
Correlation Clustering Problem under
Mediation

Zacharie Ales
UMA, CEDRIC, ENSTA Paris, Institut Polytechnique de Paris, France
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Abstract

In the context of community detection, Correlation Clustering (CC)
provides a measure of balance for social networks as well as a tool to
explore their structures. However, CC does not encompass features such
as the mediation between the clusters which could be all the more relevant
with the recent rise of ideological polarization.

In this work, we study Correlation Clustering under mediation (CCM),
a new variant of CC in which a set of mediators is determined. This new
signed graph clustering problem is proved to be NP-hard and formulated
as an integer programming formulation. An extensive investigation of the
mediation set structure leads to the development of an efficient enumer-
ation algorithm for CCM. Computational experiments are presented on
two sets of instances: signed networks representing voting activity in the
European Parliament and random signed graphs.

Keywords: Accessible system, Correlation clustering, Enumeration
algorithm, Signed graph, Structural balance

1 Introduction

Community detection is largely applied to understanding the structure of so-
cial networks. In the presence of a network with antithetical relationships
(like/dislike, for/against, similar/different...) community detection can be mod-
eled as correlation clustering (CC), a signed graph clustering problem introduced
by Bansal et al. (2004) for document classification.

In a signed graph, the edges are labeled as either positive (+) or negative
(-). The CC problem consists in partitioning the vertices of such a graph while
minimizing disagreements, i.e., the total number of positive edges between the
clusters plus the total number of negative edges inside the clusters. A weighted
version of the problem was lately defined in Demaine et al. (2006).

The CC problem is related to the concept of structural balance introduced
in the field of social network analysis (Heider, 1946; Cartwright and Harary,
1956). According to structural balance theory, the equilibrium of a social sys-
tem is associated with the propensity of individual elements to be organized in
groups avoiding conflictual situations. This concept is perfectly described by
graph theory (Davis, 1967). A signed graph is structurally balanced if it can
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be partitioned into clusters, such that all positive (resp. negative) edges are
located inside (resp. in-between) these modules.

Applications of the CC problem overtakes the area of community detection
problems and also arise in system biology (DasGupta et al., 2007), portfolio
analysis for risk management (Figueiredo and Frota, 2014; Harary, 2002), vot-
ing behavior (Arinik et al., 2017; Kropivnik and Mrvar, 1996), document clas-
sification (Bansal et al., 2004), surface detection in 3D images (Kolluri et al.,
2004), and in the detection of embedded matrix structures (Figueiredo et al.,
2011). Variants of the CC problem have been proposed and discussed in the
literature. Some of them motivated by a redefinition of the concept of structural
balance (Doreian and Mrvar, 2009) or by applications to community detection
in unsigned graphs.

The recent rise of ideological polarization makes it harder to reach agree-
ments across partisan lines (Abramowitz and Saunders, 2008). Mediation could
allow productive exchanges in polarized signed networks. In this context, we
study a new variant of CC in which a set of key-players, called mediators, is ad-
ditionally identified. We apply the concept of positive mediation as introduced
by (Doreian and Mrvar, 2009): a set of mediators must have good relations
among themselves and with other individuals in the network. A good relation
is determined by two parameters, α and β, defining the minimal proportion
of negative and positive relations allowed, respectively, inside and outside the
mediation set.

The aim of the correlation clustering problem under mediation (CCM) is
to obtain a partition which includes a cluster formed by mediators and which
minimizes the imbalance (as defined in original CC) of the remaining clusters.

The contributions of this paper are fourfold.

1. We introduce the CCM problem, a new variant of CC in which the defi-
nition of a mediator set is parametrized by two parameters.

2. We prove that CCM is NP-hard and formulate this problem as an integer
linear programming model.

3. We provide two explicit enumeration algorithms for CCM which take ad-
vantage of properties of mediator sets to break symmetry in the search
tree.

4. We present extensive computational results to compare the performance
of these algorithms with the resolution of our formulation by CPLEX.

The paper is organized as follows. The next section is dedicated to a review
of the works related to the CCM problem. We give the notations and the formal
definition of this problem in Section 3 and prove its NP-hardness. We introduce
an ILP formulation of the problem in Section 4. Section 5 is devoted to the
enumeration algorithms. Computational experiments are given in Section 6.
We finally conclude the paper in Section 7.
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2 Related works

The review of the literature is divided in three sections: exact optimization
methods for CC (Section 2.1), variants of CC (Section 2.2) and group selection
problems treated from a network optimization point of view (Section 2.3.)

2.1 Exact methods for CC

A combinatorial branch-and-bound was proposed by Brusco and Steinley (2009)
to solve instances with up to 21 vertices. An Integer Linear Programming (ILP)
formulation based on the vertex clustering formulation of (Mehrotra and Trick,
1998) was also considered (see for example (Demaine et al., 2006; Arinik et al.,
2017, 2020)). It was used in a branch-and-cut framework on complete graphs
with up to 50 vertices (Arinik et al., 2020) and on non-complete ones with up to
400 (Arinik et al., 2017). In (Figueiredo and Moura, 2013) the two approaches
are compared. The authors showed that the ILP approach could handle larger
graphs and required less time for most of the benchmark instances.

2.2 Variants of CC

Recent CC variants can be divided in two groups: redefinition of the objective
function and redefinition of the clustering constraints.

CC seeks a partition which minimizes the total number of disagreements.
Doreian and Mrvar (2009) observe that this definition does not encompass some
important features. For example, vertices which agree with hostile subgroups
increase the imbalance of the graph according to this definition. The authors
considere that such vertices are potential mediators which should have a positive
effect on the balance. Consequently, they propose a relaxed definition of the
objective as the maximum disagreement inside and among all clusters in the
partition. The Relaxed Correlation Clustering (Figueiredo and Moura, 2013;
Levorato et al., 2017; Arinik et al., 2017) (RCC) consider this objective. Local
disagreement functions have also been studied (Kalhan et al., 2019; Puleo and
Milenkovic, 2018). These objectives minimize the number of disagreements at
each vertex of the graph. For example, in (Puleo and Milenkovic, 2018) the
total disagreement at the worst-off vertex in the partition is minimized.

Eventually, motivated by network analysis applications defined on unsigned
graphs, Veldt et al. (2018) introduce the Lambda Correlation Clustering (Lamb-
daCC), a weighted version of CC in which the weight of the edges is either
λ ∈ [0, 1] or 1− λ.

The first CC variants which redefines the constraints is Motif Correlation
Clustering (MotifCC) (Li et al., 2017). Also motivated by network analysis ap-
plications, MotifCC associates the signs of the graph to motif patterns rather
than edges. This variant generalizes CC to the hypergraph setting where the
order of the graph is defined by the size of the motifs considered. In Fair Correla-
tion Clustering (FairCC) the partition must satisfy fairness constraints. In (Ah-
madian et al., 2020), each vertex of the graph has a color associated and the color
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in the partition must be distributed according to a given property (Chierichetti
et al., 2017; Bera et al., 2019; Ahmadian et al., 2019). Figueiredo and Moura
(2013) defined the first version of CC with mediation following the discussions
in (Doreian and Mrvar, 2009). Their definition of a mediator set was very
restrictive and we show that the problem defined in Section 2.3 generalises it.

Different approaches have been considered to solve these problems. ILP for-
mulations were introduced in (Figueiredo and Moura, 2013) for RCC. Approx-
imation algorithms were proposed for LambdaCC and MotifCC (Veldt et al.,
2018; Li et al., 2017; Gleich et al., 2018) as well as for FairCC (Kalhan et al.,
2019; Puleo and Milenkovic, 2018). A simulated annealing was considered for
MotifCC in Li et al. (2017) while Iterated Local Search methods were proposed
for RCC (Levorato et al., 2017).

2.3 Group selection in social networks

Several works have been dedicated to the identification of a set of individuals
playing a specific role in a network. These individuals can be named key play-
ers (Borgatti, 2006; Ortiz-Arroyo, 2010), influential vertices (Li et al., 2011), or
mediators (Figueiredo and Moura, 2013).

The set of vertices can be selected through a global network optimization
criteria or by ranking network elements according to an individual measure (e.g.,
vertex centrality (Borgatti, 2003)). We focus on the first approach as the second
can not generally guarantee the optimality of the solution found (see examples
in (Ortiz-Arroyo, 2010)).

The key players problem as introduced by (Borgatti, 2003), consists in se-
lecting k vertices in a network that maximizes or minimizes the disruption of the
residual network obtained by removing them. Different measures and heuristic
procedures have been proposed in the literature for this problem (Borgatti, 2006;
Ortiz-Arroyo, 2010). (Li et al., 2011) studied the problem of finding the set of
key players controlling the bottlenecks of influence propagation in a social net-
work. They named it as the k−mediators problem and proposed a three-steps
heuristic to solve it. We refer the reader to other references in (Li et al., 2011) on
works selecting vertex sets playing an important role in influence maximization.

None of these works considered exact methods even when the size of the
networks is small (see for example (Borgatti, 2006)). The CCM defined in this
work is based on the mediation concept described by Doreian and Mrvar (2009).
It has only been treated once in the literature (Figueiredo and Moura, 2013)
and for a very particular case where both parameters defining the feasibility of
the mediator sets are set to 0.

3 Notation and problem definition

Let G = (V,E) be an undirected graph, where V and E are the sets of vertices
and edges, respectively. Consider a function s : E → {+,−} that assigns a sign
to each edge in E. An undirected graph G together with a function s is called
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a signed graph, denoted here by G = (V,E, s). An edge e ∈ E is called negative
if s(e) = − and positive if s(e) = +. We note E− and E+ the sets of negative
and positive edges in a signed graph, respectively. Let n = |V |.

The CC problem (Bansal et al., 2004) aims to find a partition of the vertices
which minimizes the number of disagreements, that is positive edges between
two clusters or negative edges inside a cluster. The sum of all disagreements is
called the imbalance of a partition. In the weighed version of the CC problem,
an extra function w : E → R+ is added. In order to define the imbalance in
that weighted case, let us introduce some extra notations.

For two subsets S1, S2 ⊆ V and a sign σ ∈ {+,−} we define Eσ[S1, S2] =
{(i, j) ∈ Eσ : i ∈ S1, j ∈ S2, i 6= j}, wσ(S1, S2) =

∑
(i,j)∈Eσ [S1,S2]

wij and

wσ(S1) = wσ(S1, S1).
A partition of V is a division of V into non-overlapping and non-empty

subsets. The imbalance I(P ) of a partition P = {S1, S2, . . . , S|P |} is the weight
of the negative arcs in the subsets and of the positive arcs between the subsets,
i.e.,

I(P ) =
∑

1≤i≤|P |

w−(Si) +
∑

1≤i<j≤|P |

w+(Si, Sj). (1)

As stated by Bansal et al. (2004), CC consists in finding a partition which
imbalance (1) is minimal. Let us denote this minimal value by CC(G).

We introduce a new variant of CC in which a set of vertices called mediators
is identified and which minimizes the imbalance of the remaining vertices. We
now state two properties that the set of mediators must satisfy.

Definition 1. Let α in R+. A subset S ⊆ V is α-feasible if αw+(S) ≥ w−(S).

Definition 2. Let β in R+. A subset S ⊆ V is β−feasible if βw+(S, V \S) ≥
w−(S, V \S).

These definitions provide upper bounds on the negative weights inside (Def-
inition 1) and leaving (Definition 2) the vertex set S. Note that if α and β
are both equal to 0, the vertex set S only contains non-negative weights and
the weight of each arc leaving S is also non-negative. These two constraints
together lead to the definition of the mediator set.

Definition 3. A subset S ⊆ V is a mediator set if S is α−feasible and β−feasible.

We can now formally define the Correlation Clustering problem under Me-
diation.

Correlation Clustering problem under Mediation
Input: A signed graph G = (V,E, s), non-negative arc weights w ∈ R|E|+

and two scalars α, β ∈ R+.
Output: A partition P = {SM , S2, ..., S|P |} which minimizes the imbalance

I(P\SM ) and such that SM is a mediator set.

The Correlation Clustering with Positive Mediation (CCPM) problem intro-
duced in Doreian and Mrvar (2009) and formalized in Figueiredo and Moura
(2013) is a specific case of CCM in which α = β = 0.
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We now prove that CCM is NP-hard.

Lemma 1. The CCM problem is NP-hard.

Proof. We prove this result with a reduction from CC. Consider an instance
ICC of CC defined over a signed graph G = (V,E, s) with an edge weight vector

w ∈ R|E|+ . Let G′ = (V ′, E′, s′) be a signed graph and let w′ ∈ R|E
′|

+ be an edge
weight vector defined as follows (see Figure 1):

• V ′ = V ∪ {n+ 1, n+ 2, n+ 3}

• E′ = E ∪ E1 ∪ E2 ∪ E3 with:

– E1 = {(n+ 1, n+ 3), (n+ 2, n+ 3)},
– E2 = {(n+ 1, n+ 2)},
– E3 = {(n+ 2, i) : i ∈ V } ∪ {(n+ 3, i) : i ∈ V }.

• s′e =

 se, e ∈ E,
+, e ∈ E1,
−, e ∈ E2 ∪ E3.

• w′e =

 we, e ∈ E,
M, e ∈ E1 ∪ E2, with M = 1 +

∑
e∈E we,

−3M, e ∈ E3.

Consider an instance ICCM of CCM defined over the signed graph G′ with
β = 1 and α ∈ [0, 1]. Let PCC = {S1, . . . , S|P |} be an optimal solution of
ICC and consider partition PCCM = {{n+ 1}, {n+ 2, n+ 3}, S1, . . . , S|P |}. We
now prove that PCCM is an optimal solution of ICCM . The value of the CCM
problem associated with PCCM is IP (PCC ∪ {n+ 2, n+ 3}) = IP (PCC) < M .

Vertices n+ 1, n+ 2 and n+ 3 define a non-balanced cycle in G′ (i.e., a cycle
with an odd number of negative edges) composed of edges of weight M . As
a consequence at least one of them must be in the mediator set in an optimal
solution (otherwise the imbalance would be greater than or equal to M).

If vertex n + 2 or n + 3 is in the mediator set, a vertex in V can not be in
the mediator set – as it would be α-infeasible – and it can not either be outside
of the mediator set, as it would be β-infeasible. As a consequence, vertex n+ 1
is necessarily in the mediator set of an optimal solution. Moreover, no vertex
in V can be in the mediator set as it would be β-infeasible.

Consequently, the mediator set of ICCM is necessarily {n+1}. Thus, PCCM
is an optimal solution of ICCM .

In the next section, we formulate the CCM Problem as an Integer Linear
Programming (ILP) model.
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Figure 1: Example of the reduction from an instance of CC with 4 vertices to
an instance of CCM with 7 vertices.

4 Mathematical formulation

ILP formulations have been successfully used in the literature for the resolution
of clustering problems (Johnson et al., 1993; Mehrotra and Trick, 1996; Hansen
and Jaumard, 1997; Agarwal and Kempe, 2008; Brusco and Steinley, 2009; Ales
et al., 2016), including clustering problems defined on signed graphs (Figueiredo
and Moura, 2013; Aref and Wilson, 2019). In this section, we introduce an ILP
formulation for the CCM problem.

For each pair of distinct vertices i, j in V , we consider a binary variable xij
equal to 1 if and only if i and j do not belong to the same cluster. Also, to each
vertex i ∈ V is associated a binary variable mi equal to 1 if and only if i is a
mediator. Note that in this formulation, each mediator vertex is represented as
an isolated vertex. Finally, each pair of distinct vertices i, j is associated with
two additional binary variables: tij equal to 1 if and only if both i and j are
mediators; and zij equal to 1 if and only if at least i or j is a mediator.
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minimize
∑

(i,j)∈E−
wij(1− xij) +

∑
(i,j)∈E+

wij(xij − zij) (2)

s.t. xjk ≤ xij + xik, i ∈ V j, k ∈ V \{i} j < k, (3)

mi ≤ xij , i, j ∈ V i 6= j, (4)

mi +mj − 1 ≤ tij , i, j ∈ V i 6= j, (5)

tij ≤ mi, i, j ∈ V i 6= j, (6)

mi −mj ≤ zij , i, j ∈ V i 6= j, (7)

zij ≤ mi +mj , i, j ∈ V i 6= j, (8)∑
(i,j)∈E−

wijtij ≤ α
∑

(i,j)∈E+

wijtij , (9)

∑
(i,j)∈E−

wij(zij − tij) ≤ β
∑

(i,j)∈E+

wij(zij − tij), (10)

xij = xji ∈ {0, 1}, i, j ∈ V i 6= j, (11)

zij = zji ∈ [0, 1], i, j ∈ V i 6= j, (12)

tij = tji ∈ [0, 1], i, j ∈ V i 6= j, (13)

mi ∈ {0, 1}, i ∈ V. (14)

The triangle inequalities (3) ensure that if i is in the same cluster than
j and k (xij = xik = 0), then vertices j and k are also in the same cluster
(xjk = 0). Constraints (4) establish that mediators are isolated. Constraints (5)
and (6) ensure that tij = mimj . Constraints (7) and (8) impose zij = 1
whenever mi + mj ≥ 1. Note that, when mi + mj = 2, zij is set to 1 by
the second term of the objective function. Constraints (9) and (10) ensure
that the set of mediators is α and β-feasible, respectively. Remark that the
expression zij − tij is equal to 0 if and only if mi = mj . Consequently, for
σ ∈ {−,+},

∑
(i,j)∈Eσ wij(zij − tij) = wσ(SM , V \SM ) where SM is the set of

mediators defined by {mi}i∈V . Finally, the objective function (2) minimizes
the imbalance defined by (1). The first term penalizes negative edges (i, j)
connecting vertices in a same cluster (i.e., such that xij = 0) and the second
term penalizes positive edges (i, j) connecting non-mediator vertices in different
clusters (i.e, such that xij = 1 and zij = 0).

In Section 6 the performance of this formulation is compared with the ones
of the two enumeration algorithms presented in the next section.

5 Enumeration algorithms

In this section, we present an alternative to the ILP based branch-and-bound al-
gorithm, called enumeration algorithms for the optimal resolution of CCM. We
first formally define the notion of enumeration algorithm (Section 5.1). Then,
we study three simple enumeration strategies (called policies) and show that
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only one of them leads to an exhaustive enumeration of the mediator sets (Sec-
tion 5.2). Finally, based on this policy, we propose two enumeration algorithms
called A1 and A2 (Sections 5.3 and 5.4).

5.1 Enumeration tree and branching policy

Let an enumeration tree of a signed graph G = (V,E, s) be a tree in which:

• each node is associated to a subset of V ;

• the root corresponds to the empty set;

• each other node is associated to the set of its parent plus a new vertex.

Three enumeration trees are depicted in Figure 2.

(a) An enumeration tree. (b) Lexicographical enumeration
tree.

(c) Complete enumeration tree.

Figure 2: Three enumeration trees for |V | = 3.

An enumeration algorithm for CCM generates an enumeration tree in order
to identify mediator sets of G. Solutions of the problem are then obtained
by evaluating mediator sets identified. The evaluation of a set SM consists in
solving the CC problem associated with the signed graph induced by V \SM .

One of the main components of an enumeration algorithm is its branching
policy π : P(V ) × V 7→ {true, false} which indicates when a node should be
created or not in the enumeration tree. More specifically, if S is a subset of V
and i is a vertex in V \S then π(S, i) returns true if node S∪{i} must be created
as a child of node S and false otherwise. As a consequence, the size of the tree
generated by an algorithm directly depends on its policy. If the branching policy
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always returns true (π(S, i) = true , ∀S ∈ P(V ) , ∀i ∈ V \S), a complete tree of
O(n!) nodes is created (see Figure 2c). Enumerating the sets in lexicographical
order corresponds to the branching policy π(S, i) = “i > argmaxs∈S s” (see
example in Figure 2b). This policy leads to a smaller tree size by avoiding any
repetition (i.e., each set is associated to no more than one node). However, the
size of the corresponding tree (2|V |) remains prohibitive and better alternatives
are required to efficiently solve CCM.

5.2 Simple branching policies

An enumeration algorithm and its branching policy are said to be exact if they
necessarily returns an optimal solution of CCM when the resolution time is not
limited.

We first study three branching policies called παβ , πα and πβ and show
that only πα is exact. Policy παβ is an intuitive branching policy which gen-
erates a node only if it corresponds to a mediator set: παβ(S, i) = ”S ∪
{i} is a mediator set”. Policies πα and πβ are less restrictive and, thus, lead
to larger enumeration trees:

• πα(S, i) = ”S ∪ {i} is α-feasible”;

• πβ(S, i) = ”S ∪ {i} is β-feasible”.

To determine if πα,β is exact, we consider the following definition.

Definition 4. (Björner and Ziegler (1992)) Let F ⊆ 2S be a family of subsets
of a set S. The tuple (S,F) is an accessible system if and only if:

(i) ∅ ∈ F ,

(ii) if X ∈ F and X 6= ∅ then ∃ x ∈ X such that X\{x} ∈ F .

LetM be the family of all the mediator sets of a signed graph G = (V,E, s).
Similarly, let A and B be the family of all the α-feasible and β-feasible sets of
G, respectively. The three following lemmas prove that the exactitude of the
branching policies παβ , πα and πβ depends on the fact that (V,M), (V,A) and
(V,B) are accessible systems or not. The proof of these lemmas are similar and
only the first is provided.

Lemma 2. παβ is exact if and only if (V,M) is an accessible system.

Proof. Let S be a mediator set. If (V,M) is an accessible system, there exists
an ordering (s1, s2, ..., s|S|) of the vertices in S such that S\{s1, s2, ..., si} is a
mediator set for all i ∈ {1, 2, ..., |S|}. As a consequence, S can be reached by
παβ through the following branch: ∅, {s|S|}, {s|S|, s|S|−1}, ..., S.

We now assume that παβ does not enumerate all the mediator sets. Let
S be a minimal mediator set which is not enumerated by παβ . Since all the
mediator sets of size |S| − 1 are enumerated by παβ , we deduce that S\{s} is
not a mediator set, for all s ∈ S. Consequently, (M, V ) is not an accessible
system.
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Lemma 3. πα is exact if and only if (V,A) is an accessible system.

Lemma 4. πβ is exact if and only if (V,B) is an accessible system.

As summarized in Table 1, we characterize in the remaining of this section
when (V,M), (V,A) and (V,B) are accessible systems or are even matroids.

Tuple
α > 0 α = 0 α = 0

β > 0 β > 0 β = 0

(V,M) Non-accessible (Lemma 5) Accessible (Lemma 7) Matroid (Lemma 8)

(V,A) Accessible (Lemma 10) Matroid (Lemma 9)

(V,B) Non-accessible (Lemma 11)

Table 1: Properties satisfied by (V,M), (V,A) and (V,B).

Unfortunately, παβ is not exact in the general case.

Lemma 5. If α 6= 0, then (V,M) is not an accessible system.

Proof. In the graph represented in Figure 3, {a, b, c} is a mediator set but none
of the subsets {a, b}, {a, c} and {b, c} is.

−1 −1

2
α

1

a

c

b

d

(a) A signed graph for which
{a, b, c} is a mediator set.

Set α-feasible? β-feasible?

{a, b, c}
yes yes

2 ≤ 2
αα 0 ≤ β

{a, b}
yes no

0 ≤ 2
αα 2 > 0β

{a, c} or {b, c}
no if β 6= 0

1 > 0α 1 ≤ ( 2
α + 1)β

(b) Table which shows that for each i ∈ {a, b, c},
{a, b, c} \ {i} is not a mediator set.

Figure 3: Example which proves that (V,M) is not an accessible system when
α 6= 0.

To prove that παβ is exact when α = 0, we first consider the following lemma.

Lemma 6. If S is a mediator set and α 6 β, then ∃s ∈ S such that S \ {s} is
β-feasible.

Proof. Let assume that for each s ∈ S, S \ {s} is not β-feasible. Hence, the
following inequality holds for all s ∈ S

βw+(S \ {s}, V \ {S \ {s}}) < w−(S \ {s}, V \ {S \ {s}})
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or, equivalently

βw+(S \ {s}, V \ S) + βw+(s, S) < w−(S \ {s}, V \ S) + βw−(s, S)

By summing up this inequality for each s ∈ S we obtain

(|S| − 1)βw+(S, V \ S) + β
∑
s∈S

w+(s, S)︸ ︷︷ ︸
=2w+(S)

< (|S| − 1)w−(S, V \ S) +
∑
s∈S

w−(s, S)︸ ︷︷ ︸
=2w−(S)

Since S is β-feasible, (|S| − 1)βw+(S, V \ S) > (|S| − 1)w−(S, V \ S), which
together with the previous inequality leads to

βw+(S) < w−(S)

Since α 6 β this last inequality contradict the α-feasibility of S.

We now prove that (V,M) is an accessible system when α = 0.

Lemma 7. If α = 0, then (V,M) is an accessible system.

Proof. If α = 0, the weight of each edge in a mediator set SM is non-negative.
Hence, any subset of SM is α-feasible. We deduce from Lemma 6 that there
exists at least one vertex s ∈ SM such that SM\{s} is additionally β-feasible.

Note, that when α = β = 0, (V,M) is not only an accessible system but also
a matroid.

Lemma 8. If α = β = 0, then (V,M) is a matroid.

Proof. Since α = β = 0 the weight of each edge in SM and between SM and
V \ SM is necessarily non-negative. This applies to any subset of SM .

The following lemma can be proved similarly.

Lemma 9. If α = 0, then (V,A) is a matroid.

Lemma 8 ensures that, when both α and β are null, παβ is exact. However,
in this case, an enumeration algorithm based on this policy is not the best
approach to solve CCM. Indeed, when α = β = 0, an optimal solution of CCM
can be obtained by identifying the maximal mediator set SM and solving CC
on the remaining vertices V \ SM (Figueiredo and Moura, 2013). The set SM
can easily be identified as it contains all the vertices with adjacent edges with
only non-negative weights.

Since παβ is not exact in the general case, we now focus on πα et πβ . The
two next lemmas show that πα is exact and that πβ is not.

Lemma 10. For any α > 0 (V,A) is an accessible system.
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Proof. Let assume that, for each vertex s of an α-feasible set S, S \ {s} is not
α-feasible:

αw+ (S \ {s})− w− (S \ {s}) < 0 ∀s ∈ S. (15)

Summing up these inequalities for each s ∈ S, we obtain

(|S| − 2)
(
αw+ (S)− w− (S)

)
< 0, (16)

since each edge (i, j), with i, j ∈ S, appears in each inequality (15) except
when s is equal to i or j.

Equation (16) contradicts the α-feasibility of S

Lemma 11. For any β > 0 (V,B) is not an accessible system.

Proof. Consider a graph composed of two vertices linked by an edge of weight
−1. The set {s, t} is β-feasible while {s} and {t} are not.

Our two enumeration algorithms A1 and A2 are based on πα since, as sum-
marized in Table 1, πβ and παβ are not exact in most of the cases.

5.3 Algorithm A1

In this section, we present our first enumeration algorithm A1 and its branching
policy πA1

.
The enumeration and the evaluation of the mediator sets are two time con-

suming steps of an enumeration algorithm. Consequently, we introduce in
Section 5.3.1 an exact branching policy πA1

which produces trees significantly
smaller than πα. Moreover, to speed up the evaluation step, we prove in Sec-
tion 5.3.2 that only maximal mediator sets need to be evaluated.

5.3.1 Branching policy πA1

Lemmas (5) to (11) prove that πα is exact while πβ and παβ are not. Unfor-
tunately, the enumeration tree generated by πα may be huge (even larger than
the lexicographical order policy) since πα does not avoid repetitions (i.e., several
nodes of the generated tree may correspond to the same set). This is exampli-
fied by the enumeration tree represented in Figure 4a in which all the sets of
size 2 are duplicated.

It would be tempting to combine πα with the lexicographical policy and only
enumerate in lexicographical order the sets which are α-feasible. However, this
policy would not be exact. Indeed, if in Figure 2b the set {1, 2} is not α-feasible,
then the set {1, 2, 3} can not be generated even if it is a mediator set.

The following lemma enables to design an exact branching policy without
repetitions.
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(a) First two stages of the tree obtained with πα.

(b) Tree obtained with πA1 .

Figure 4: Enumeration trees obtained for different policies for the graph pre-
sented in Figure 3a.

Lemma 12. If S ⊂ V is α-feasible and v ∈ argmini∈S αw+(i, S) − w−(i, S),
then S\{v} is α-feasible.

Proof. Lemma 10 ensures that there exists k ∈ S such that S\{k} is α-feasible:

αw+(S)− w−(S)− (αw+(k, S)− w−(k, S)) ≥ 0. (17)

Let us assume that there exists a vertex v ∈ argmini∈S αw+(i, S)−w−(i, S)
such that set S\{v} is not α-feasible:

αw+(S)− w−(S)− (αw+(v, S)− w−(v, S)) < 0. (18)

However, by definition of v we have

αw+(k, S)− w−(k, S) ≥ αw+(v, S)− w−(v, S) (19)

thus, Equations (17) and (18) can not both hold.

Let S be an α-feasible set. Lemma 12 ensures that by successively removing
from S a vertex which minimizes αw+(i, S)−w−(i, S) (i.e., a vertex of S which
contribution to the α-feasibility of S is minimal), a serie of α-feasible sets is
obtained. In other words, S can be reached by a branching policy which uses
this condition.

We can now exhibit the complete expression of πA1 . Branching policy
πA1

(S, i) returns true if and only if:

• S ∪ {i} is α-feasible; and

• i = min argmins∈S (αw+(s, S)− w−(s, S)).
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A minimization is used in the second condition to ensure that there are
no repetitions in the enumeration tree whenever several vertices in S have a
minimal contribution to the α-feasibility of S.

We now present how the evaluation step of an enumeration algorithm can
be improved.

5.3.2 Evaluation of the generated mediator sets

In order to solve the CCM problem, an enumeration algorithm must evaluate
the mediator sets it generates. The evaluation of a mediator set SM consists in
solving the CC problem on a graph composed of the vertices V \SM . This step
can be performed after the enumeration of the mediator sets or in parallel.

For a given set S ⊆ V , let PS be an optimal partition of the CC problem
over V \S. Since CC is NP -hard, reducing the number of evaluated sets could
have significant impact on the resolution time of an enumeration algorithm. The
next lemma ensures that we can only evaluate maximal mediator sets.

Lemma 13. Adding a vertex to the mediator set can not deteriorate the optimal
value of CCM.

Proof. Let S be a set of mediators and s a vertex in V \S. We show that the
optimal value of the CC problem over V \S (i.e., I(PS)) is greater than or equal
to the one of the CC problem over V \ (S ∪ {s}) (i.e., I(PS∪{s})).

Let PS = {S1, ..., Sk} and assume without loss of generality that s ∈ S1.
According to Equation (1),

I({S1 \ {s}, . . . , Sk}) = I(PS) − w−({s}, S1) −
∑

2≤j≤k

w+({s}, Sj). (20)

We can then conclude that

I(PS) ≥ I({S1 \ {s}, . . . , Sk}) ≥ I(PS∪{s}). (21)

Corollary 1. Let S, S′ ⊆ V be two mediator sets in G such that S ⊆ S′. Then
I(PS) ≥ I(PS

′
).

Consequently, we only test maximal mediator sets in our algorithms.

5.3.3 Pseudo-code of Algorithm A1

To solve CCM, Algorithm A1 generates all the mediator sets by calling the
recursive function A1Enumeration(G, ∅) (see Algorithm 1) and returning one
which minimizes the imbalance. Lines 2 and 3 of function A1Enumeration
enable to generate all the child nodes of node S which satisfy branching policy
πA1

. The mediator sets are evaluated on Line 6 if no mediator set is found in
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the subtree (i.e., if L = ∅). Note that this does not prevent A1 from evaluating
non maximal mediator sets.

Algorithm 1: Recursive function A1Enumeration.

Data: G = (V,E, s): weighted signed undirected graph
S ⊂ V

Result: L : list of mediator sets which strictly include S and their
associated optimal value of the CC problem

1 L← ∅
2 for i ∈ V \S do
3 if πA1

(S, i) then
4 L← L ∪A1Enumeration(G,S ∪ {i})

5 if L = ∅ and S is β-feasible then
6 v∗ ← optimal value of the CC problem of V \S
7 L← L ∪ {(S, v∗)}
8 return L

Lemma 14. Algorithm A1 may evaluate non maximal mediator sets.

Proof. Figure 5b represents the enumeration tree obtained using policy πA1
over

the graph represented in Figure 5a.

a b
1

(a)
(b)

Figure 5: (a) A graph and (b) its corresponding enumeration tree obtained with
Algorithm A1.

Since {b} is a mediator set and a leaf of the tree, it will necessarily be
evaluated during Algorithm A1. However, it is not a maximal mediator set as
it is included in {a, b}.

Algorithm A1 enumerates exhaustively the mediator sets. We now define a
second exact enumeration algorithm called A2 which leverage linear relaxations
to significantly reduce the size of its enumeration tree.

5.4 Algorithm A2

Algorithm A2 is based on the recursive function A2Enumeration, represented in
Algorithm 2, which is slightly different from A1Enumeration in order to reduce
the size of the enumeration tree. An upper bound UB which corresponds to the
imbalance of a known feasible solution of the CCM problem is given as an input.
Moreover, at each node S, we compute the value vr of the linear relaxation of
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CCM in which the vertices in S are imposed to be included in the mediator set
(Line 2). If vr is greater than UB, this sub-tree can not lead to a better solution
and it is pruned. Finally, UB is updated whenever a better integer solution is
obtained (Line 10).

Algorithm 2: Recursive function A2Enumeration

Data: G = (V,E, s): weighted signed undirected graph
S ⊂ V
UB: best known upper bound of CCM (global variable)

Result: L: list of all mediator sets which strictly include S and their
associated optimal value of the CC problem

1 L← ∅
2 vr ← optimal value of the linear relaxation of the CCM problem in

which S is forced to be included in the mediator set
3 if vr < UB then
4 for i ∈ V \S do
5 if πA1(S, i) then
6 L← L ∪A2Enumeration(G,S ∪ {i})

7 if L = ∅ and S is β-feasible then
8 v∗ ← optimal value of the CC problem of V \S
9 L← L ∪ {(S, v∗)}

10 UB = min(UB, v∗)

11 return L

To provide an initial upper bound, we use the greedy heuristic represented
in Algorithm 3. This heuristic tries to find a list of mediator sets L such that
each vertex in V appears in at least one of them. For this purpose the list
notInASet initially contains all the vertices (Line 2) and each time a vertex
is added to a mediator set, it is removed from this list (Line 6 and 10). Each
pass of the while loop Line 3 tries to create a mediator set SM starting with
a candidate vertex from notInASet (Line 4 and 5). Vertices are then added
to SM by successively selecting vertices which improve the most the α and the
β-feasibilities of SM (Line 7 and 11). Prior to adding SM to L, we test if SM
is a mediator set (Line 12). Indeed, if a candidate vertex is not included in any
mediator set of size 2, SM can not be a mediator set. In that case, the greedy
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algorithm may not return any mediator set which includes this vertex.

Algorithm 3: Greedy heuristic for the CCM problem HG.

Data: G = (V,E, s): weighted signed undirected graph
Result: L: list of mediator sets

1 L← ∅
2 notInASet← V // List of vertices which does not appear in any

mediator set found
3 while notInASet 6= ∅ do
4 candidate← notInASet[1]
5 SM ← {candidate}
6 notInASet← notInASet\{candidate}

7
v ← argmaxi∈V \SM min(αw+(i, SM )− w−(i, SM ),

βw+(i, V \SM )− w−(i, V \SM ))

8 while SM ∪ {v} is a mediator set do
9 SM ← SM ∪ {v}

10 notInASet← notInASet\{v}

11
v ← argmaxi∈V \SM min(αw+(i, SM )− w−(i, SM ),

βw+(i, V \SM )− w−(i, V \SM ))

12 if SM is a mediator set then
13 L← L ∪ SM

14 return L

Algorithm A2 starts by calling the greedy heuristic. Each maximal mediator
set returned is then evaluated and the best imbalance obtained constitutes the
initial upper bound UB. The exact enumeration is then performed by calling
A2Enumeration(G, ∅, UB).

5.5 Implementation improvements

To improve the efficiency of A1 and A2, several implementation choices have
been made.

At each node, the α and the β-feasibility are not computed from scratch.
They are instead deduced from the values obtained at the parent node. For
example, let us consider a node S ∪ {i} son of node S. At node S ∪ {i}, the
α-feasibility of node S has already been tested. The value αw+(S) − w−(S)
is thus known. We leverage this value to test the α-feasibility of node S ∪ {i}
thanks to the equation:

αw+(S ∪ {i})−w−(S ∪ {i}) = αw+(S)−w−(S) + αw+(i, S)−w−(i, S). (22)

Consequently, at each node S ∪ {i}, we only compute the value αw+(i, S) −
w−(i, S). A similar reasoning is considered for the β-feasibility tests.

Enumeration algorithms must both enumerate and evaluate mediator sets.
The evaluation of a set S requires to solve a NP -hard problem and we know
that it is not necessary if S is not a maximal mediator set. Consequently, it is
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not efficient to evaluate a set as soon as it is enumerated. An alternative would
be to first enumerate all the mediator sets and then evaluate the one which are
maximal. This approach has two drawbacks:

• when the resolution time is limited, enumerating all the mediator sets
may not leave enough time to evaluate many mediator sets, leading to a
solution of poor quality. In hard instances it can even lead to no solution
at all;

• in A2 evaluating mediator sets may enable to improve the upper bound
UB, thus reducing the size of the enumeration tree. If the mediator sets
are evaluated after the enumeration, this bound can not be strengthened
during the enumeration.

Consequently, our algorithms alternate between the enumeration and the
evaluation steps until the algorithm or the time is over.

6 Computational experiments

We compare the performances of A1, A2 and the formulation presented in Sec-
tion 4 on two datasets composed of random instances (Section 6.1) and in-
stances obtained from the vote of the members of the european parliament
(Section 6.2)1. We use a 3.50GHz Intel(R) Xeon(R) CPU E31280 equipped
with 31GByte of RAM and the linear programs are solved with CPLEX 12.9.

For each instance I considered, let ᾱI =

∑
(i,j)∈E− wij∑
(i,j)∈E+ wij

be the lowest value

of α for which V is a mediator set. The solution in which V is the mediator set is
always optimal since it leads to an imbalance of 0. Consequently, the problem is
trivial for any value α ≥ ᾱI . To evaluate our methods over non-trivial problems,
we consider for each instance I the three following values of α: 0.25 ᾱI , 0.5 ᾱI
and 0.75 ᾱI .

6.1 Random dataset

We randomly generate instances with 30 to 50 vertices and with densities
0.2, 0.5 and 0.8 using the erdos.renyi.game function from R’s ”igraph” library
(see (Csardi and Nepusz, 2006)). The density ρ ∈ [0, 1] corresponds to the prob-
ability that an edge exists. The weight of the edges are uniformly generated in
[−1, 1].

For a given instance, let xI be the value of the best solution returned by a
method and let xLB be the lower bound it provides. We define the relative gap

as 100 × |x
I−xLB |
xI

. Since A1 and A2 do not provide a lower bound, the lower
bound obtained with CPLEX is used to compute their relative gap.

1datas are available via
https://sites.google.com/site/zacharieales/2021-01_data_mediators.tar.gz?

attredirects=0&d=1
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The execution time, the number of nodes generated and the relative gap of
each method are presented in Table 2. Each entry corresponds to a mean value
over 5 instances. The time limit of each method is fixed to 4 hours. The two
first columns of Table 2 represent the size and density of the graphs. The next
column contains the percentage of ᾱI considered.

The resolution of our formulation through CPLEX appears to provide the
best results on most of the instances. Algorithm A2 is often close to CPLEX
and is even able to beat it in 13% of the instances. CPLEX is known for the
efficiency of its presolve algorithm which often enables to drastically reduce the
size of a MILP and its fine-tuned heuristics which determine in particular on
which variable to branch and which node to evaluate next. We posit that the
efficiency of CPLEX over A1 and A2 is mainly due to these features which enable
to optimally solve the problems with a significantly smaller number of nodes.

The differences in terms of resolution time and size of the enumerated trees
between A1 and A2 highlight the efficiency of A2 pruning mechanism.

We observe that the resolution times tend to increase with size of the graph,
its density and ᾱI . This is not surprising as all these parameters are related to
the complexity of the problem. The size of the graph determines the number of
variables in the formulation and the number of branches to consider in the enu-
meration algorithms. The greater the density, the more complex the objective
function. Finally, ᾱI directly impacts the number of feasible solutions.

Most of the instances where A2 beats CPLEX correspond to ᾱI = 0.25.
This is due to the fact that the size of the maximal mediator sets decreases
when α decreases, thus reducing the depth of the branches of the enumeration
algorithms.

6.2 European parliament dataset

We now consider real world instances obtained from votes casted during the
7th term of the european parliament from 2009 to 2014. The roll-call votes of
all members of the european parliament (MEP) for all plenary sessions in this
period are available on the website It’s Your Parliament (Buhl & Rasmussen
(2020)).

In order to obtain challenging instances, we selected countries with more
than 30 MEP and three of the most controversial policy domains: agriculture,
gender equality and economic. For each country 1 graph is generated for each
domain. Similarly to Arinik et al. (2017), to each MEP is associated a vertex
and the weight of an edge in [−1, 1] represents the voting similarity between two
MEP.

The results obtained for this dataset are presented in Table 3. Each value
in this table corresponds to an average over three instances (one for each policy
domain considered). The resolution time of CPLEX quickly increases with the
size of the graphs and it is only able to provide feasible solutions for the three
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|V | ρ ᾱI%
CPLEX A2 A1

Time Gap Nodes Time Gap Nodes Time Gap Nodes

30 0.2

25 6s 0% 127 79s 0% 9307 1082s 0% 13518449

50 5s 0% 100 4011s 0% 504477 4581s 0% 51533226

75 4s 0% 11 1459s 0% 243957 15480s - 38968391

30 0.5

25 19s 0% 21 8s 0% 47 83s 0% 989595

50 41s 0% 449 226s 0% 9013 1743s 0% 19697051

75 43s 0% 1075 14400s 100% 732676 12460s 80% 116702495

30 0.8

25 48s 0% 232 29s 0% 31 55s 0% 134642

50 162s 0% 2263 58s 0% 343 564s 0% 6111397

75 519s 0% 6991 14400s 62% 169606 11439s 20% 110705306

40 0.2

25 35s 0% 50 33s 0% 661 14400s - 105226770

50 2628s 0% 3323 13323s 2% 336233 14400s 3% 96866702

75 20s 0% 117 5760s 0% 93792 6632s 0% 24934814

40 0.5

25 1042s 0% 1574 1058s 0% 46 5880s 0% 32044875

50 3118s 0% 5557 5015s 3% 17471 14400s - 93735047

75 8661s 20% 28870 14400s 43% 61975 14400s 27% 83403944

40 0.8

25 6774s 0% 6273 7479s 0% 41 6936s 21% 2340239

50 14400s 0% 64626 12041s 74% 183 14400s 91% 61945117

75 14400s 2% 48616 14400s 22% 46455 14400s 56% 82982893

50 0.2

25 709s 0% 333 1123s 0% 4687 14400s - 89114438

50 13578s - 6665 13002s 42% 118864 14400s 81% 81664916

75 286s 0% 493 5761s 40% 42555 229519s - 46021614

50 0.5

25 14400s 0% 3762 14400s 94% 0 14400s - 96815443

50 14400s 0% 9605 14400s 65% 3828 14400s - 57217269

75 14400s 100% 4355 14400s 86% 62194 14400s 48% 49755356

50 0.8

25 14400s 0% 5028 14400s 143% 0 14400s 182% 37134234

50 14400s 0% 13984 14400s 94% 0 14400s - 77940184

75 14400s 101% 7463 14400s 92% 44826 14400s 98% 34718564

Table 2: Mean time in seconds, relative gap and number of enumerated nodes
obtained for each method over the random instances. Each value is an average
over five instances. On each line, the best result is in bold. A dash in the Gap
column indicates that no solution is obtained for at least one of the instances.
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n Country ᾱI%
CPLEX A2

Time Obj. Nodes Time Obj. Nodes

33 Romania

0.25 10s 0 53 0s 0 1

0.5 7s 0 172 0s 0 1

0.75 7s 0 172 0s 0 1

51 Poland

0.25 391s 0 30 0s 0 1

0.5 1116s 0 658 0s 0 1

0.75 149s 0 15 0s 0 1

59 Spain

0.25 2390s 0 669 0s 0 1

0.5 2015s 0 76 0s 0 1

0.75 614s 0 11 0s 0 1

72 UK

0.25 9977s - 2 9601s 1 29388

0.5 11006s - 189 9601s 1 31937

0.75 14407s - 440 4803s 0 9827

87 France

0.25 14410s - 5 9601s 4 16682

0.5 14403s - 29 4803s 2 6610

0.75 14402s - 19 6s 0 1

104 Germany

0.25 14403s - 2 9601s 0 10215

0.5 14403s - 2 7s 0 1

0.75 14403s - 2 17s 0 1

Table 3: Mean time in seconds, objective value and number of enumerated
nodes obtained on the instances from the european parliament. Each value is
an average over three instances. On each line, the best result is in bold and a
dash is used in column Obj. if no solution is obtained for at least one of the
instances.

smallest instances. Algorithm A2, however, is faster than CPLEX and always
returns a solution. The efficiency of A2 is partially due to its greedy heuristic
which is very efficient on these real world instances. Indeed, it often returns a
solution with no imbalance leading to an enumeration tree with only one node.
This is not surprising as the instances are quite polarized along the lines of the
political groups of the european parliament. However, the efficiency of A2 is
not only due to its greedy heuristic as the enumeration algorithm enables to
improve the greedy solution in most instances with several nodes.

We conclude this section by highlighting advantages of the enumeration al-
gorithms over the integer programming formulation. First, enumeration algo-
rithms generate all the maximal mediator sets. A1 even returns all the mediator
sets. In the context of decision aid systems, providing a variety of relevant solu-
tions is essential. The set of all the mediators could also be used to indicate the
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importance of each vertex v. For example, if only one vertex v is present in all
the mediator sets, it indicates that it plays a major role in the graph. CPLEX
can be tuned to generate a pool of solutions but it can not guarantee that all
the maximal mediator sets or even all the optimal solutions are obtained. Sec-
ondly, the enumeration algorithms can easily be adapted to new definitions of
mediator sets involving non-linear and non-convex constraints. The satisfaction
of these constraints can be tested at the same time than the β-feasibility (Line 5
of Algorithm 1 and Line 7 of Algorithm 2).

7 Conclusions and perspectives

In this paper, we propose a new variant of the correlation clustering problem,
called the correlation clustering problem with mediation, based on the work of
Doreian and Mrvar (2009). After proving its NP-hardness we model it with an
integer mathematical formulation. We also develop two enumeration algorithms
A1 and A2 to solve optimally this problem and exhaustively enumerate all the
maximal sets of mediators. These algorithms are based on properties of the
mediator sets which enable to efficiently prune branches of the enumeration
tree. Finally, we compare experimentally the performances of the formulation
and of the enumeration algorithms on a dataset with random instances and on a
second with real world instances obtained from european parliament votes. The
resolution of the formulation with CPLEX gives better results on hard random
instances but, unlike A2 it fails to provide feasible solutions on the large real
world instances.

A natural perspective to this work would be to improve the pruning tech-
nique of the enumeration algorithms by identifying additional properties of the
mediator set to strengthen the branching policies. A new type of enumeration
algorithm could also be introduced in which vertices are removed rather than
added at each new node of the enumeration tree. Such algorithm could cut a
branch as soon as a mediator set is reached. This approach could be partic-
ularly efficient when the maximal sets of mediators are large (i.e., for large
values of parameters α and β). A last perspective would be to consider alterna-
tive definitions of a mediator set. The flexibility of the enumeration algorithms
could allow the use of non-linear constraints. For some applications it could
also be relevant to associate a label to each vertex (e.g., a political party) and
to require that the proportion of each label in a mediator set is representative
of its distribution in the graph.
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