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Abstract
In the context of community detection, Correlation Clustering (CC) provides a measure

of balance for social networks as well as a tool to explore their structures. However, CC
does not encompass features such as the mediation between the clusters which could be all
the more relevant with the recent rise of ideological polarization. In this work, we study
Correlation Clustering under mediation (CCM), a new variant of CC in which a set of
mediators is determined. This new signed graph clustering problem is proved to be NP-
hard and formulated as an integer programming formulation. An extensive investigation
of the mediation set structure leads to the development of two efficient exact enumeration
algorithms for CCM. The first one exhaustively enumerates the maximal sets of mediators
in order to provide several relevant solutions. The second algorithm implements a pruning
mechanism which drastically reduces the size of the exploration tree in order to return a
single optimal solution. Computational experiments are presented on two sets of instances:
signed networks representing voting activity in the European Parliament and random signed
graphs.

Keywords: Accessible system, Correlation clustering, Enumeration algorithm, Signed graph,
Integer programming, Structural balance

1 Introduction

Community detection is largely applied to understanding the structure of social networks.
In the presence of a network with antithetical relationships (like/dislike, for/against, simi-
lar/different...) community detection can be modeled as correlation clustering (CC) (Doreian
and Mrvar, 1996), a signed graph clustering problem later formalized by Bansal et al. (2004)
for document classification.

In a signed graph, the edges are labeled as either positive (+) or negative (-). The CC
problem consists in partitioning the vertices of such a graph while minimizing disagreements,
i.e., the total number of positive edges between the clusters plus the total number of negative
edges inside the clusters. A weighted version of the problem was lately defined in Demaine
et al. (2006).

The CC problem is related to the concept of structural balance introduced in the field
of social network analysis (Heider, 1946; Cartwright and Harary, 1956). According to struc-
tural balance theory, the equilibrium of a social system is associated with the propensity of
individual elements to be organized in groups avoiding conflictual situations. This concept is
perfectly described by graph theory (Davis, 1967). A signed graph is structurally balanced
if it can be partitioned into clusters, such that all positive (resp. negative) edges are located
inside (resp. in-between) these modules.
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Applications of the CC problem overtakes the area of social networks analysis and
also arise in system biology (DasGupta et al., 2007), portfolio analysis for risk manage-
ment (Figueiredo and Frota, 2014; Harary, 2002), voting behavior (Arinik et al., 2017;
Kropivnik and Mrvar, 1996), document classification (Bansal et al., 2004), surface detec-
tion in 3D images (Kolluri et al., 2004), and in the detection of embedded matrix struc-
tures (Figueiredo et al., 2011). Variants of the CC problem have been proposed and dis-
cussed in the literature. Some of them motivated by a redefinition of the concept of structural
balance (Doreian and Mrvar, 2009) or by applications to community detection in unsigned
graphs.

The recent rise of ideological polarization makes it harder to reach agreements across
partisan lines (Abramowitz and Saunders, 2008). Since mediation could allow productive
exchanges in polarized signed networks, we study a new variant of CC in which a set of
key-players, called mediators, is additionally identified. We apply the concept of positive
mediation as introduced by (Doreian and Mrvar, 2009): a set of mediators must have good
relations among themselves and with other individuals in the network. We define a good
relation by two parameters, α and β, which represent the maximal proportion of negative to
positive relations allowed inside and outside the mediation set, respectively. The aim of the
correlation clustering problem under mediation (CCM) is to obtain a partition in which one
cluster is composed of mediators and which minimizes the imbalance (as defined in original
CC) of the remaining clusters.

Unlike the CC problem, to the best of our knowledge, the CCM problem only has ap-
plications in social networks analysis. In this work, we are not only focused on identifying
one optimal set of mediators (a unique optimal solution) but also on determining several
of them as various as possible (multiple and diverse solutions). Indeed, in a decision aid
process based on the CCM problem, such sets can be used as a basis to form committees
(e.g. in political institutions): identifying alternative solutions can enable to assign different
committees to different tasks (e.g., one committee per law or topic). Moreover, multiple op-
timal solutions can also be used to indicate the importance of each individual in the whole
group. For example, if only one element is present in all the sets of mediators, it indicates
that it plays a major role in the social network.

The contributions of this paper are fourfold.

1. We introduce the CCM problem, a new variant of CC in which the definition of a set
of mediators is parametrized by two parameters.

2. We prove that CCM is NP-hard and formulate this problem as an integer linear pro-
gramming model.

3. We provide two enumeration algorithms for CCM which take advantage of properties
of sets of mediators to break symmetry in the search tree. One of these algorithms is
designed for generating all the maximal sets of mediators.

4. We present extensive computational results to compare the performances of these
algorithms to those of CPLEX applied to our formulation.

The paper is organized as follows. The next section is dedicated to a review of the works
related to the CCM problem. We give the notations and the formal definition of this problem
in Section 3 and prove its NP-hardness. We introduce an ILP formulation of the problem in
Section 4. Section 5 is devoted to the enumeration algorithms. Computational experiments
are given in Section 6. We finally conclude the paper in Section 7.

2 Related works

The review of the literature is divided in three sections: exact optimization methods for
CC (Section 2.1), variants of CC (Section 2.2) and group selection problems treated from
a network optimization point of view (Section 2.3.)

2.1 Exact methods for CC

A combinatorial branch-and-bound was proposed by Brusco and Steinley (2009) to solve in-
stances with up to 21 vertices. An Integer Linear Programming (ILP) formulation based on
the vertex clustering formulation of (Mehrotra and Trick, 1998) was also considered in the
literature (see for example (Demaine et al., 2006; Arinik et al., 2017, 2021)). In (Figueiredo
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and Moura, 2013) the two approaches were compared. The authors showed that the ILP
approach could handle larger graphs and required less time for most of the benchmark in-
stances. This approach was used in a branch-and-cut framework on complete graphs with up
to 50 vertices (Arinik et al., 2021) and on non-complete ones with up to 400 vertices (Arinik
et al., 2017).

In a recent work (Arinik et al., 2021), the authors showed that the optimal solution
space of the CC problem can be composed of multiple and diverse optimal solutions. The
applications solved by this clustering problem motivated the same authors to develop a
method for generating its complete space of optimal solutions (Arinik et al., 2023). The
algorithm combines an exhaustive enumeration strategy with neighborhoods of varying sizes,
to achieve computational effectiveness.

2.2 Variants of CC

The variants of the CC problem can be divided in two groups: with redefinition of the
objective function or with redefinition of the clustering constraints.

2.2.1 Alternative objectives

CC seeks a partition which minimizes the total number of disagreements. Doreian and
Mrvar (2009) observed that this definition does not encompass some important features.
For example, vertices which agree with hostile subgroups increase the imbalance of the
graph according to this definition. The authors considered that such vertices are potential
mediators which should have a positive effect on the balance. Consequently, they proposed a
relaxed definition of the objective as the sum of maximum disagreements inside each cluster
plus the sum of maximal disagreements among each pair of clusters in the partition. The
Relaxed Correlation Clustering (Figueiredo and Moura, 2013; Levorato et al., 2017; Arinik
et al., 2017) (RCC) consider this objective.

Local disagreement functions have also been used in the literature. Both works presented
in (Kalhan et al., 2019; Puleo and Milenkovic, 2018) are based on a disagreements vector,
i.e, a vector indexed by the vertices where the i-th index is the number of disagreements at
vertex i. In (Puleo and Milenkovic, 2018), the highest value in the disagreement vector is
minimized while in Kalhan et al. (2019) the lq norm of the disagreements vector is minimized.

Eventually, motivated by network analysis applications defined on unsigned graphs, Veldt
et al. (2018) introduced the Lambda Correlation Clustering (LambdaCC), a weighted version
of CC in which the weight of the edges is either λ ∈ [0, 1] or 1− λ.

2.2.2 Alternative constraints

The first CC variant which redefines the clustering constraints is Motif Correlation Cluster-
ing (MotifCC) (Li et al., 2017). Also motivated by network analysis applications, MotifCC
associates a sign, positive or negative, to subgraph structures (called motifs) and minimizes
the number of clustering errors associated with both edges and motifs. This variant general-
izes CC to the hypergraph setting where the order of the graph is defined by the size of the
motifs considered. In Fair Correlation Clustering (FairCC) the vertex partition must satisfy
fairness constraints (Ahmadian et al., 2020). In this variant, each vertex of the graph has
a color associated and the colors in the partition must be distributed according to a given
fair property. Figueiredo and Moura (2013) defined the first version of CC with mediation
following the discussions in (Doreian and Mrvar, 2009). Their definition of a set of mediators
was very restrictive and we show that the problem defined in Section 2.3 generalises it.

Different approaches have been considered to solve these problems. ILP formulations
were introduced in (Figueiredo and Moura, 2013) for RCC. Approximation algorithms were
proposed for LambdaCC and MotifCC (Veldt et al., 2018; Li et al., 2017; Gleich et al.,
2018) as well as for FairCC (Kalhan et al., 2019; Puleo and Milenkovic, 2018). A simulated
annealing was considered for MotifCC in Li et al. (2017) while Iterated Local Search methods
were proposed for RCC (Levorato et al., 2017).

2.3 Group selection in social networks

Several works in the literature have been dedicated to the identification of a set of individuals
playing a specific role in a network. These individuals can be named key players (Borgatti,
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2006; Ortiz-Arroyo, 2010), influential vertices (Li et al., 2011), or mediators (Figueiredo and
Moura, 2013). The set of vertices can be selected through a global network optimization
criteria or by ranking network elements according to an individual measure (e.g., vertex
centrality (Borgatti, 2003)). We focus on the first approach as the second one does not
provide optimality guarantee (see examples in (Ortiz-Arroyo, 2010)).

The key players problem as introduced by (Borgatti, 2003), consists in selecting k vertices
in a network that maximizes or minimizes the disruption of the residual network obtained
by removing them. Different measures and heuristic procedures have been proposed in the
literature for this problem (Borgatti, 2006; Ortiz-Arroyo, 2010). (Li et al., 2011) studied the
problem of finding the set of key players controlling the bottlenecks of influence propagation
in a social network. The authors proposed a three-steps heuristic to solve this variant,
named the k−mediators problem. We refer the reader to references in (Li et al., 2011) for
works on vertex selection for influence maximization.

None of these works considered exact methods even when the size of the networks is
small (see for example (Borgatti, 2006)). The CCM problem defined in this work is based
on the mediation concept described by Doreian and Mrvar (2009). It has only been treated
once in the literature (Figueiredo and Moura, 2013) and for a very particular case where
both parameters, α and β, defining the feasibility of a set of mediators are equal to 0.

3 Notation and problem definition

Let G = (V,E) be an undirected graph, where V and E are the sets of vertices and edges,
respectively. Consider a function s : E → {+,−} that assigns a sign to each edge in E.
An undirected graph G together with a function s is called a signed graph, denoted here by
G = (V,E, s). An edge e ∈ E is called negative if s(e) = − and positive if s(e) = +. We
note E− and E+ the sets of negative and positive edges in a signed graph, respectively. Let
n = |V |.

The imbalance of a vertex partition is defined by its number of disagreements, that is
the number of positive edges between two clusters and negative edges inside a cluster. The
CC problem (Bansal et al., 2004) aims to find a partition of the vertices which minimizes
the imbalance. In the weighed version of the CC problem, an extra function w : E → R+ is
added. In order to define the imbalance in that weighted case, let us introduce some extra
notations.

For two subsets S1, S2 ⊆ V and a sign σ ∈ {+,−} we define Eσ[S1, S2] = {(i, j) ∈ Eσ :
i ∈ S1, j ∈ S2, i 6= j}, wσ(S1, S2) =

∑
(i,j)∈Eσ[S1,S2]

wij and wσ(S1) = wσ(S1, S1).
A partition of V is a division of V into non-overlapping and non-empty subsets. The

imbalance I(P ) of a partition P = {S1, S2, . . . , S|P |} is the weighted sum of negative arcs
inside the subsets and positive arcs between the subsets, i.e.,

I(P ) =
∑

1≤i≤|P |

w−(Si) +
∑

1≤i<j≤|P |

w+(Si, Sj). (1)

As stated by Bansal et al. (2004), CC consists in finding a partition that minimizes the
imbalance given by (1).

We introduce a new variant of CC in which a set of vertices called mediators is identified
while the imbalance (1) of the remaining vertices is minimized. Let us define two properties
that a set of mediators must satisfy.

Definition 1. Consider a scalar value α ∈ R+. A subset S ⊆ V is α-feasible if αw+(S) ≥
w−(S).

Definition 2. Consider a scalar value β ∈ R+. A subset S ⊆ V is β−feasible if βw+(S, V \S) ≥
w−(S, V \S).

These definitions provide upper bounds on the sum of negative weights inside (Defini-
tion 1) and leaving (Definition 2) the set of vertices S. Fixing parameter α to 0 (β to 0,
resp.) allows only non-negative edges inside (leaving, resp.) S. By tuning the values of α
and β, we define the degree of negative relations accepted, respectively, inside S and leaving
S. For example, if α = 2 the weighted sum of negative relations in S cannot exceed the
double of its positive relations. These two bounds together lead to the definition of a set of
mediators.

Definition 3. A subset S ⊆ V is a set of mediators if S is α−feasible and β−feasible.
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We can now formally define the Correlation Clustering problem under Mediation.

Correlation Clustering problem under Mediation
Input: A signed graph G = (V,E, s), non-negative arc weights w ∈ R|E|+ and two

scalars α, β ∈ R+.
Output: A partition P = {SM , S2, ..., S|P |} which minimizes the imbalance I(P\SM )

and such that SM is a set of mediators.

The Correlation Clustering with Positive Mediation (CCPM) problem introduced in
Doreian and Mrvar (2009) and formalized in Figueiredo and Moura (2013) is a specific case
of CCM in which α = β = 0.

We now prove that CCM is NP-hard.

Lemma 1. The CCM problem is NP-hard.

Proof. We prove this result with a reduction from CC. Consider an instance ICC of CC

defined over a signed graph G = (V,E, s) with an edge weight vector w ∈ R|E|+ . Let

G′ = (V ′, E′, s′) be a signed graph and let w′ ∈ R|E
′|

+ be an edge weight vector defined
as follows (see Figure 1):

• V ′ = V ∪ {n+ 1, n+ 2, n+ 3}

• E′ = E ∪ E1 ∪ E2 ∪ E3 with:

– E1 = {(n+ 1, n+ 3), (n+ 2, n+ 3)},
– E2 = {(n+ 1, n+ 2)},
– E3 = {(n+ 2, i) : i ∈ V } ∪ {(n+ 3, i) : i ∈ V }.

• s′e =

 se, e ∈ E,
+, e ∈ E1,
−, e ∈ E2 ∪ E3.

• w′e =

 we, e ∈ E,
M, e ∈ E1 ∪ E2, with M = 1 +

∑
e∈E we,

−3M, e ∈ E3.

Consider the instance ICCM of CCM defined over the signed graph G′ with α = β = 1.
Let PCCM be an optimal solution of ICCM . We prove that PCCM is necessarily equal to
S = {{n + 1}, {n + 2, n + 3}, PCC} where PCC is an optimal solution of ICC . We first
observe that S is a feasible partition for instance ICCM : the unitary set {n + 1} satisfy
the conditions of a set of mediators for β = 1 and any α ∈ R+. Moreover, the imbalance
I({{n + 2, n + 3}, PCC}) = I(PCC) is lower than M for any partition PCC of the set of
vertices V \ {n + 1, n + 2, n + 3}. Next, we argue that the set of mediators in an optimal
solution of ICCM is necessarily {n + 1}. Vertices n + 1, n + 2 and n + 3 define a non-
balanced cycle in G′ (i.e., a cycle with an odd number of negative edges) composed of edges
of weight M . As a consequence at least one of them must be in the set of mediators in an
optimal solution (otherwise the imbalance would be at least M). If vertex n + 2 or n + 3
is in the set of mediators, a vertex in V cannot be neither in the set of mediators – as it
would be α-infeasible – nor outside of the set of mediators – as it would be β-infeasible.
As a consequence, vertex n+ 1 is necessarily in the set of mediators of an optimal solution.
Moreover, no vertex in V can be in the set of mediators as it would be β-infeasible.

We can also conclude that {n+2, n+3} forms necessarily a cluster in an optimal partition.
Vertices n+ 2 and n+ 3 have to be together in a cluster, otherwise the imbalance would be
greater than or equal to M . Moreover, no vertex in V can join this cluster, otherwise it will
increase the imbalance of 6M .

Finally, since PCC is a partition of V \ {n+ 1, n+ 2, n+ 3} and I({{n+ 2, n+ 3}, PCC})
is equal to I(PCC), we can conclude that PCC is an optimal partition for ICC .

In the next section, we formulate the CCM Problem as an Integer Linear Programming
(ILP) model.
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Figure 1: Example of the reduction from an instance of CC with 4 vertices to an instance
of CCM with 7 vertices.

4 Mathematical formulation

ILP formulations have been successfully used in the literature for the resolution of clustering
problems (Johnson et al., 1993; Mehrotra and Trick, 1996; Hansen and Jaumard, 1997;
Agarwal and Kempe, 2008; Brusco and Steinley, 2009; Ales et al., 2016), including clustering
problems defined on signed graphs (Figueiredo and Moura, 2013; Aref and Wilson, 2019).
In this section, we introduce an ILP formulation for the CCM problem.

For each pair of distinct vertices i, j in V , we consider a binary variable xij equal to
1 if and only if i and j do not belong to the same cluster. Also, to each vertex i ∈ V is
associated a binary variable mi equal to 1 if and only if i is a mediator. Note that in this
formulation, each mediator vertex is represented as an isolated vertex. Finally, each pair
of distinct vertices i, j is associated with two additional binary variables: tij equal to 1 if
and only if both i and j are mediators; and zij equal to 1 if and only if at least i or j is a
mediator.

minimize
∑

(i,j)∈E−
wij(1− xij) +

∑
(i,j)∈E+

wij(xij − zij) (2)

s.t. xjk ≤ xij + xik, i ∈ V j, k ∈ V \{i} j < k, (3)

mi ≤ xij , i, j ∈ V i 6= j, (4)

mi +mj − 1 ≤ tij , i, j ∈ V i 6= j, (5)

tij ≤ mi, i, j ∈ V i 6= j, (6)

mi ≤ zij , i, j ∈ V i 6= j, (7)

zij ≤ mi +mj , i, j ∈ V i 6= j, (8)∑
(i,j)∈E−

wijtij ≤ α
∑

(i,j)∈E+

wijtij , (9)

∑
(i,j)∈E−

wij(zij − tij) ≤ β
∑

(i,j)∈E+

wij(zij − tij), (10)

xij = xji ∈ {0, 1}, i, j ∈ V i 6= j, (11)

zij = zji ∈ [0, 1], i, j ∈ V i 6= j, (12)

tij = tji ∈ [0, 1], i, j ∈ V i 6= j, (13)

mi ∈ {0, 1}, i ∈ V. (14)

The triangle inequalities (3) ensure that if i is in the same cluster as j and k (xij =
xik = 0), then vertices j and k are also in the same cluster (xjk = 0). Constraints (4)
establish that mediators are isolated. Constraints (5) and (6) ensure that tij = mimj .
Constraints (7) and (8) impose, respectively, zij = 1 whenever mi + mj ≥ 1 and zij = 0
otherwise. Constraints (9) and (10) ensure that the set of mediators is α and β-feasible,
respectively. Remark that the expression zij − tij is equal to 0 if and only if mi = mj .
Consequently, for σ ∈ {−,+},

∑
(i,j)∈Eσ wij(zij − tij) = wσ({mi}i∈V , V \{mi}i∈V ). Finally,

the objective function (2) minimizes the imbalance defined by (1). The first term penalizes
negative edges (i, j) connecting vertices in a same cluster (i.e., such that xij = 0) and
the second term penalizes positive edges (i, j) connecting non-mediator vertices in different
clusters (i.e, such that xij = 1 and zij = 0).

In Section 6 the performance of this formulation is compared with the ones of two
enumeration algorithms presented in the next section.
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5 Enumeration algorithms

In this section, we present an alternative to the ILP based branch-and-bound algorithm,
called enumeration algorithms for the optimal resolution of CCM. We first formally define
the notion of enumeration algorithm (Section 5.1). Then, we study three simple enumeration
strategies (called policies) and show that only one of them ensures an exact resolution
(Section 5.2). Finally, based on this policy, we propose two enumeration algorithms called A1

and A2 (Sections 5.3 and 5.4). The first one generates one solution for each possible maximal
set of mediators while A2 focuses on returning a single optimal solution and efficiently prune
branches of the exploration tree.

5.1 Enumeration tree and branching policy

Let an enumeration tree of a signed graph G = (V,E, s) be a tree in which:

• each tree node is associated to a subset of V ;

• the root corresponds to the empty set;

• each other node is associated to the set of its parent plus a new vertex.

Three enumeration trees are depicted in Figure 2.

(a) An enumeration tree. (b) Lexicographical enumeration tree.

(c) Complete enumeration tree.

Figure 2: Three enumeration trees for |V | = 3.

An enumeration algorithm for CCM generates an enumeration tree in order to identify
sets of mediators ofG. Solutions of the problem are then obtained by evaluating all mediators
sets identified. The evaluation of a set SM consists in finding the lowest possible imbalance
of a solution in which SM is the set of mediators. This is obtained by solving the CC problem
instance associated with the signed graph induced by V \SM .

Let P(V ) be the power set of V . One of the main components of an enumeration
algorithm is its branching policy π : P(V ) × V 7→ {true, false} which indicates when a
node should be created or not in the enumeration tree. More specifically, if S is a subset
of V and i is a vertex in V \S then π(S, i) returns true if node S ∪ {i} must be created as
a child of node S and false otherwise. As a consequence, the size of the tree generated
by an algorithm directly depends on its policy. If the branching policy always returns true
(π(S, i) = true , ∀S ∈ P(V ) , ∀i ∈ V \S), a complete tree of O(n!) nodes is created (see
Figure 2c). Enumerating the sets in lexicographical order corresponds to the branching
policy π(S, i) = “i > argmaxs∈S s” (see example in Figure 2b). This policy leads to a
smaller tree size by avoiding any repetition (i.e., each set is associated to no more than one
node). However, the size of the corresponding tree (2|V |) remains prohibitive and better
alternatives are required to efficiently solve CCM.
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5.2 Simple branching policies

Let < G,α, β > be an instance of CCM defined by a signed graph G = (V,E, s) and scalar
values α and β. A branching policy π is said to be exact for < G,α, β > if the enumeration
algorithm using π enumerates all sets of mediators in G.

We first study three branching policies called παβ , πα and πβ and show that only πα
is exact. Policy παβ is an intuitive branching policy which generates a node only if it
corresponds to a set of mediators: παβ(S, i) = “S ∪ {i} is a set of mediators”. Policies πα
and πβ are less restrictive and, thus, lead to larger enumeration trees:

• πα(S, i) = “S ∪ {i} is α-feasible”;

• πβ(S, i) = “S ∪ {i} is β-feasible”.

To determine the conditions under which each of these three policies are exact, we con-
sider the following definition.

Definition 4. (Björner and Ziegler (1992)) Let F ⊆ P(S) be a family of subsets of a set
S. The tuple (S,F) is an accessible system if and only if:

(i) ∅ ∈ F ,

(ii) if X ∈ F and X 6= ∅ then ∃ x ∈ X such that X\{x} ∈ F .

LetM be the family of all sets of mediators of the signed graph G = (V,E, s). Similarly,
let A and B be the family of all α-feasible and β-feasible sets of G, respectively. The three
following lemmas prove that branching policies παβ , πα and πβ are exact when (V,M),
(V,A) and (V,B) are accessible systems.

Lemma 2. παβ is exact for < G,α, β > if and only if (V,M) is an accessible system.

Proof. Let S be any set of mediators in G. If (V,M) is an accessible system, there exists an
ordering (s1, s2, ..., s|S|) of the vertices in S such that S\{s1, s2, ..., si} is a set of mediators
for all i ∈ {1, 2, ..., |S|}. As a consequence, S can be reached by παβ through the following
branch: ∅, {s|S|}, {s|S|, s|S|−1}, ..., S.

We now prove that if παβ is exact for < G,α, β > , then (V,M) is an accessible system.
We use the contrapositive of this proposition, i.e. we assume (V,M) is not an accessible
system and we will see that there exists a set of mediators S which is not enumerated by
παβ . Indeed, if (V,M) is not an accessible system, that means there exists a set of mediators
S such that S \ {s} is not a set of mediators for each s ∈ S. Hence, by the definition of παβ ,
no set S \ {s} will be enumerated by the branching policy παβ . Since the set S can only be
generated from a set of the form S \{s}, we can conclude that S will not be reached by παβ .

The two following lemmas provide weaker results for (V,A) and (V,B) which give suffi-
cient conditions under which πα and πβ are exact. The proof of these lemmas are omitted
since they are similar to the first part of the proof of Lemma 2.

Lemma 3. If (V,A) is an accessible system, then πα is exact for < G,α, β >.

Lemma 4. If (V,B) is an accessible system, then πβ is exact for < G,α, β >.

As we will prove in Lemma 10, (V,A) is always an accessible system which ensures that
πα is always exact. Lemma 11 will prove that the same does not apply to πβ .

Note that, as defined next, a matroid is a special case of an accessible system.

Definition 5. (Whitney (1935)) Let F ⊆ P(S) be a family of subsets of a finite set S. The
tuple (S,F) is a matroid if it satisfies the three following axioms:

(i) ∅ ∈ F ;

(ii) Hereditary axiom: if X ∈ F , then for all Y ⊆ X, Y ∈ F ;

(iii) Augmentation axiom: if I, J ∈ F and |I| = |J | + 1, then there exists x ∈ I\J such
that J ∪ {x} ∈ F .

We characterize in the remaining of this section when (V,M), (V,A) and (V,B) are
accessible systems or even matroids. These results are summarized in Table 1.

Unfortunately, παβ , which may provide smaller enumeration trees than πα and πβ , is not
exact in the general case.
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Tuple
α > 0 α = 0 α = 0

β > 0 β > 0 β = 0

(V,M) × (Lemma 5) Accessible (Lemma 8) Matroid (Lemma 9)

(V,A) Accessible (Lemma 10)

(V,B) × (Lemma 11)

Table 1: Properties satisfied by (V,M), (V,A) and (V,B). The symbol ’×’ is used when the
corresponding tuple is not an accessible system for all graphs.

Lemma 5. If α 6= 0, then (V,M) is not necessarily an accessible system.

Proof. In the graph represented in Figure 3, {a, b, c} is a set of mediators but none of the
subsets {a, b}, {a, c} and {b, c} is.

−1 −1

2
α

1

a

c

b

d

(a) A signed graph for which {a, b, c} is
a set of mediators.

Set α-feasible? β-feasible?

{a, b, c}
yes yes

2 ≤ 2
αα 0 ≤ β

{a, b}
yes no

0 ≤ 2
αα 2 > 0β

{a, c} or {b, c}
no if β≥ α

1 > 0α 1 ≤ ( 2
α + 1)β

(b) Table which shows that for each i ∈ {a, b, c},
{a, b, c} \ {i} is not a set of mediators.

Figure 3: Example which shows that (V,M) is not an accessible system when α 6= 0.

Consequently, whenever α 6= 0, an enumeration algorithm based on παβ may not reach
all the sets of mediators. The next lemma shows that this could even lead to sub-optimal
solutions of the CCM problem.

Lemma 6. Policy παβ may not enumerate any of the sets of mediators leading to an optimal
imbalance.

Proof. Let G = (V,E, s) be the signed graph represented in Figure 4 and let α = β = 1. We
can easily verify that for all v ∈ {c, d, e, f, g, h} the following sets are not sets of mediators:
{a, b}, {v}, {a, v}, and {b, v}. Consequently, the enumeration tree has only three nodes: ∅,
{a} and {b}. These three vertices can only provide solutions with an imbalance greater
than 1 due to the non-balanced cycle {d, e, f} in the graph. However, the mediators set
S = {a, b, c, d}, which is not reached by the tree, leads to an optimal solution of cost 0 since
the partition {S, {e, f}, {g}, {h}} is balanced.

To prove that παβ is exact when α = 0, we first consider the following lemma.

Lemma 7. Assume that α 6 β. If S is a set of mediators, then there exists a vertex s ∈ S
such that S \ {s} is β-feasible.

Proof. Let us assume that for each s ∈ S, S \ {s} is not β-feasible. Hence, the following
inequality holds for all s ∈ S

βw+(S \ {s}, V \ {S \ {s}}) < w−(S \ {s}, V \ {S \ {s}})

equivalently

βw+(S \ {s}, V \ S) + βw+(s, S) < w−(S \ {s}, V \ S) + w−(s, S).

By summing up this inequality for each s ∈ S we obtain

(|S| − 1)βw+(S, V \ S) + β
∑
s∈S

w+(s, S)︸ ︷︷ ︸
=2w+(S)

< (|S| − 1)w−(S, V \ S) +
∑
s∈S

w−(s, S).︸ ︷︷ ︸
=2w−(S)

9
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−1

2

−0.5

0.5

−1

−0.5

0.5

1

1 −2

1

−5

−5

Figure 4: A signed graph G where (V,M) is not an accessible system. Branching policy παβ
applied to < G, 1, 1 > does not enumerate any set of mediators associated with an optimal
solution of < G, 1, 1 >.

Since S is a set of mediators, it is β-feasible. Consequently, (|S| − 1)βw+(S, V \ S) >
(|S| − 1)w−(S, V \ S), which together with the previous inequality leads to

βw+(S) < w−(S).

Assuming α 6 β, this last inequality contradicts the α-feasibility of S.

We now prove that (V,M) is an accessible system when α = 0.

Lemma 8. If α = 0, then (V,M) is an accessible system.

Proof. If α = 0, the weight of each edge in a set of mediators SM is non-negative. Hence,
any subset of SM is α-feasible. We deduce from Lemma 7 that there exists at least one
vertex s ∈ SM such that SM \ {s} is additionally β-feasible.

Note, that when α = β = 0, (V,M) is not only an accessible system but also a matroid.

Lemma 9. If α = β = 0, then (V,M) is a matroid.

Proof. Since α = β = 0 the weight of each edge in SM and between SM and V \ SM is
necessarily non-negative. This also applies to any subset of SM and implies hereditary and
augmentation axioms of a matroid.

Lemma 9 ensures that, when both α and β are null, παβ is exact. However, in this case, an
enumeration algorithm based on this policy is not the best approach to solve CCM. Indeed,
when α = β = 0, an optimal solution of CCM can be obtained by identifying the unique
maximal set of mediators SM and solving CC on the remaining vertices V \SM (Figueiredo
and Moura, 2013). Such a set SM can easily be identified as it contains all the vertices with
adjacent edges with only non-negative weights.

Since παβ is not exact for all signed graphs, we now focus on πα and πβ . The two next
lemmas show that only πα is exact.

Lemma 10. For any α ≥ 0, (V,A) is an accessible system.

Proof. Consider a α-feasible set S. Let us assume that, for each vertex s ∈ S, S \ {s} is
not α-feasible:

αw+ (S \ {s}) < w− (S \ {s}) ∀s ∈ S. (15)

Summing up these inequalities for each s ∈ S, we obtain

(|S| − 2)αw+(S) < (|S| − 2)w−(S), (16)

since each edge (i, j), with i, j ∈ S, appears in each inequality (15) except when s is
equal to i or j.

Equation (16) contradicts the α-feasibility of S.

10



(a) First two stages of the tree obtained with πα.

(b) Tree obtained with πA1 .

Figure 5: Enumeration trees obtained for different policies for the graph presented in Fig-
ure 3a.

Lemma 11. For any β > 0, (V,B) is not necessarily an accessible system.

Proof. Consider a graph composed of two vertices linked by an edge of weight −1. The set
{s, t} is β-feasible while {s} and {t} are not.

As summarized in Table 1, πβ and παβ are not exact in most of the cases and can, thus,
lead to non-optimal solutions. Consequently, we base our two enumeration algorithms A1

and A2 on πα.

5.3 Algorithm A1

In this section, we present our first enumeration algorithm A1 for CCM and its branching
policy πA1 .

The two time consuming steps of an enumeration algorithm for CCM are the enumer-
ation and the subsequent evaluation of the identified sets of mediators. We introduce in
Section 5.3.1 an exact branching policy πA1

which is a variation of πα producing signifi-
cantly smaller trees. Moreover, to speed up the evaluation step, we prove in Section 5.3.2
that only maximal sets of mediators need to be evaluated.

5.3.1 Branching policy πA1

Lemmas (5) to (11) prove that πα is exact while πβ and παβ are not. Unfortunately, the
enumeration tree generated by πα may be huge (even larger than the lexicographical order
policy) since πα does not avoid repetitions (i.e., several nodes of the generated tree may
correspond to the same set). This is illustrated by the enumeration tree in Figure 5a in
which all α-feasible sets of size 2 are represented.

It would be tempting to combine πα with the lexicographical policy and only enumerate
in lexicographical order the sets which are α-feasible. However, this policy would not be
exact. Indeed, in Figure 2b, if the set {1, 2} is not α-feasible, then the set {1, 2, 3} can not
be generated.

The following lemma enables to design an exact branching policy without node repeti-
tions.

Lemma 12. If S ⊂ V is α-feasible and v ∈ argmini∈S αw+(i, S) − w−(i, S), then S\{v}
is α-feasible.

Proof. Lemma 10 ensures that there exists k ∈ S such that S\{k} is α-feasible:

αw+(S)− w−(S)− (αw+(k, S)− w−(k, S)) ≥ 0. (17)

Let us assume that there exists a vertex v ∈ argmini∈S αw+(i, S)− w−(i, S) such that
set S\{v} is not α-feasible:

αw+(S)− w−(S)− (αw+(v, S)− w−(v, S)) < 0. (18)
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However, from Equations (17) and (18) we arrive to

αw+(k, S)− w−(k, S) < αw+(v, S)− w−(v, S) (19)

which contradicts the definition of v.

Let S be an α-feasible set. Lemma 12 ensures that by successively removing from S a
vertex which minimizes αw+(i, S) − w−(i, S) (i.e., a vertex of S which contribution to the
α-feasibility of S is minimal), a serie of α-feasible sets is obtained. In other words, S can be
reached by a branching policy which uses this condition.

We describe next the exact branching policy of the enumeration algorithm A1. Branching
policy πA1(S, i) returns true if and only if:

• S′ = S ∪ {i} is α-feasible; and

• i = min argmins∈S′ (αw+(s, S′)− w−(s, S′)).

A minimization is used in the second condition to avoid repetitions in the enumeration
tree whenever several vertices in S have a minimal contribution to the α-feasibility of S.

We now present how the evaluation step of an enumeration algorithm can be improved.

5.3.2 Evaluation of the generated sets of mediators

In order to solve the CCM problem, an enumeration algorithm must evaluate the sets of
mediators it generates. The evaluation of a set of mediators SM consists in solving the
CC problem on the graph in which vertices SM are removed. This step can be performed
after the enumeration of all sets of mediators or in parallel, i.e., simultaneously with the
enumeration process.

Since CC is NP -hard, reducing the number of evaluated sets can have a significant
impact on the resolution time of an enumeration algorithm. The next lemma ensures that
we can only evaluate maximal sets of mediators. For a given set S ⊆ V , let PS be an optimal
partition of the CC problem defined over V \S.

Lemma 13. Let S be a set of mediators and s a vertex in V \S. We have that I(PS) ≥
I(PS∪{s}).

Proof. Let PS = {S1, ..., Sk} and assume without loss of generality that s ∈ S1. According
to Equation (1),

I({S1 \ {s}, . . . , Sk}) = I(PS) − w−({s}, S1) −
∑

2≤j≤k

w+({s}, Sj). (20)

We can then conclude that

I(PS) ≥ I({S1 \ {s}, . . . , Sk}) ≥ I(PS∪{s}). (21)

Lemma 13 implies that adding a vertex to the set of mediators can not deteriorate the
optimal value of CCM.

Corollary 1. Let S, S′ ⊆ V be two sets of mediators in G such that S ⊆ S′. Then I(PS) ≥
I(PS

′
).

Consequently, we only test maximal sets of mediators in our algorithms.

5.3.3 Pseudo-code of Algorithm A1

To solve CCM, Algorithm A1 generates all the maximal sets of mediators by calling the
recursive function A1Enumeration(G, ∅) (see Algorithm 1). It then returns a single set
of mediators which minimizes the imbalance. Lines 2 and 3 of function A1Enumeration
enable to generate all the child nodes of node S which satisfy branching policy πA1 . The
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sets of mediators are evaluated on Line 6 if no set of mediators is found in the subtree (i.e., if
L = ∅). Note that this does not prevent A1 from evaluating non maximal sets of mediators.

Algorithm 1: Recursive function A1Enumeration.

Data: G = (V,E, s), a weighted signed undirected graph
S ⊂ V , a subset of vertices

Result: L, a list of sets of mediators {S1, ..., SN} which include S and
{I(PS1), ..., I(PSN )}

1 L← ∅
2 for i ∈ V \S do
3 if πA1(S, i) then
4 L← L ∪A1Enumeration(G,S ∪ {i})

5 if L = ∅ and S is β-feasible then
6 L← {(S, I(PS)}
7 return L

Lemma 14. Algorithm A1 may evaluate non maximal sets of mediators.

Proof. Figure 6b represents the enumeration tree obtained using policy πA1
over the graph

in Figure 6a.

a b
1

(a)
(b)

Figure 6: (a) A graph and (b) its corresponding enumeration tree obtained with Algorithm
A1.

Since {b} is a mediators set and a leaf of the tree, it will necessarily be evaluated during
Algorithm A1. However, it is not a maximal mediator set as it is included in {a, b}.

Algorithm A1 enumerates exhaustively the maximal sets of mediators which could be
particularly relevant in the context of decision aid applications, where alternative solutions
are preferable (Arinik et al., 2021). We now define a second exact enumeration algorithm
called A2 which only returns a single optimal solution but which leverage linear relaxations
to significantly reduce the size of its enumeration tree.

5.4 Algorithm A2

Algorithm A2 is based on the recursive function A2Enumeration, represented in Algo-
rithm 2, which enables to reduce the size of the enumeration tree compared toA1Enumeration.
This function takes as an input an upper bound UB which corresponds to the imbalance
of a known feasible solution of the CCM problem. At each node S, it computes the value
vr of the linear relaxation of CCM in which the vertices in S are imposed to be included
in the set of mediators (Line 2). If vr is greater than UB, this sub-tree can not lead to a
better solution and it is pruned. Finally, UB is updated whenever a better integer solution
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is obtained (Line 10).

Algorithm 2: Recursive function A2Enumeration

Data: G = (V,E, s), a weighted signed undirected graph
S ⊂ V , a subset of vertices
UB, the best known upper bound of CCM (global variable)

Result: L, a list of sets of mediators {S1, ..., SN} which include S and
{I(PS1), ..., I(PSN )}

1 L← ∅
2 vr ← optimal value of the linear relaxation of the CCM problem in which S is

forced to be included in the set of mediators
3 if vr < UB then
4 for i ∈ V \S do
5 if πA1

(S, i) then
6 L← L ∪A2Enumeration(G,S ∪ {i})

7 if L = ∅ and S is β-feasible then
8 v∗ ← I(PV \S)
9 L← {(S, v∗)}

10 UB = min(UB, v∗)

11 return L

To provide an initial upper bound, we use the greedy heuristic described in Algorithm 3.
This heuristic tries to find a list of sets of mediators L such that each vertex in V appears in
at least one of them. For this purpose the list notInASet initially contains all the vertices
(Line 2) and each time a vertex is added to a mediator set, it is removed from this list
(Line 6 and 10). Each pass of the while loop Line 3 tries to create a set of mediators SM
starting with a candidate vertex from notInASet (Line 4 and 5). Vertices are then added to
SM by successively selecting vertices which improve the most the α and the β-feasibilities of
SM (Line 7 and 11). Prior to adding SM to L, we test if SM is a set of mediators (Line 12).
Note that if the candidate vertex is not included in any set of mediators of size 2, SM can
not be a set of mediators. In that case, the greedy algorithm may not return any set of
mediators which includes this vertex.

Algorithm 3: Greedy heuristic for the CCM problem HG.

Data: G = (V,E, s), a weighted signed undirected graph
Result: L, a list of sets of mediators

1 L← ∅
2 notInASet← V // List of vertices which does not appear in any set of mediators

found
3 while notInASet 6= ∅ do
4 candidate← notInASet[1]
5 SM ← {candidate}
6 notInASet← notInASet\{candidate}

7
v ← argmaxi∈V \SM min(αw+(i, SM )− w−(i, SM ),

βw+(i, V \SM )− w−(i, V \SM ))

8 while SM ∪ {v} is a set of mediators do
9 SM ← SM ∪ {v}

10 notInASet← notInASet\{v}

11
v ← argmaxi∈V \SM min(αw+(i, SM )− w−(i, SM ),

βw+(i, V \SM )− w−(i, V \SM ))

12 if SM is a set of mediators then
13 L← L ∪ SM

14 return L

Algorithm A2 starts by calling the greedy heuristic. Each maximal set of mediators
returned is then evaluated and the best imbalance obtained constitutes the initial upper
bound UB. The exact enumeration is then performed by calling A2Enumeration(G, ∅, UB).

5.5 Implementation improvements

To improve the efficiency of A1 and A2, several implementation choices have been made.
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At each node, the α and the β-feasibility are not computed from scratch. They are
instead deduced from the values obtained at the parent node. For example, let us consider
a node S ∪ {i} son of node S. At node S ∪ {i}, the α-feasibility of node S has already
been tested. The value αw+(S)− w−(S) is thus known. We leverage this value to test the
α-feasibility of node S ∪ {i} thanks to the equation:

αw+(S ∪ {i})− w−(S ∪ {i}) = αw+(S)− w−(S) + αw+(i, S)− w−(i, S). (22)

Consequently, at each node S ∪ {i}, we only compute the value αw+(i, S) − w−(i, S). A
similar reasoning is considered for the β-feasibility tests.

Enumeration algorithms must both enumerate and evaluate sets of mediators. The
evaluation of a set S requires to solve a NP -hard problem and we know that it is not
necessary if S is not a maximal set of mediators. Consequently, it is not efficient to evaluate
a set as soon as it is enumerated. An alternative would be to first enumerate all the sets of
mediators and then evaluate the ones which are maximal. This approach has two drawbacks:

• when the resolution time is limited, enumerating all the sets of mediators may not
leave enough time to evaluate all the sets of mediators, leading to a solution of poor
quality. In hard instances it can even lead to no solution at all;

• in A2 evaluating sets of mediators may enable to improve the upper bound UB, thus
reducing the size of the enumeration tree. If the sets of mediators are evaluated after
the enumeration, this bound can not be strengthened during the enumeration.

Consequently, our algorithms alternate between the enumeration and the evaluation steps
until the algorithm or the time is over. More precisely, the first evaluation step starts when
a quarter of the time limit has elapsed. At the end of an evaluation step, the remaining
time is computed and the next evaluation step will occur when a quarter of that time has
elapsed.

6 Computational experiments

We compare the performances of A1, A2 and the formulation presented in Section 4: in
Section 6.1, on two datasets composed of random instances; in Section 6.2, on instances
obtained from the vote of the members of the European parliament (Arinik et al., 2020)
1. We use a 3.60GHz Intel(R) Xeon(R) Gold 6244 equipped with 384GByte of RAM. The
linear programs are solved with CPLEX 12.10 and all algorithms are implemented in Julia
v1.8.2.

For each instance I considered, let ᾱI =

∑
(i,j)∈E− wij∑
(i,j)∈E+ wij

. The solution in which V is a

set of mediators is always optimal since it leads to an imbalance of 0. Consequently, the
problem is trivial for any value α ≥ ᾱI and ᾱI is the lowest value for which V is a set of
mediators. To evaluate our methods over non-trivial problems, we consider for each instance
I the three following values of α: 0.25 ᾱI , 0.5 ᾱI and 0.75 ᾱI .

6.1 Random dataset

We randomly generate instances with 30 to 50 vertices and with densities ρ ∈ {0.2, 0.5, 0.8}
by using the erdos.renyi.game function from R’s “igraph” library (see (Csardi and Nepusz,
2006)). The density ρ ∈ [0, 1] corresponds to the probability that an edge exists. The weight
and sign of the edges are defined by uniformly generating values in [−1, 1].

6.1.1 Generating all maximal sets of mediators

Lemma 13 states that for any set S′ ⊂ S, I(PS
′
) ≥ I(PS). Consequently, the maximal sets

of mediators constitute particularly interesting solutions on which we focus in Algorithms
A1 and A2.

In a decision aid process based on the CCM problem, generating a single solution, i.e. a
single set of mediators, may not be suitable. For example, in the instances of the European
parliament considered in Section 6.2, a set of mediators is used to constitute a commission

1the data are available at
https://osf.io/nrmec/?view_only=041e08fbaa8444eba4473f5c105f7ca4
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on a given topic. However, in this context, a solution may be impractical due to additional
constraints which could be related to the availability of the deputies constituting the set
or the parity constraints between the countries represented. Consequently, the fact that
Algorithm A1 exhaustively generates all maximal sets of mediators and could leads to several
diverse optimal solutions can be a significant advantage.

Solving our CCM formulation with CPLEX does not directly enable to generate all the
maximal sets as it only returns one optimal solution of the problem at a time. To overcome
this problem, we could use the method proposed in (Danna et al., 2007) (included in CPLEX)
to generate all the optimal solutions of an ILP formulation in a single branch-and-bound
tree. However, this approach is likely to enumerate non-relevant solutions. Indeed, two
different optimal solutions of CCM problem can be associated to a same set of mediators.
Moreover, non-maximal set of mediators can also lead to optimal solutions.

Consequently, we implemented an alternative method in which CPLEX is executed iter-
atively. Let S = {S1, ..., Si} be the sets of mediators obtained at the i first iterations. To
ensure that the set obtained at iteration i + 1 is not included in S, we add the following
constraints to the model ∑

i 6∈S

mi ≥ 1 ∀S ∈ S. (23)

For each set S, Constraints (23) ensure that all sets of mediators subsequently generated
contain at least one vertex in V \S. The iterative process stops once no solution is returned
by CPLEX. Eventually, the sets of S which are not maximal are removed from it.

We now compare this iterative process with A1. Table 2 presents the solution time
and the number of maximal sets of mediators generated by each approach. The two first
columns of Table 2 represent the size and density of the graphs. The next column contains
the percentage of ᾱI considered. Each value corresponds to an average over the five random
instances generated. A1 appears to be significantly better at this task as in 24 cases over 27
it either returns more maximal sets of mediators or the same number but in less time. Note
that, unlike A1, CPLEX is not able to return any solution for the largest instances.

6.1.2 Generating a single optimal solution

We now focus on generating a single optimal solution. In this context CPLEX does not solve
our MIP formulation iteratively anymore but just once. Furthermore, Algorithm A2, which
returns an optimal solution and may prune branches leading to maximal sets of mediators,
is now considered.

For a given instance, let xI be the value of the best solution returned by a method and

let xLB be the lower bound it provides. We define the relative gap as 100× |x
I−xLB |
xI

. Since
A1 and A2 do not provide a lower bound, the lower bound obtained with CPLEX is used to
compute their relative gap.

The execution time, the number of nodes generated and the relative gap of each method
are presented in Table 3. Each entry of this table corresponds to a mean value over 5
instances. The time limit of each method is fixed to 2 hours.

The resolution of our formulation through CPLEX appears to provide the best results
on most of the instances. Algorithm A2 is often close to CPLEX and is even able to beat
it in 10 cases over 27. CPLEX is known for the efficiency of its presolve algorithm which
often enables to drastically reduce the size of a MILP and its fine-tuned heuristics which
determine in particular on which variable to branch and which node to evaluate next. We
posit that the efficiency of CPLEX over A1 and A2 is mainly due to these features which
enable to optimally solve the problems with a significantly smaller number of nodes.

The differences in terms of resolution time and size of the enumerated trees between A1

and A2 highlight the efficiency of A2 pruning mechanism.
We observe that the resolution times tend to increase with size of the graph, its density

and ᾱI . This is not surprising as all these parameters are related to the complexity of the
problem. The size of the graph determines the number of variables in the formulation and
the number of branches to consider in the enumeration algorithms. The greater the density,
the more complex the objective function. Finally, ᾱI directly impacts the number of feasible
solutions.
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|V | ρ αI%
CPLEX A1

Time # sets Time # sets

30 0.2

0.25 924s 33 39s 33

0.5 TL 317 323s 2677

0.75 TL 1641 2663s 39649

30 0.5

0.25 33s 1 20s 1

0.5 3440s 31 97s 44

0.75 TL 33 921s 11708

30 0.8

0.25 69s 1 66s 1

0.5 534s 3 82s 3

0.75 TL 10 793s 3727

40 0.2

0.25 600s 7 5932s 7

0.5 TL 60 TL 1701

0.75 TL 1231 TL 73824

40 0.5

0.25 2634s 1 1967s 1

0.5 TL 2 TL 45

0.75 TL 4 TL 28505

40 0.8

0.25 5921s 1 6613s 1

0.5 TL 0 TL 3

0.75 TL 0 TL 4496

50 0.2

0.25 4870s 7 TL 7

0.5 TL 5 TL 1768

0.75 TL 861 TL 210302

50 0.5

0.25 TL 0 TL 1

0.5 TL 0 TL 1

0.75 TL 0 TL 14568

50 0.8

0.25 TL 0 TL 1

0.5 TL 0 TL 1

0.75 TL 0 TL 1087

Table 2: Mean time and number of maximal sets of mediators found for CPLEX and A1

over the random graphs. Each value is an average over the five instances. On each line, the
best result is in bold. TL indicates that the time limit of 7200s has been reached in all five
instances.
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|V | ρ ᾱI%
A1 A2 CPLEX

Time Gap Nodes Time Gap Nodes Time Gap Nodes

30 0.2

0.25 39s 0% 1.3×107 90s 0% 9313 6s 0% 93

0.5 323s 0% 8.8×107 2701s 0% 3.4×105 5s 0% 70

0.75 2663s 1% 2.7×108 720s 0% 1.1×105 3s 0% 16

30 0.5

0.25 20s 0% 9.1×105 10s 0% 47 22s 0% 37

0.5 97s 0% 2.0×107 294s 0% 9045 65s 0% 458

0.75 921s 0% 1.4×108 TL 2% 3.3×105 66s 0% 1075

30 0.8

0.25 66s 0% 1.4×105 46s 0% 31 63s 0% 202

0.5 82s 0% 5.9×106 75s 0% 343 185s 0% 1542

0.75 793s 0% 1.2×108 TL 7% 1.8×105 618s 0% 6724

40 0.2

0.25 5932s 3% 1.3×109 31s 0% 659 55s 0% 43

0.5 TL 2% 1.3×109 6666s 2% 3.5×105 110s 0% 831

0.75 TL 1% 3.4×108 2880s 0% 1.4×105 5s 0% 4

40 0.5

0.25 1967s 0% 3.2×107 666s 0% 46 2478s 0% 4522

0.5 TL 31% 1.1×109 1807s 0% 22220 3305s 0% 8778

0.75 TL 6% 7.7×108 TL 6% 1.9×105 2739s 0% 15250

40 0.8

0.25 6613s 0% 2.3×106 2889s 0% 33 5874s 0% 8552

0.5 TL 89% 3.5×108 5598s 53% 145 TL - 56745

0.75 TL 22% 1.1×109 TL 23% 46489 TL - 31980

50 0.2

0.25 TL 19% 1.5×109 261s 0% 4650 373s 0% 272

0.5 TL 9% 1.3×108 TL 5% 3.9×105 1037s 0% 2866

0.75 TL 1% 4.4×108 4320s 1% 2.6×105 6s 0% 20

50 0.5

0.25 TL - 4.1×108 TL - 0 TL - 3114

0.5 TL - 8.1×108 TL 62% 8063 TL - 5431

0.75 TL 26% 4.5×108 TL 14% 56615 TL - 20718

50 0.8

0.25 TL 0% 3.6×107 TL - 0 TL - 2687

0.5 TL - 1.1×109 TL - 0 TL - 3164

0.75 TL 59% 3.8×108 TL 44% 24947 TL - 6810

Table 3: Mean time in seconds, relative gap and number of enumerated nodes obtained for
each method over the random graphs. Each value is an average over five instances. On
each line, the best result is in bold. A dash in a Gap column indicates that no solution is
obtained for at least one of the instances. TL indicates that the time limit of 7200s has been
reached in all five instances.

18



n Country ᾱI%
CPLEX A2

Time Obj. Nodes Time Obj. Nodes

33 Romania

0.25 10s 0 53 0s 0 1

0.5 7s 0 172 0s 0 1

0.75 7s 0 172 0s 0 1

51 Poland

0.25 391s 0 30 0s 0 1

0.5 1116s 0 658 0s 0 1

0.75 149s 0 15 0s 0 1

59 Spain

0.25 2390s 0 669 0s 0 1

0.5 2015s 0 76 0s 0 1

0.75 614s 0 11 0s 0 1

72 UK

0.25 9977s - 2 9601s 1 29388

0.5 11006s - 189 9601s 1 31937

0.75 TL - 440 4803s 0 9827

87 France

0.25 TL - 5 9601s 4 16682

0.5 TL - 29 4803s 2 6610

0.75 TL - 19 6s 0 1

104 Germany

0.25 TL - 2 9601s 0 10215

0.5 TL - 2 7s 0 1

0.75 TL - 2 17s 0 1

Table 4: Mean time in seconds, objective value and number of enumerated nodes obtained on
the instances from the european parliament. Each value is an average over three instances.
On each line, the best result is in bold and a dash is used in column Obj. if no solution is
obtained for at least one of the instances. TL indicates that the time limit of 14400s has
been reached in all three instances.

Most of the instances where A2 beats CPLEX correspond to 0.25ᾱI . This is due to the
fact that the size of the maximal sets of mediators decreases when α decreases, thus reducing
the depth of the branches of the enumeration algorithms.

6.2 European parliament dataset

We now consider real world instances obtained by Arinik et al. (2017) from votes casted
during the 7th term of the european parliament from 2009 to 2014. The roll-call votes of
all members of the european parliament (MEP) for all plenary sessions in this period are
available on the website It’s Your Parliament (Buhl & Rasmussen (2020)).

In order to obtain challenging instances, we selected countries with more than 30 MEP
and three of the most controversial policy domains: agriculture, gender equality and eco-
nomic. For each country, one graph is generated for each domain. As described by Arinik
et al. (2017), each MEP is associated to a vertex while the sign and weight of an edge
represent the voting similarity between two MEPs.

The results obtained for this dataset are presented in Table 4. Each value in this table
corresponds to an average over three instances (one for each policy domain considered). The
table contains the values of the objective function instead of the gaps since CPLEX either
returns the optimal solution or no solution at all which means that its gap is either 0% or
not defined. The resolution time of CPLEX quickly increases with the size of the graphs
and it is only able to provide feasible solutions for the three smallest instances. Algorithm
A2, however, is faster than CPLEX and always returns a solution. The efficiency of A2 is
partially due to its greedy heuristic which is very efficient on these real world instances.
Indeed, it often returns a solution with no imbalance leading to an enumeration tree with
only one node. This is not surprising as the instances are quite polarized along the lines
of the political groups of the european parliament. However, the efficiency of A2 is not
only due to its greedy heuristic as the enumeration algorithm enables to improve the greedy
solution in most instances with several nodes.

We conclude this section by highlighting advantages of the enumeration algorithms over
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the integer programming formulation when solving the CCM problem. First, A1 generates
all the maximal sets of mediators. As mentioned before, in the context of decision aid
systems, providing a variety of relevant solutions for the CCM problem is essential. As seen
in Section 6.1.2, CPLEX would be significantly less efficient at this task. It can be tuned to
generate a pool of solutions but it can not guarantee that all the maximal sets of mediators
or even all the optimal solutions are obtained. Secondly, the enumeration algorithms can
easily be adapted to new definitions of sets of mediators involving non-linear and non-convex
constraints. The satisfaction of these constraints can be tested at the same time than the
β-feasibility (Line 5 of Algorithm 1 and Line 7 of Algorithm 2).

7 Conclusions and perspectives

In this paper, we propose a new variant of the correlation clustering problem, called the
correlation clustering problem with mediation, based on the work of Doreian and Mrvar
(2009). After proving its NP-hardness we model it with an integer mathematical formu-
lation. We also develop two enumeration algorithms A1 and A2 to solve optimally this
problem and exhaustively enumerate all the maximal sets of mediators. These algorithms
are based on properties of the sets of mediators which enable to efficiently prune branches
of the enumeration tree. Finally, we compare experimentally the performances of the
formulation and of the enumeration algorithms on a dataset with random instances and on
a second with real world instances obtained from european parliament votes. The resolution
of the formulation with CPLEX gives better results on hard random instances but, unlike
A2 it fails to provide feasible solutions on the real instances considered.

A natural perspective to this work would be to improve the pruning technique of the
enumeration algorithms by identifying additional properties of the sets of mediators to
strengthen the branching policies. A new type of enumeration algorithm could also be
introduced in which vertices are removed rather than added at each new node of the enu-
meration tree. Such algorithm could cut a branch as soon as a set of mediators is reached.
This approach could be particularly efficient when the maximal sets of mediators are large
(i.e., for large values of parameters α and β). The present work contributes to the formal-
ization of mediation in structural balance theory, introduced by Doreian and Mrvar (2009).
A last perspective would be to consider alternative definitions of a set of mediators. The
flexibility of the enumeration algorithms could allow the use of non-linear constraints. For
some applications it could also be relevant to associate a label to each vertex (e.g., a political
party) and to require that the proportion of each label in a set of mediators is representative
of its distribution in the graph.
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