to better meet the VMs requirements and leads to a lower amount
of remaining resources on the PMs. To clarify this last result, we plot Figure 13 which represents the
number of hosted VMs on each PM for the four DC configurations for the instance N=100. Each group
of bars shows the results obtained for a DC configuration with respect to the number of available PMs
numbered from 1 to M . We can observe from Figure 13 that, in the heterogeneous DCs, each PM type
hosts a different combination of VMs: PM1 hosts a VM combination of S, M and L, PM3 hosts a VM
combination of S, M, L and L and PM4 almost hosts a VM combination of S, M, XL and XL. This
placement variability across the PM leads to better performances over the three objectives.

Figure 12 The knee points for the four DC
configurations w.r.t. N .

Figure 13 Number of hosted VMs on each PM,
for the instance N = 100.
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Figure 14 represents the total power consumption w.r.t. N . The total energy consumption of a DC
configuration is the sum of all the energy consumption of its PMs in the DC. The power consumption of
a given PM is computed according to [34]:

PC = PCPUIDLE + (PCPUMAX − PCPUIDLE)U

where PCPUIDLE and PCPUMAX respectively represent the CPU idle and maximum processor power and
U denotes the CPU utilization. For each PM configuration, the PCPUIDLE and PCPUMAX are given in
Table 11. From Figure 14, we can see that the total amounts of power consumption in the heterogeneous
DCs are lower than the ones of the homogeneous DCs. An average gain of up to 23% is achieved. This
is mainly due to the number of active PMs and the PM types comprising the DC. To highlight this, we
plot Figure 15 which shows the CPU usage on each PM for the four DC configurations. The height of
the white bar shows the total amount of CPU of a PM. The height of the gray bar shows the amount of
CPU consumed by the hosted VMs. Figure 15 shows that, for the hosting of 100 VMs, C1 and C2 use
seven and four PMs whose types are PM2 and PM4 respectively, whereas C3 and C4 use four and five
PMs of types {PM1, PM4, PM4, PM4} and {PM3, PM2, PM1, PM4, PM3}, respectively. C1 uses PMs
with a moderate power consumption level. However, the high number of used PMs leads to a high power
consumption in the DC. For C2, the number of used PMs is comparatively low, however, the high power
consumption level of each PM results in a higher power consumption in the DC. In the heterogeneous
DC, both configurations use comparatively a medium number of PMs with various of power consumption
levels (low, moderate and high).

Figure 14 Total power consumption w.r.t. N . Figure 15 CPU usage for each PM, N=100.

Table 11 The PM Power Consumption [16].

PM Type PCPU−IDLE(Watt) PCPU−MAX(Watt)

PM1 300 900
PM2 560 1100
PM3 800 1380
PM4 2100 2700

From the obtained results, we draw the following conclusions:

17



• Method 2 provides several non-dominated solutions to the CSP.

• Up to 30% less PMs are used with Method 2 for a loss of up to 2% and 9% over the number
of hosted VMs and the amount of resource wastage, respectively. Such an outcome constitutes a
suitable trade-off between the objectives.

• The solutions obtained by the MOILP model are more efficient in heterogeneous DCs compared to
homogeneous DCs. The gains are of up to 2%, 27% and 34% over O1, O2 and O3, respectively.

• The heteregeouns DCs consume lower amounts of power than homogeneous DCs. An average gain
of up to 23% is obtained.

6 Conclusion and Future Work

In this paper, we propose a new Multi-Objective ILP model to address the VMP problem in CSP DCs
with homogeneous and heterogeneous PM types. The objectives are the maximization of the number of
hosted VMs, the minimization of the amount of resource wastage and the minimization of the number
of used PMs. We propose two optimization methods to solve the MOILP model. Through extensive
simulations scenarios, we first show the effectiveness of Method 2 over Method 1 which leads to a
better trade-off between the objectives. Finally, we observe that the heterogeneous DCs achieve better
performances in terms of number of hosted VMs, amount of resource wastage, number of used PMs and
amount of power consumption thanks to the diversity of the PM types. These results will help CSPs to
reduce the DC operational costs while keeping a high client satisfaction rate. Due to the NP-hardness
of the problem, exact approaches are quickly limited in the size of the VMP instances they can solve.
Consequently, future work will focus on how to solve the VMP problem in real sized DCs using both
heuristics and meta-heuristics.
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