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Abstract

A unimorph piezoelectric cantilever equipped with an Acoustic Black Hole (ABH) termina-
tion is designed for broadband energy harvesting. The ABH termination, with its tapered
region, induces a focusing of the 
exural vibrations which can be used to increase the e�cien-
cy of an energy harvesting device. A modal-based analytical model is presented, providing
an explicit form of the electro-mechanical coupling for each beam eigenmode. Closed-form
expressions for the coupled mechanical response and electrical outputs are obtained, allow-
ing one to draw out a complete parametric study to optimize the device. The optimization
procedure is conducted following two steps: �rst, optimal location and dimensions of a s-
ingle piezoelectric patch are achieved by maximizing the modal electro-mechanical coupling
factor (MEMCF) for each structural mode. Thanks to the proposed analytical approach, it
is clearly shown that by putting the piezoelectric patch at the maximum of the strain �eld
in the tapered termination, and by adjusting its length in accordance with the focalization
created by the ABH e�ect, the ABH cantilever produces much higher MEMCFs over a wide
frequency range and thus outperforms those of a uniform beam. Second, optimization of
the shunted circuit is comprehensively performed for a circuit with only resistance, or both
resistance and inductance, in series or in parallel. Analytical results show that the key design
rule resides in matching the time scale of the circuit with that of the forcing frequency. Ad-
dition of the inductance allows enhancing the performance, but on a narrow frequency band.
Finally, broadband advantages can be further obtained by considering multiple piezoelectric
patches, in which the optimum is obtained when the shunted circuit in each patch is tuned
targeting an eigenmode of the ABH beam.

Keywords: Piezoelectric energy harvesting; Electro-mechanical modeling; Acoustic Black
Hole; Modal electro-mechanical coupling factor; RL circuits

�Corresponding author.
Email address: lihaiqin1992@yahoo.com; Haiqin.Li@univ-lemans.fr (Haiqin Li)



1. Introduction

The Acoustic Black Hole e�ect (ABH) refers to a speci�c structural design embedded
in a thin-walled structure (beam or plate), permitting an e�cient passive vibration control.
It consists of a local decrease in the thickness of the structure according to a power-law
pro�le, associated to a local increase of the damping provided by a thin viscoelastic coating
[1]. Such an arrangement induces a focusing e�ect for the 
exural waves, leading to a light-
weight e�cient vibration absorber: the vibration �eld in an ABH beam is trapped into the
tapered edge, leading to signi�cant local damping. A review of the models and experimental
tests of beams and plates with such embedded ABH is given in [2]. The advantages brought
by the ABH mechanism for vibration damping have been con�rmed from many aspects,
such as a low re
ection coe�cient of 
exural waves [3, 4], a signi�cant improvement of the
modal damping ratios and of the modal overlap factor [5]. Optimization of the ABH design
regarding its host structure and the feature of its damping layers has been widely discussed
in [6{13]. Experimental evidence of ABH e�ect using a variety of beam-like and plate-like
structures are also numerous [6, 14{17]. Recent advances could be found in [18] for the exact
analytical solutions of the beam ABHs equations, and in [19] to interpret the ABH e�ect
using the critical coupling concept. Some special designs including elastic metastructures
[20], vibro-impact systems [21] and cochlear systems [22], have also been investigated and
con�rmed the e�ectiveness of ABH in various areas of applications.

Regardless of the numerous works aiming at damping structural vibrations, it is only
in 2014 that ABH has been applied to the �eld of energy harvesting using a piezoelectric
transducer. The central idea of this research line is to take advantage of the focusing e�ect
of the ABH area. In this �eld, the �rst contribution is performed by Zhao et. al. in [23], who
use �nite element simulations to study the harvesting performance of a beam con�guration
with �ve distributed unimorph ABH indentations. It was proven numerically that the energy
harvesters embedded in ABH beams are more e�cient than those based on uniform beams,
which has also been experimentally demonstrated by the same authors in [24]. More recently
in [25], a compound ABH is proposed as a mean to achieve an enhanced broadband energy
harvesting performance. The results con�rm again that by taking advantage of the wave
localization property, ABHs could be designed as more e�ective energy harvesting systems,
as compared to the classical ones.

Although these works have successfully demonstrated the advantages of using an ABH
for energy harvesting, some points still need further investigations. In particular the char-
acteristics of the electro-mechanical coupling mechanisms in an ABH structure associated
with piezoelectric materials, is a key challenge that remains unsolved in this topic. To the
best of the authors’ knowledge, the only existing attempts are the two recent studies con-
ducted in [26] and [27], where an electro-mechanical model is developed based on variational
principles. To follow up on these works, there is a need to establish a clear analytical depen-
dency between the electro-mechanical coupling and parameters such as the placement and
dimension of the PZT patch, the ABH pro�le parameters. Therefore, the main purpose of
this contribution is to provide a general understanding of such problems by deriving analyt-
ical modal-based formulation that allow systematic parametric optimisations of harvesting
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power.
The modeling approach used here can be dated back to the distributed parameter models

introduced by Erturk et. al. in [28{30], which are widely accepted by the energy harvesting
community. They provide analytical solutions for classical piezoelectric cantilever harvesters
based on Euler-Bernoulli beam with uniform thickness. The reader can also refer to [31{33]
for useful references regarding piezoelectric technologies. By applying Erturk’s approach to
beams of variable thickness, a modal-based model for a general unimorph ABH harvester is
established in this paper. Moreover, the so-called modal electro-mechanical coupling factors
(MEMCF) are naturally de�ned, as dimensionless parameters related to a piezoelectric patch
and a given eigenmode of the compound ABH beam. It is shown that those MEMCFs
are similar to the e�ective electromechanical coupling factor (EEMCF) derived in many
other piezoelectric systems as in [34{39]. Their importance in optimizing the harvesting
performance has been highlighted by several authors in [40], for resistive and inductive shunts,
and in [41] for switch circuits. The optimization of the power output in the harvester based
on the MEMCF as a control parameter, is divided into two successive steps. First, the ABH
structure with a bonded piezoelectric patch is modeled so as to characterize the MEMCFs
in terms of the patch geometry and parameters. The expressions of the MEMCFs are then
used to compute the patch’s location and dimensions that maximize the MEMCF of a given
single mode. Once the MEMCFs are optimized, the second step consists in determining the
optimal electrical parameters of the shunt. Up to now, all the existing studies on ABH based
energy harvesting concentrates only on the pure resistive circuits. The inductive circuits, as
being a signi�cant technique to improve the performance of a piezoelectric energy harvesting
device such as in [42, 43], has not yet been discussed. The main idea of such a technique is
to include an inductance, which, together with the intrinsic capacitance of the piezoelectric
patch, allows to build a resonant circuit. As such, e�ective harvesting performance could be
awaited from the resonance between the circuit and the mechanical vibration of the ABH
beam. In the present study, a comprehensive performance optimization for both resistive and
inductive shunts will thus be conducted by taking advantage of our analytical framework.

The paper is organized as follows: In Section 2, a re�ned electromechanical model for
an ABH beam with a unimorph piezoelectric patch is given. The structural eigenmodes
computed in the short-circuit con�guration are used to compute the vibration response and
the electrical outputs under harmonic excitation. This model leads naturally and rigorously
to analytical expressions for the MEMCFs. Dimensionless quantities are de�ned in order to
reduce the parameter space and simplify the optimization procedure. Considering only pure
resistive circuit, the MEMCF-based analytical optimization procedure and the normalized
harvesting performances are then presented in Section 3, along with a comparison to the
performances obtained for the uniform beam. The performances of di�erent types of RL
circuits and the e�ect of using multiple PZT patches are respectively investigated in Section
4 and Section 5.
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2. Electromechanical model of the ABH energy harvester

2.1. Equations of motion
An ABH beam with a tapered termination is considered and its e�ciency in harvesting

vibrational energy is investigated. To that purpose, a piezoelectric layer is added to the
beam in order to convert mechanical energy to electrical energy. The considered system is
shown in Fig. 1. The ABH beam is of length L and width b. The uniform region has constant
thickness h0, while the ABH region with length lABH is tapered with the local thickness hb(x)
decreasing from h0 to ht according to the following power law:

hb(x) = ht + (h0 � ht)
(x� L)2

(lABH � L)2 : (1)

The piezoelectric patch consists of a unimorph piezoceramic (PZT) layer, located in the
region x 2 [x1; x2] and assumed to be perfectly bonded to the beam. x 2 [x1; x2]. Electrical

Fig. 1. Layout of the ABH beam coated with a PZT layer. (a) 3D view, (b) side view, (c) schematic

view of the electrode and harvesting resistance, (d) equivalent circuit.

energy is harvested from the vibration of the ABH beam by connecting the electrode with
a general RL circuit depicted in Fig. 1(c-d), which consists of a load resistance R, a series
inductor Ls, and a parallel inductor Lp. The PZT is represented equivalently by a current
source with a capacitance in parallel. The complete electro-mechanical equations for such an
ABH harvester can be derived following the general framework given in [30], with a special
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emphasis to the tapered region where important thickness variations occur. For the sake
of conciseness, the calculation details are reported to Appendix A. The coupled equations
write:

� (x)A (x)
@2w
@t2

+
@2

@x2

�
�� (x)

@2w
@x2

�
+
@2� (x)
@x2 Us (t) = F (t) � (x� xF ) (2a)

Cp _Us + is = �d31Epb
d
dt

�Z x2

x1

hpc (x)
@2w
@x2 dx

�
(2b)

where w = w(x; t) is the transverse displacement of the ABH beam, Us is the electric tension
between the electrodes, and is is the generated current. The density, cross-sectional area,
and complex bending sti�ness of the composite beam are denoted respectively as � (x), A (x),
and �� (x).

The e�ect of the piezoelectric patch including its added mass, sti�ness, and damping,
is taken into account by adapting the Ross-Kerwin-Ungar (RKU) model developed in [44],
as done in previous ABH modelisations [5, 45], see details in Appendix A. It has to be
noted that �� (x) is complex-valued, the imaginary part quantifying the mechanical damping.
The variable � (x) = �d31Epbhpc (x) [H (x� x1)�H (x� x2)] de�nes the coupling term,
where d31 and Ep are respectively the piezoelectric constant and the Young’s modulus of
the PZT layer. The electrodes are perpendicular to 3 axis (z-axis, see Fig. 1(a)) and the
piezoelectrically induced strain is in the 1 direction (x-axis). The distance hpc (x) is de�ned
between the center of the PZT patch and the neutral axis, as shown in Fig. 1(b). H(x) is
the Heaviside function, so that [H (x� x1)�H (x� x2)] indicates that the PZT electrode
covers only the region x1 � x � x2. The right-hand side term of Eq. (2a) represents a time-
dependent pointwise forcing applied at x = xF . Finally Cp is the equivalent capacitance
of the PZT layer, as shown in Fig. 1(d). The electromechanical behaviour of the system is
restricted to the linear range, based on the assumption that the vibration amplitude is small
as compared to the beam thickness in the uniform area. More involved modelings, such as the
use of Timoshenko’s assumptions for a more accurate high-frequency representation [27], or a
geometric nonlinear model to take into account large amplitude vibrations [45], could also be
developed for speci�c interests. In this paper, our main focus is on the improved harvesting
performance brought by the ABH e�ect and its corresponding optimization problems based
on the linear electromechanical coupling, thus the nonlinear terms are neglected.

As for the boundary conditions, the beam is considered to be clamped at x = 0 and free
at x = L, so that:

8 t; w(0; t) = 0;
@w
@x

����
x=0;t

=0;
@2w
@x2

����
x=L;t

= 0;
@3w
@x3

����
x=L;t

= 0: (3)

One speci�c goal of the present study is to derive simple analytical formula in order to
give a detailed insight on the use of an ABH beam as an energy harvester. For that purpose,
and following previous derivations led in [5, 21, 45], a modal approach is used to discretize
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the equations of motion. The 
exural displacement w (x; t) is written as

w (x; t) =
NmX

k=1

�k (x)�k (t) ; (4)

where �k(t) is the modal coordinate associated to the k-th real normal mode �k(x), Nm is
the total number of modes selected in the expansion. The eigenmodes are normalized with
respect to mass such that, 8 1 � k; l � Nm,

R L
0 � (x)A (x)�k (x)�l (x)dx = �kl, with �kl

the Kronecker delta. The modal expansion is then inserted into the equations of motion E-
q. (2), yielding the dynamical equations for each eigenmode k, associated with the dynamical
equation for the circuit:

��k + 2�k!k _�k + !2
k�k + �kUs = �k (xF )F (t) ; (5a)

Cp _Us + is =
NmX

k=1

�k _�k; (5b)

where �k (xF ) is the k-th modal displacement at the excitation point x = xF and �k is the
modal electro-mechanical coupling (MEMC). The latter writes:

�k = �d31Epb
Z x2

x1

hpc (x)
d2�k (x)
dx2 dx: (6)

Then, applying Kirchho�’s current law in accordance with Fig. 1(d), the following rela-
tionship for the electrical circuit can be retrieved

Us = iRR + Ls
diR
dt
; (7a)

is = iR +
1
Lp

Z t

0
Usdt; (7b)

iR =
U
R
: (7c)

In terms of the voltage across the load resistance, the �ve equations in Eqs. (5) and
Eqs. (7) can then be expressed as

��k + 2�k!k _�k + !2
k�k + �k

�
U +

Ls
R

_U
�

= �k (xF )F (t) ; (8a)

CpLs
R

...
U + Cp �U +

�
Ls
LpR

+
1
R

�
_U +

1
Lp
U =

NmX

k=1

�k��k: (8b)
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Before solving Eq. (8), the eigenmodes, eigenfrequencies, and modal damping ratios
should be computed. Such an eigenvalue problem is formulated considering a short-circuit
condition without external force, i.e. by setting U = 0 and F = 0 in Eq. (8a). Due to
the thickness variation, a �nite-di�erence scheme with non-uniform grid is used, and the
damping is treated using the RKU model by introducing a complex bending sti�ness (all the
calculation details are reported in Appendix B). Once the eigenvalue problem is solved, the
MEMCs in Eq. (6) can be computed and the response of the system analysed.

2.2. Closed-form solutions for the coupled electro-mechanical system
In order to derive closed-form solutions, we focus on the steady response of the system

subjected to an harmonic excitation of amplitude F0 and circular frequency !, namely F (t) =
F0ej!t. Since the system is linear, the output voltage reads U = U0ej!t where U0 is the
complex voltage amplitude of the response. Substituting those expressions into Eq. (5) gives
the relationship between the k-th modal displacement �k and the voltage amplitude U0 as:

U (t) =
j�S

1� � + �
 + j�� j�
 + (j�� �) 
F0ej!t; (9a)

�k (t) =
�
�k (xF )�

j�� �
1� � + �
 + j�� j�
 + (j�� �) 

S�k

Mk

�
F0ej!t; (9b)

with
� = !RCp; � = !2LsCp; 
 =

1
!2LpCp

; Mk = !2
k � !

2 + 2j�k!k!;

�k =
�k

!k
p
Cp
; S =

NmX

k=1

!k�k (xF )�k
Mk

;  =
NmX

k=1

!2
k�2

k

Mk
; T =

NmX

k=1

�2
k (xF )
Mk

:
(10)

The closed-form solutions for both the modal vibration �k (t) and the output voltage U(t)
are of particular interest in order to draw out parametric study of the e�ciency of the ABH
as an energy harvester.

To investigate the performance of the system, two di�erent quantities will be analyzed.
The �rst one is the electrical power output normalized by the forcing amplitude, denoted as
P . The second is ratio between the electrical power and the total input power, denoted as
". They write:

P =
!Cp�jSj2

j1� � + �
 + j�� j�
 + (j�� �) j2
; � =

���� TS2 � j���
1��+�
+j��j�
+(j���) 

���
: (11)

In these equations, �, � and 
 are dimensionless parameters comparing the mechani-
cal timescale ! to that of the electrical circuit. More speci�cally, the concerned electrical
timescales are respectively that of a capacitance Cp discharging in a resistance R, a series
RLC circuit, and a parallel RLC circuit. The dimensionless parameter �k is referred to as the
Modal Electro-Mechanical Coupling Factor (MEMCF) of the k-th eigenmode. The system
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depends �nally on eight parameters: �, �, 
, �k, !k, �k, ! and �k (xF ). These key parame-
ters should be designed in order to optimize the harvesting performance fully described by
�, �, 
, and �k. The optimization of �, �, and 
 highlights the e�ect of the shunted circuit
and is to be conducted mainly in the electrical domain. On the other hand, �k, concerns the
electro-mechanical coupling and is mainly related to the geometry and location of the PZT
layer. Combining the de�nition of �k in Eqs. (10) and (6), the MEMCF �k �nally writes:

�k = �
d31Epp
�S

s
bhp
Lpzt

Z x2

x1

hpc (x)
1
!k
d2�k (x)
dx2 dx: (12)

where "S is the permittivity of the PZT layer.

3. Results and discussions in the case of a pure resistive circuit

In order to draw out the optimization, an ABH beam with �xed parameters as reported
in Table 1 is considered. The material properties of the PZT is also considered as �xed with
the values given in Table 1. A �rst optimization of the harvested energy is conducted in
terms of the location and dimensions of the PZT patch, meaning that x1, x2, and hp are
�rst considered as variables, with the aim of selecting the optimal design depending on the
targeted frequency band.

ABH beam PZT Layer
L=60 cm x1= /
b=2 cm x2= /
h0=4 mm hp =/
ht =200 �m d31 = �190 pm/V
lABH=10 cm �S33 = 16 nF/m
Eb=100 Gpa Ep=66 Gpa
�b=8700 kg �m3 �p=7800 kg �m3

�b=1% �p=1%

Tab. 1: Parameters selected for the ABH beam and the piezoelectric layer.

The discussion is conducted as follows. First, the modal electro-mechanical coupling
factor �k is analyzed and optimized in section 3.1, by emphasizing the importance of the
geometry of the PZT layer. Then in section 3.2, the e�ect of harvesting circuit is studied,
and the complete optimization is performed. Finally, the impact of the mechanical dampings
in the ABH beam and the PZT layer are discussed in 3.3.

3.1. Modal Electro-Mechanical Coupling Factor (MEMCF), �k
The MEMCF �k derived in Eq. (12) plays an important role in the energy harvesting

process, since it characterizes the ability of e�ciently transferring the vibrational energy of a
given mode to the electrical circuit. Eq. (12) shows that �k depends �rst on the integral term,
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which involves both the k-th mode shape through its second derivative and the associated
eigenfrequency, as well as the distance hpc(x) of the center of the PZT to the neutral axis
of the composite beam. Note that the eigenmodes are computed in presence of the patch
so that modifying its geometry or its location has a direct consequence on the modal basis.
This is also the case if the patch’s thickness is increased, since it implies a change in hpc(x) or
if the patch is moved, since it implies a change in the region [x1; x2]. Finally, the geometrical
and material constants d31Epp

�S
and

q
bhp
Lpzt

accounts for the magnitude of the integrated terms
as physical constants.

Fig. 2(a) shows a global characterization of the MEMCF �k over a large frequency range
[0,4000] Hz including numerous modes, and compares four di�erent con�gurations. The �rst
two cases are the uniform and ABH beam with PZT located at the same area [50; 60] cm,
which corresponds to the ABH tapered region. The other two cases consider the ABH
beam with two small patches of 1 cm long, located at [56:5; 57:5] cm (black), and [58; 59] cm
(magenta) respectively. One can observe that although a global improvement of the coupling
appears when considering an ABH beam, very di�erent patterns are observed depending on
the selected PZT patch, thus leading to important di�erences on the normalized harvested
power jP j depicted in Fig. 2(b).

To better understand the coupling mechanism, let us �rst focus on the case of mode 9
as an example. In the ABH case, this mode is localized into the tapered region, as shown
in Fig. 2(c) where only the last 10 cm of the beam, corresponding to the ABH region, are
represented. The mode shape is characterized by the appearance of two strain nodes N1 and
N2, where the beam strain changes from compression (in green) to tension (in orange). The
PZT patch shall not cross such strain nodes since it leads to an important decrease of the
performance due to charge cancellation. This explains why the long (10 cm) patch shows an
important decrease in harvested power in Fig. 2(b) in the high-frequency range.

Coming back to the de�nition of �k in Eq. (12), Fig. 2(d) shows that even though hpc
is constantly decreasing in the tapered region, this can be compensated by an important
increase of the amplitude of the strain �eld d2�(x)

dx2 . As a matter of fact, the ABH termination
creates strongly localized modes with large variations on a short frequency range. This e�ect
is of prime importance and a short PZT patch allows taking advantage of this to severely
increase the harvesting performance. Finally, Fig. 2(e) underlines that the accurate location
of the patch, depending on the mode shape, leads to optimization or cancellation of this
e�ect. The patch located at [56:5; 57:5] cm is not optimal for mode 9 since crossing a strain
node, resulting in a poor MEMCF (see the corresponding black point in Fig. 2(a) around
910 Hz). On the other hand, the optimized location is [58; 59] cm, at the local maximum of
the mode shape, resulting in a very important value of �9 in Fig. 2(a).

Fig. 3 reports parametric variations in order to �nd the optimal design regarding the
location and thickness of the PZT patch, based on the values of the coupling coe�cient j�kj.
Figs. 3(a-b) represents the values of j�9j and j�15j, for modes 9 and 15 respectively, when
varying the length of the patch and its location (abscissa of the endpoint x2). In both cases
it is found that the MEMCF decreases importantly for PZT layers located at the very end of
the ABH, resulting from the combined e�ects of the vanishing bending moment at the free
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Shape of Mode 9 in the ABH area
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Fig. 2. (a) electromechanical coupling coe�cient j�kj as a function of the frequency for four di�erent
beam con�gurations: In blue, the uniform beam. In red, a ABH pro�le equipped with a long patch
located at [50, 60] cm. In magenta and in black, ABH pro�les equipped a patch located at [56.5,
57.5] cm and at [58, 59] cm respectively. (b) harvested power for the selected con�gurations. (c-e)
illustration of the strain nodes as related to the value of the electromechanical coupling for PZT
with di�erent lengths and positions, with mode 9 selected as an illustrative example.

boundary condition, and the added thickness that decreases the ABH e�ect. For mode 9, two
optimal values are found, the one with about 2 cm length placed near the ABH termination
at x2 = 59:5 cm, outperforming the second maximum with 4 cm length at x2 = 57 cm. The
same pattern is found for mode 15 with more maxima, related to the smaller wavelength of
the eigenmode shape. To o�er a broadband view, Fig. 3(c) shows the average values of j�kj
for the �rst 20 modes, up to 4000 Hz. It underlines that an optimal location can be found
with a PZT patch of about 1 cm length and located near the ABH termination.

Figs. 3(d-f) investigates the e�ect of the thickness of the PZT patch on the performance.
Again, two speci�c modes are selected by plotting j�9j and j�15j in Figs. 3(d-e), while the
integrated e�ect on the whole frequency range [0, 4000] Hz is reported in Fig. 3(f). The
length is �xed at Lpzt = 1cm for this parametric study. In particular one can observe that
the optimal value does not depend on the thickness on a large portion but then severely
decreases when the thickness of the patch is becoming too important. This �nding can
be important for an experimental design since the terminal thickness of the ABH beam is
supposed to be as small as possible to enhance the ABH e�ect. In this calculation, ht=200
�m has been selected, hence the largest values of thickness considered for the patch in the
�gure is hp = 1 mm. Regarding the overall performance by considering the average value
of j�kj over the �rst 20 modes in Fig. 3(f), one can observe that a PZT located around
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Fig. 3. Coupling coe�cient j�kj as a function of the location x2 and either the length Lpzt of the
PZT patch (�rst row, plots (a-c), with hp=ht=0.5) or the thickness ratio hp=ht (second row, plots
(d-f), with Lpzt = 1 cm). Left column: k = 9, center column: k = 15, right column: average
value of j�kj for the �rst 20 modes up to the frequency of 4000 Hz. Note that the ABH pro�le is
characterized by the region [50, 60] cm and the PZT is located only inside this ABH region with
endpoint x2, and length Lpzt.

[58:5; 59:5] cm with thickness hp=ht around [0:5; 1] is recommended.
Fig. 4 draws a mode-by-mode comparison of the values obtained for the coupling coef-

�cient j�kj in the frequency band [0,4000] Hz, for the uniform and the ABH beam. Two
di�erent lengths of PZT layers are considered, the results for Lpzt = 1 cm being reported
in Fig. 4(a) while those for Lpzt = 3 cm are given in Fig. 4(a). The �gures show both the
best location endpoint x2 of the patch and the value of j�kj is given by the area of the
circle. In Fig. 4(a), the length of the patch Lpzt = 1 cm is smaller than the half-wave length
of the highest mode in the ABH tip when considering the modes up to 4000 Hz. In this
case the gain in using an ABH beam as compared to a uniform one is clearly assessed by
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the result, since all the modes considered in this frequency range show an important gain
in magnitude. Also one can observe a clear convergence in the best location of the patch
on the whole frequency band for the two beams. On the other hand, with Lpzt = 3 cm as
shown in Fig. 4(b), the gain in using an ABH beam is important for the �rst ten modes in
the range [0,1200] Hz, but is not signi�cant for the higher modes. This is linked to the fact
that 3 cm corresponds to the half-wave length of mode 10, consequently the magnitude of
the coupling coe�cient decreases due to the charge canceling e�ect. One can also observe
that the optimal location does not show a clear trend once the length of the patch is larger
than the considered wavelength. These results clearly advocate for using a small PZT patch
in the ABH termination, located near the tip end, in order to maximize the performance in
terms of energy harvesting.

(a). (b).

Fig. 4. Coupling coe�cients j�kj represented by disks of variable areas, as a function of the frequency
and of the optimized endpoint location x2. The black points in the bottom right are de�ning the
correspondence between the values and the disks areas. Comparison of the uniform beam (blue
points) to the ABH beam (red points), locations optimized with respect to each eigenmode for two
di�erent lengths of PZT layer: (a) Lpzt = 1 cm, (b) Lpzt = 3 cm.

3.2. Optimization of the resistive circuit
While the previous section was focused on geometrical aspects to better understand

the dependence of �k on the location and length of the PZT patch, the present section is
dedicated to investigating the e�ect of the electrical parameters (with a special emphasis
on the load resistance) on the harvesting power and e�ciency. Again, our derivations using
analytical calculations allow one to draw out a complete parametric study and shed light on
the optimization of the problem.

The harvested power near the natural frequency of mode 9 is �rst investigated in order
to understand the physical mechanism for a single mode. As depicted in Fig. 5(a), one can
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see that the power reaches a peak value at a speci�c resistance Ropt that depends on the
frequency. In order to derive an analytical expression for the optimal resistance Ropt, let us
consider the harvested power expressed in Eq. (11):

P =
�

�2j1 +  j2 � 2�Im ( ) + 1
!CpjSj2: (13)

In this expression, � = !RCp is the only parameter involving the load resistance R. Di�er-
entiating the previous expression with respect to �, leads to the de�nition of �opt, optimized
in terms of the power output as

@P
@�

= 0! �opt =
1

j1 +  j
: (14)

Using Eq. (11), the optimal load resistance Ropt and the maximum power Popt are be obtained
respectively as

Ropt =
1

!Cp j1 +  j
; Popt =

!CpjSj2

2 j1 +  j � 2Im ( )
: (15)

where  and S are de�ned as in Eq. (10).
The term 1=!Cp indicates that the optimal resistance, in absence of resonance phe-

nomenon, is optimal when the timescale of the equivalent RC circuit is the same as the
oscillation timescale (i.e, the inverse of the forcing frequency). This general rule is slightly
modi�ed by the presence of the term 1=j1 +  j, which is due to the resonant behavior of
the beam, coupled to the electrical circuit. The optimal resistance is plotted in Fig. 5(b)
for a 1 cm PZT located at [58, 59] cm. At the non-resonant low frequencies, Ropt is well
approximated by 1

!Cp
, meaning that the time constant of the harvesting circuit � = RCp

should be adjusted targeting the forcing frequency !. On the other hand, near the resonant
frequencies, 
uctuations around 1

!Cp
are observed. As such, near the natural frequencies, the

e�ect of eigenvalues �k and !k, and the associated MEMCF �k become also signi�cant. The
main conclusion here agrees well with the observations reported in [25, 26] for ABH based
harvesters, but also in [35] and [46] in the context of passive damping and 
ow energy har-
vesting respectively. However, in [26], an exact form for the optimal resistance is not derived,
while in [25], the optimal resistance is simply retrieved as 1

!Cp
based on a constant charge

assumption, thus neglecting the e�ect of the modal eigenvalues. As shown in Fig. 5(b), the
e�ect of the mechanical resonances is important and the simple constant charge assumption
cannot be used in the vicinity of each eigenfrequency.

Up to now, the mechanical and electrical parts have been optimized separately. In partic-
ular, clear design strategies have been underlined for the optimal location of the PZT layer,
and an optimal load resistance Ropt has been found, which depends on the frequency, and is
not easily achievable. The combined e�ects are now investigated in order to reach the opti-
mal harvesting performance. Also, practical questions regarding the frequency performance
when a constant load resistance R is selected, are addressed.
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(a). (b).

Fig. 5. E�ect of the load resistance R. (a): harvested power in the neighborhood of mode 9 as a
function of the load resistance R and the excitation frequency !. (b): Optimal value of the load
resistance Ropt at each frequency for, red: exact value, blue: approximated value. The PZT layer
is placed in the region [58,59] cm and with thickness hp = 100 �m.

For that purpose, the harvested power and e�ciency are �rst investigated as functions of
the MEMCF �k de�ned by Eq. (12). In order to vary the values of �k without a�ecting the
mechanical characteristics of the system, only the piezoelectric constant d31 is varied, while
�xing the location of the PZT at [58, 59] cm and its thickness at 100 �m. Recalling Eq. (11),
and focusing on the behavior in the vicinity of the k-th mode by discarding all other modes
from the summation, one can impose to cancel the derivative of the harvested power with
respect to �k in order to retrieve a local optimal coupling factor �k;opt as

@P
@�k

= 0! �2
k;opt =

(1� 
2
k)

2 + 4�2
k
2

k

�
p

1 + �2: (16)

Fig. 6 shows the results by considering mode 9 as an example, and represents the harvest-
ed power and e�ciency as well as the output displacement at the exciting point xF = 0:2 m.
In this �gure, the variation of �9 in the interval [0, 0.7] is realized by changing the piezo-
electric constant d31 of the PZT from 0 to 290 pm/V. These values are realistic and can be
mostly obtained by selecting appropriate piezoelectric materials [31, 32, 34]. Note that a
usual design with d31= 190 pm/V leads to �9 = 0:45. Fig. 6(a) shows that when the value
of R is �xed, the harvested power reaches its maximal value at �k;opt as stated by Eq. (16),
and then decreases. Since �k;opt depends on �, the optimal value following Eq. (14) can be
selected for each value of �k;opt. Using the optimal resistance value Ropt for each case under
study in the range �k;opt 2 [0; 0:7], results in the red curve shown in Fig. 6(a). Interestingly,
this optimal curve does not decrease but rather reaches the optimal value asymptotically.

Fig. 6(b) shows that the harvesting e�ciency tends to reach a limit value as the coupling
coe�cient ratio increases in each case investigated: either a constant R value, or an optimal
value Ropt selected at each point. In the latter case, this limit value is 1=2 (50%), meaning
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an equipartition between the power harvested in the electric circuit and the power dissipated
by the mechanical damping. Finally, Fig. 6(c) shows that the beam displacement reaches a
limit value if Ropt is selected, otherwise it continuously decreases for increasing values of the
MEMCF when R is �xed.

(a). (b). (c).

Fig. 6. Variation of the power, e�ciency, and displacement with the coupling coe�cient for di�erent
values of load resistance. Examples shown for the resonant response of mode 9.

The results in Fig. 6 underlines two important points: �rst, as a necessary condition,
in order to reach as much as possible the limit saturation of the harvesting power at each
frequency, both the mechanical part should be optimized to ensure a su�ciently large enough
coupling factor �k and the electrical part should be tuned to Ropt. Second, as a su�cient
condition, once the mechanical part �k is maximized and the electrical optimal resistance
Ropt is selected, it naturally leads to the optimal harvesting power. These two points, to a
certain extent, generally allow one to optimize the electrical part and the mechanical part
separately, so as to simplify the optimization problem to design appropriately the ABH
harvester.

Fig. 7 shows a synthetic view of the comparison of performance in terms of harvested
energy and e�ciency, for a uniform and an ABH beam. Four di�erent cases are contrasted:
a uniform beam with a small PZT patch and the optimal (frequency-dependent) resistance,
three ABH beams with di�erent size of patches with optimization on both electrical load
resistance and mechanical coupling (red case), or the mechanical part only (black), or the
electrical circuit only (magenta). Following the conclusions reached by the previous investi-
gations, a short thin PZT layer placed near the ABH end (but not at the exact end) gives the
best performance. The ABH beam outperforms the uniform one in a very systematic way.
The e�ciency tends to be close to the maximum achievable of 50% in the high-frequency
range for the small PZT patch, while both the harvested power and e�ciency severely de-
crease when the patch is too long. This �gure clearly illustrates how improved performance
can be reached by combining ABH e�ect together with the optimization rules derived from
the previous developments.

In order to better quantify the performance of the device and specify the results by
frequency bands, an average power indicator hP i[f1; f2] is introduced on the interval [f1; f2]
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Fig. 7. Comparison between the ABH beams and the uniform one on (a): harvested power, and
(b): harvesting e�ciency. Blue represents a uniform beam with a small PZT patch and the opti-
mal (frequency-dependent) resistance, the other three cases are ABH beams with di�erent size of
patches with optimization on both electrical load resistance and mechanical coupling (red case),
the mechanical part only (black) or on the electrical circuit only (magenta).

as

hP i[f1; f2] =

R f2
f1
Pdf

f2 � f1
; (17)

Fig. 8 shows the values reached by hP i[f1; f2] for four di�erent frequency bands, and for the
four cases reported in Fig. 7. The �rst investigated band, [4; 160] Hz, characterizes the low-
frequency performance, and is selected since it contains the three vibration modes that are
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below the cut-on frequency of the selected ABH beam. In the second band [160; 1600] Hz
corresponding to the mid-frequency performance, modes 4 to 11 are present and are char-
acterized by the appearance of localization. The third band [1600; 4000] Hz with modes 12
to 20 underlines the high-frequency performance with strongly localized modes. Finally, an
overall indicator over [4; 4000] Hz informs on the global performance. One can see that in
all the frequency ranges, the ABH outperforms the uniform beam, and a shorter patch with
optimized values for both electrical load resistance and mechanical coupling (red case), gives
the optimal overall performance. The other two cases correspond to the optimization of the
mechanical part only (black) or of the electrical circuit (magenta) are both less optimal, but
already gives excellent results as compared to the uniform beam, showing that the ABH
e�ect is very important in order to improve the energy harvesting device. In addition, it is
noted again that a shorter PZT layer is important for harvesting energy both in the high-
frequency range and for the global indicator (broadband harvesting), while a longer layer
may lead to a performance decrease in the high-frequency range.

Fig. 8. Indicator of average power calculated at di�erent frequency ranges for the four cases shown
in Fig. 7.

3.3. E�ect of the mechanical damping
In this section, the e�ect of mechanical damping is investigated. More precisely, two

di�erent sources of losses can be examined: the structural damping present in the beam,
and the added damping due to the presence of the PZT layer, needed to harvest energy. In
a usual ABH implementation, see e.g. [2, 5, 47], a viscoelastic layer with a strong energy
dissipation is coated to the anechoic termination in order to enhance the trapping e�ect
of the waveguide and e�ciently damp out the vibrations. In the present context of energy
harvesting, the ABH tapered pro�le is mainly leveraged for its ability in localizing vibrational
energy thus opening the doors to more e�cient harvesting. Consequently it is awaited that
too large values of the damping in the PZT patch should counteract the searched e�ect.

These statements are illustrated in Fig. 9 where both damping coe�cients pertaining
to the beam and the patch are investigated. Fig. 9(a) represents the harvested power with
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optimal load resistance R = Ropt in the vicinity of mode 9, thus considering a small frequency
band [917,922] Hz, and varying values of the modal damping ratio �9. When the damping
ratio increases, the harvested power decreases, and it changes from double-peak to single
peak. Such an interesting e�ect has been well documented in [32] based on a single degree
of freedom system, where the critical damping and resonant frequency are also expressed.
What should be emphasized here is that, in our case, this phenomenon could be observed in
the vicinity of each eigenmode as the modal damping ratio changes.

Fig. 9. E�ect of the mechanical damping on the performance of the harvesting power, (a): harvested
power in the neighborhood of mode 9 in variation of excitation frequency ! and its modal damping
ration �9, performance at R = Ropt, (b): harvested power at R = Ropt for for the loss factor �p of
he PZT layer increases from �p = 0:2% (blue), to �p = 5% (red), and to �p = 80% (black), the
loss factor of the ABH beam is set to �b = 0, (c-e): the variation averaged power in three di�erent
frequency band as �pzt increases from 0.2% to 80% in three di�erent beam loss factors �b = 0,
�b = 0:2%, �b = 1%.

In order to see the global e�ect of the mechanical damping on the performance, the
optimal harvesting power is plotted as a function of the frequency in Fig. 9(b), assuming the
loss factor of the ABH beam �b = 0, and for three values of the loss factor of the PZT layer:
�p = 0:2% (blue), �p = 5% (red), and �p = 80% (black). It is noted that as �p increases, the
mid- and high-frequency peaks show dramatically decrease while the low-frequency peaks
do not show a signi�cant di�erence. This is consistent with the observations in usual ABH,
where the increase of �p mostly a�ects the modal damping in mid-and high-frequency modes,
which are highly localized in the ABH region, but not the low-frequency modes.

To provide a more quantitative evaluation of the e�ect of damping at di�erent frequency
ranges, let us recall the power indicator hP i[f1; f2] de�ned in Eq. (17), and the aforementioned
low-frequency range [4; 160] Hz, mid-frequency range [160; 1600] Hz, and high-frequency
range [1600; 4000] Hz. The power indicators in each frequency range hP i[f1; f2] are then
calculated as a function of �p and compared in three di�erent cases of beam losses �b = 0,
�b = 0:2%, and �b = 1%, as shown in Figs. 9(c-e). It appears that the mid- and high-
frequency performances are very sensitive to �p and undergo a signi�cant decay when �p
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increases from 0.2% to 80%. Hence in order to maximize the harvesting power in the high-
and mid-frequency ranges, the damping in the PZT has to be minimized. On the other hand,
the low-frequency performance shows a di�erent behaviour. Indeed, the power remains small
for all the values of �p in this range. This is caused by the cut-on frequency e�ect, where
the local damping in the PZT does not have a signi�cant e�ect on the damping of the
modes below cut-on. Finally, comparing the indicators in Figs. 9(c-e), it is concluded that
the beam damping �b generally a�ects the performance in all the frequency range, while
the local damping in the PZT layer�p mainly in
uences the performance at mid- and high-
frequency range, that are beyond the cut-on frequency of the ABH.

4. Performance of di�erent types of RL circuits

The previous section deals with the optimization of a pure resistive circuit for energy
harvesting. In this section, the potential of using RL circuits as a mean to provide further
improvement on the harvesting performance is discussed. More precisely, two di�erent cir-
cuits are investigated, where the inductance and resistance are placed in parallel or in series.
The optimal values are derived in Section 4.1 using Karush-Kuhn-Tucker (KKT) condition-
s, enlarging the results of the previous section. Section 4.2 addresses the practicality and
robustness of the optimized results.

4.1. Power optimization based on KKT conditions
The optimization procedure is �rst derived in the case of a RL circuit in series, such

that 
 = 0 in Eqs. (10). The harvesting power P (�; �) thus depends on two parameters
only, and is a nonlinear function of two non-negative variables � and �. In this case, the
associated nonlinear optimization problem can be solved using the classical Karush-Kuhn-
Tucker (KKT) conditions. The complete derivation of this optimization step is given in
Appendix C. For the sake of brevity, only the main result is here provided. Optimizing
P (�; �) with respect to the non-negativity conditions for � and � leads to the following
analytical solutions for the series-RL circuit:

�opt = �
Im ( )
j1 +  j

> 0; �opt =
1 + Re ( )
j1 +  j

> 0: (18)

Meanwhile, the maximum power harvested is found as

Popt =
!CpjSj2

4 jIm ( )j
: (19)

Similar procedures can also be carried out for the parallel-RL circuit, by setting � = 0
and rewriting P = P (�; 
) as a function of non-negative variables � and 
. The resulting
optimum pair (�opt; 
opt) is given by

�opt = �
1

Im ( )
> 0; 
opt = 1 + Re ( ) > 0; (20)
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and the maximum harvested power reads

Popt =
!CpjSj2

4 jIm ( )j
: (21)

One can note in particular that the optimal values depend on  de�ned in Eq. (10) and
are thus frequency-dependent. It should also be emphasized that the results obtained from
Eq. (18) to Eq. (20) are obtained in the context of strictly positive pairs of (�opt; �opt) or
(�opt; 
opt). Otherwise, the problem is ill-posed and the optimal performance can not be
found in the series- or parallel- RL circuits, as it converges to that of the pure resistive case
investigated in the last section.

Comparing Eq. (21) with Eq. (19) underlines that the same optimal power is retrieved
if the inductance is set in series or in parallel. To provide a more complete picture on the
optimized results, the displacement, voltage, power, and e�ciency, for the above RL circuits
as well as the standard pure resistive circuit discussed in the last section, are compared in
Fig. 10. The main result is the important gain brought by considering an optimal RL circuit
as compared to a pure resistive circuit in terms of energy harvested, as shown in Fig. 10(c-d).
Also, the mechanical displacements in the case of RL circuits are smaller than those of the
pure resistive circuit near the mechanical natural frequencies, while they are much larger
in the non-resonant part of the spectrum. As a result, the RL circuits can be tuned to be
resonant at almost all the frequencies to provide much higher power outputs and harvesting
e�ciencies than the pure resistive one.

The major di�erence between the two RL circuits is re
ected in the voltage response
depicted in Fig. 10(b), in which one can clearly see that the voltage generated by the par-
allel RL circuit is much more important, while the series RL circuit and the pure resistive
circuit are at a similar and much smaller level. The opposite observation could be noted by
comparing the current response among the three circuits instead. Such a di�erence could
be easily explained by to the fact that the inductor in parallel generally divides the current,
while the series con�guration divides the voltage. As such one may expect that even though
both con�gurations can provide signi�cant improvements as compared to the pure resistive
circuit, a series RL circuit may be more favourable for the applications requiring high current
such as storage devices, while a parallel con�guration may be more recommended in the high
voltage preferred �elds like wireless sensors.

4.2. Practicality and robustness of the optimal results
One speci�c concern of the optimized results is their frequency dependence, preventing

for reaching such optimal conditions in a real circuit with �xed values for R and L. The aim
of this section is to examine the consequence with regard to applications.The optimal values
for inductance and resistance as found from the analytical expressions, Eqs. (18) and (20),
are shown in Fig. 11

First of all, one can observe that the optimal inductance is almost identical for both
parallel and series circuits, and shows a perfect 1=f 2 trend as frequencies are increasing. This
trend indicates that the energy transfer is maximized when the electrical circuit exhibits a
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(a). (b).

(c). (d).

Fig. 10. Optimal performance comparison among three di�erent harvesting circuits, red: pure
resistive circuit, responses at optimal load resistance Ropt, black: parallel-RL circuit, response at
optimal resistanceRopt and inductor Lopt, magenta: series-RL circuit, response at optimal resistance
Ropt and inductor Lopt. (a): Displacement at the exciting point xF = 0:2m, (b): Harvested voltage,
(c): Harvested power, (d): Harvesting e�ciency.

resonance. The actual value of � and 
 along these trends are indeed almost equal to unity, as
it can be readily deduced from Eqs. (18) and (20). However, a very slight deviation from the
1=f 2 behaviour at each mechanical resonance is observed. i.e. when the electromechanical
coupling is such that the electrical resonance is a�ected by the mechanical resonance.

On the other hand, the optimal resistances show very di�erent behaviour depending on
the arrangement of the circuit. In particular the variations in the vicinity of the eigenfrequen-
cies of the ABH beam are very important. With applications in mind and in correspondence
with usual values for R and L, one can observe that in the high frequency range, the optimal
load resistance and inductance are, respectively, among several 
 to several k
 and below
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100 mH, which are the most practical values. On the other hand at low frequencies, the
required inductance could be rather large at about 1000 H and the required resistance could
be either very small (less than 10�2 
 in the series con�guration) or very large (higher than
1010 
 in the parallel con�guration), meaning less accessible values. Moreover, the design of
such a large inductance implies non negligible internal resistance not taken into account in
the present approach, that may lower the available power. These considerations underline
that RL circuits are easier to design for harvesting applications in the high-frequency range
due to the ease of tuning resistance and inductance values.

Fig. 11. Optimal values of the load resistance and inductance as function of the forcing frequency,
for both parallel and series RL circuits.

Fig. 12 illustrates the robustness of a speci�c harvesting circuit, designed to perform
optimally at a unique frequency for �xed values of inductance and resistance, and compares
the broadband performance of the three types of considered circuits. Two di�erent situations
are selected. Fig. 12(a) shows a case where the parameters of the circuits are tuned at an
eigenfrequency of the ABH. For illustrative purpose, mode 6 at 412 Hz has been selected.
Fig. 12(b) shows a case where the circuits have been optimized at a non-resonant frequency
1000 Hz, which is far from any eigenfrequency of the ABH. As an eyeguide, the optimal value
for frequency-dependent parameters, is represented as a red curve. The superiority of the
RL circuit as compared to a pure resistive one is observed only at the targeted functioning
frequency (respectively 412 Hz and 1000 Hz). This is particularly striking in the case of the
non-resonant frequency, Fig. 12(b), where the di�erence between RL and R circuits is very
important. But as soon as other input vibration frequency is considered, the performance of
the RL circuits deteriorates faster than the pure resistive one.

This result, in conjunction with Fig. 11, shows that an optimal use of an RL circuit
would be for a system functioning at a given, selected frequency, in the high-frequency
range. On the other hand, the frequency content of the ABH beam is not known a priori
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Fig. 12. Global performance of harvesting circuits optimized at a given frequency, selected as: (a)
412 Hz, near the natural resonant frequency of mode 6; (b) 1000 Hz. Red curve is the ideal case
one cannot realize in practice of the optimal frequency-dependent values of R and L. Black dotted
line: pure resistive circuit. Dashed blue line: RL circuit in parallel. Magenta line: RL circuit in
series.

and if broadband harvesting is targeted in the application, then the pure resistive circuits
show interesting advantages. Nevertheless, it should be noted that even if the performance
of the RL circuit is more sensitive to the frequency variation than the pure resistive one,
this disadvantage could be overcome when using multiple patches of PZTs in the harvesting
system. This will be discussed in the next section.

5. Enhancement using multiple PZT patches

The objective of this section is to investigate and quantify the gain one can expect from
using multiple PZT patches instead of a single one. As underlined in the previous sections,
the advantages of using a multi-patch solutions can be twofold. First, in the mechanical
domain, the existence of strain nodes and the resulting undesired charge cancellation can
be circumvented with numerous small patches. Second, on the electrical part, the frequency
dependence of optimal resistance and inductance values can be leveraged to design a more
broadband solution for energy harvesting.

In order to illustrate and quantify the expected gain in e�ciency, 6 di�erent cases are
investigated, as shown in Tab. 2. Three of these cases are concerned with single patch
solutions (with either pure resistive circuit denoted as R, or RL-circuits in series and in
parallel, denoted as S and P), while three others consider three patches: a �rst case with
three pure resistive circuits (RRR), then two cases with three RL-circuits, either in parallel
(PPP) or in series (SSS). The targeted frequency range for energy harvesting is selected as
[800, 1600] Hz. Three eigenmodes of the ABH are present in this band, modes 9, 10 and
11. The PZTs are assumed to have equal length, and their location and length are obtained
by maximizing their average MEMCFs for mode 9-11, following the guidelines reported in
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Tab. 2: Optimal parameters and optimal outputs for each harvesting con�guration

Name Con�guration Optimal values Power output

R R = 2:08k


R1 = 2:57k

RRR R2 = 2:01k


R3 = 2:33k


P R = 12:3k

L = 284mH

S R = 360

L = 271mH

R1 = 72:9k

R2 = 39:7k


PPP R3 = 21:9k

L1 = 501mH
L2 = 217

L3 = 316mH
R1 = 118

R2 = 92


SSS R3 = 245

L1 = 500mH
L2 = 216

L3 = 311mH
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Section 3.1. As a result, for three patches con�guration, a total length Lpzt=5.4 cm located
in [54; 59:4] cm is found. The single patch case uses only the last piece of the PZT located in
[57:6; 59:4] cm. For analyzing the results, the output power in the frequency range of interest
[800, 1600] Hz is shown in the right column of Tab. 2, where the ideal case in red refers to
the frequency-dependent choice of resistance and inductance. Fig. 13 reports the average
power indicator hP i[f1; f2] introduced in Eq. (17). The same color code is used for the �gures
allowing one to distinguish the harvested power in each patch for multi-patch solutions.
The selected values of R and L for each case are reported in the third column of Tab. 2.
Note that in the present case, the optimal values have been computed using a di�erent
method than in the previous sections. The harvested power has been optimized under the
constraint of maximizing the average power indicator hP i[f1; f2] instead of a single frequency.
This numerical computation has been made using nonlinear programming method, switching
between KKT conditions and conjugate gradients, and implemented in the MATLAB®

function fmincon .
The �rst two lines of Tab. 2 compares the gain by using three pure resistive circuits

instead of a single one. As shown in Fig. 13, this gain is very small since for this particular
case most of the energy is harvested by the third patch, as also ascertained by comparing
the power output in the last column of the Table. This is due to the fact that this location
gives the maximum MEMCF, such that the two added PZT do not bring a signi�cant
improvement. Considering a single patch solution with RL circuit drastically improves the
device, resulting in a much larger value of output power on the frequency band of interest,
as shown in Fig. 13. As noted in the previous section, parallel and series circuits give the
same harvested power, the only di�erence being in the selected values for resistance and
inductance. Finally, using a three patches solution with RL circuits in parallel (PPP) or
in series (SSS), again signi�cantly improves the solution. Even though most of the power
is harvested from the last patch, close to the tip of the ABH, in this speci�c case the two
added patches contributes in a non-negligible manner.

These results clearly underline the gain in using RL circuits in conjunction with multi-
patch solutions in order to design energy harvesters based on ABH beam with broadband
harvesting properties. These �ndings are in the line of previous investigations led in [26]
which considers a �ve patches solution with only resistive circuit. The analysis is here
completed by adding the e�ect of the inductance. Finally, one can note that on a practical
point of view, designing a compound with a large number of PZT rapidly becomes intractable.
Consequently, the analysis has been here voluntarily limited to a small number of PZT
patches.

6. Conclusion

In this contribution, the question of using an ABH beam with a unimorph PZT layer for
energy harvesting is investigated.

A modal approach is applied to deliver a general analytical framework for the electro-
mechanical problem, giving also an explicit form for the modal electromechanical coupling
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Fig. 13. Comparison of power indicator hP i[f1; f2] in the range [800, 1600]Hz, for optimal results
obtained using single-patch con�gurations R, S and P circuits, and three-patch con�gurations RRR,
SSS, and PPP.

factor (MEMCF) associated to each eigenmode of the composite ABH beam. Based on
the derived formulations, the dependence of the MEMCFs on the location and dimensions
of the PZT patch is clearly evidenced. Then, under harmonic excitation assumption, the
closed-form response of the mechanical vibrations and the electrical outputs is derived, and
the harvesting performance is discussed and compared to the uniform beam.

The optimization procedure is conducted in two di�erent steps, by studying separately
the electromechanical coupling and the harvesting circuit. The former leads to question
the location and dimensions of the bonded PZT layer to maximize the MEMCFs, which
is achieved by using a short and thin PZT layer near the ABH termination, at the local
maximum of the strain �eld function. The latter problem questions the value of the cir-
cuit parameter, and is comprehensively studied under three types of con�gurations: a pure
resistive circuit, a series-RL circuit, and a parallel-RL circuit. Following such optimization
procedure, an appropriately designed energy harvester using an ABH beam could provide
much higher MEMCFs and outperforms the one using a uniform beam in terms of power
output over a wide band above the cut-on frequency. By achieving the resonance between
the circuit and the vibration of the ABH beam, the RL circuits can increase signi�cantly the
harvesting performance in a narrow frequency range, which, in case of multiple PZT patches,
leads to further broadband advantages.

To sum up, the developed model provides a simple analytical formulation for ABH-
based piezoelectric energy harvesting systems, and provides also physical guidelines for the
optimization problem in more general applications not restricted in the discussions in this
paper. Future studies could be conducted on experimental validations in order to further
validate the analytical �ndings and explore the practical limitations.
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Appendix A. Derivation of Eq. (2)

The starting point for the modeling of the unimorph ABH cantilever is the linear consti-
tutive equations for piezoelectric materials, which reads:

�
�
D

�
=
�
Ep �e
e "S

� �
S
E

�
; (A.1)

where D is the electric displacement, � and S are the stress and strain inside the PZT, Ep is
the Young’s modulus of the PZT. "S is the permittivity of the PZT and e is the piezoelectric
coupling coe�cient.

The electric �eld E in the PZT is assumed to be uniform and can be expressed as the
voltage di�erence Us(t) divided by its thickness, hp,

E = �
Us (t)
hp

: (A.2)

In our discussion the PZT works in the 31 mode, i.e, the electrical charge is generated through
the 3-direction (thickness direction, z) with strain in the 1-direction (length direction, x).
As such, one has the following relatinship:

e = d31Ep; (A.3)

where d31 is called as the piezoelectric constant. On the other hand, for bending motions,
the mechanical strain S(x; t) in the x-direction can be expressed as

S (x; t) = �z
@2w (x; t)

@x2 ; (A.4)

where w(x; t) is the transverse displacement of the beam, as a function of x and t, and z is
the position to the neutral axis.

The governing equation of motion for the composite structure can be written as

� (x)A (x)
@2w
@t2

+
@2M (x; t)

@x2 = F (t) � (x� xF ) ; (A.5)

where � (x) and A (x) are respectively the mass density and the cross-sectional area of the
beam. Note that due to the added mass of the PZT layer, an equivalent modi�cation of
the thickness h(x) = hb(x) + hp and of the material density �(x) = (�bhb + �php) =h are also
implemented in the ABH area, where �b and �p are the densities of the ABH beam and
the PZT layer, respectively. M (x; t) is the internal bending moment. F (t) is the applied
external force, with � (x� xF ) the Dirac delta function meaning that it is induced at the
location x = xF .

To obtain the internal moment, the stress-strain relationship according to the Eq. (A.1)
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for the ABH beam and the PZT layers is recalled

�b1 = EbSb1; �p1 = EpSp1 � d31EpE; (A.6)

where ’s’ and ’p’ generally refers to the ABH beam and the PZT patch, and ’1’ and ’3’
accounts for the 1 direction and 3 direction. In this case, the bending moment M (x; t) for
the composite beam reads:

M (x; t) = �
Z z1

z2

�b1bzdz �
Z z2

z3

�p1bzdz; (A.7)

with z1 the position of the top of the ABH beam to the neutral axis, z2the position of the
bottom of the ABH beam (i.e, top of the PZT patch) to the neutral axis, and z3 the position
of the bottom of the PZT to the neutral axis. Combine Eq. (A.2), Eq. (A.4), Eq. (A.6), and
Eq. (A.7) yields

M (x; t) = �� (x)
@2w
@x2 + � (x)Us (t) : (A.8)

Here, ��(x) is the complex bending sti�ness of the composite beam. Its expression is ob-
tained from the RKU method, in order to take into consideration the equivalent sti�ness and
mechanical damping of the hosted ABH beam and the PZT patch. Note that the role of the
glue between the patch and the beam is not taken into account although it can a�ect ��(x).
For the PZT patch located at [x1; x2] with thickness hp, the complex bending sti�ness ��(x)
reads

�� (x) =

8
>>>>>>>>><

>>>>>>>>>:

EbIb(x) (1 + j�b) ; 8x =2 [x1; x2] ;

EbIb(x)

"

(1 + j�b) +
Ep
Eb

�
hp
hb(x)

�3

(1 + j�p) +

3
�

1 + hp
hb(x)

�2 Ephp
Ebhb(x) (1� �b�p + j (�b + �p))

1 + Ephp
Ebhb(x) (1 + j�p)

3

75 ; 8x 2 [x1; x2] ;

(A.9)

where j is the imaginary unit, Eb, Ib, and �b are respectively the Young modulus, the moment
of inertia and the loss factor of the beam alone, while Ep and �p corresponds to the Young
modulus and the loss factor of the PZT layer. Finally, U (t) is the voltage, and the coupling
term � (x) is written as

� (x) = �d31Epbhpc (x) [H (x� x1)�H (x� x2)] ; (A.10)

where H(x) is the Heaviside function, so that [H (x� x1)�H (x� x2)] indicates that the
PZT electrode covers only the region x1 � x � x2. The function hpc (x) is the distance of
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the center of the PZT patch to the neutral axis, which is computed via

hpc (x) =
Ebhb (hp + hb)

2 (Ephp + Ebhb)
; 8x 2 [x1; x2] : (A.11)

Eq. (A.5) is rewritten using Eq. (A.8):

� (x)A (x)
@2w
@t2

+
@2

@x2

�
�� (x)

@2w
@x2

�
+
@2� (x)
@x2 Us (t) = F (t) � (x� xF ) : (A.12)

The above equation governs the mechanical motion coupled with the electrical voltage.
To derive the electrical circuit equation taken into account the patch/beam mechanical

coupling, we �rst write the electric displacement according to the linear constitutive relation
as

D3 (x; t) = �d31Epz
@2w
@x2 � "

SUs (t)
hp

; (A.13)

where D3 is the z-direction component of electric displacement. Note that the average value
of z is hpc, one thus has

D3 (x; t) = �d31Ephpc (x)
@2w
@x2 � "

SUs (t)
hp

: (A.14)

The electric charge q(t) generated in the PZT is derived by integrating the electric dis-
placement D over the electrode area Ap as

q (t) =
Z

Ap

D � ndAp; (A.15)

where n is the unit outward normal. These vectors are both oriented in the z-direction.
Consequently, the current is(t) writes,

is (t) =
dq (t)
dt

= �d31Epb
d
dt

�Z x2

x1

hpc (x)
@2w
@x2 dx

�
� Cp _Us (t) (A.16)

where Cp = "SbLpzt=hp is the capacitance of the PZT layer. It is obvious that the current is
a sum of two components: The �rst term accounts for the beam vibration and the second
component involves the internal capacitance Cp. Combining Eq. (A.12) and Eq. (A.16) gives
the complete electromechanical model, Eq. (2) in the main text.

Appendix B. Eigenvalue problem for the unimorph cantilever in short circuit

The eigenvalue problem mentioned in Section 2.1 is formulated by solving Eq. (2a) with
U = F = 0. A �nite di�erence method with a non-uniform grid spacing is used, following
[5, 45, 48]. Practically, a coordinate change is introduced that maps the physical coordinate
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x 2 [0; L] onto a uniform mesh grid � 2 [0; 1]. It is selected according to the variations of
the 
exural wavelength and reads :

�(x) =
1
�X

Z x

0

1
p
h (�)

d� ; with �X =
Z L

0

1
p
h (�)

d� : (B.1)

The uniform grid spacing �l is then simply introduced as �l = l��, for l = 1; :::; N�, with
�� = 1=N� the spatial step. All the functional �elds appearing in the linearized Eq. (2) are
computed on these grid points, with for example �l = �(�l), �l = �(�l), ... The eigenvalue
problems to be solved can then be expressed in � and reads:

��lAl!2�l +
h�1=2
l
�X4 ��+

��
���h

�1=2
l

�
���

�
�lh

�1=2
l ��+

��
���h

�1=2
l

�
����l

���
= 0: (B.2)

where ��+, ��� and ��� are operators de�ned as

��+u =
ul+1 � ul

��
; ���u =

ul � ul�1

��
; ���u =

ul + ul�1

2
: (B.3)

The boundary conditions in Eq. (3) are then discreted as

u0 = u1 = 0; for x = 0

��+
��
�����1=2� ���uN

�
= ��+

��
�����1=2� ���uN�1

�
= 0; for x = L

(B.4)

The solution of the eigenvalue problem relies on two separate computations for Eq. (B.2):
The �rst computation uses the real bending sti�ness � (x) = Re (�� (x)) in order to identify
the undamped eigenmode shape ’k(x) and the circular eigenfrequency !k for the ABH beam,
with k = 1; :::; Nm. Taking losses into account, a second computation is then realized, but
considering the complex bending sti�ness �� introduced in Eq. (A.9). As a result, complex
eigenfrequencies !?k are retrieved, whose relationship to those obtained real !k writes

j!?k = !k
�
��k � j

q
1� �2

k

�
; (B.5)

from which the unknown modal damping ratios �k associated to each eigenmode can thus be
identi�ed.

Appendix C. Karush-Kuhn-Tucker derivations for the RL circuits

In this appendix, the Karush-Kuhn-Tucker conditions are derived in order to �nd the
optimal values of resistance and inductance for a series-RL circuit. The problem writes
as �nding the optimal values of P (�; �) under the constraint of non-negativity for both
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parameters � and �, which reads

min
�;�

(�P ) ; subject to gi (�; �) 6 0; for i = 1; 2 (C.1)

where the non-negative constraints for � and � simply writes

g1 (�; �) = ��; g2 (�; �) = ��; (C.2)

The necessary KKT conditions are stated as follows: if the pair (�opt; �opt) is a local
optimum, then there exists constants �i � 0; i = 1; 2, such that

�rP (�opt; �opt) + �T � rg (�opt; �opt) = 0; (C.3)

and
�igi (�opt; �opt) = 0; i = 1; 2; (C.4)

where r is the gradient operator, and g(�; �) is a column vector combining g1 (�; �) and
g2 (�; �). Expanding the above expression yields

@P
@�

����
(�opt;�opt)

+ �1 = 0; �1�opt = 0;

@P
@�

����
(�opt;�opt)

+ �2 = 0; �2�opt = 0:
(C.5)

On the other hand, the KKT su�cient conditions state that if P (�; �) and gi(�; �) are
convex, then the local optimum (�opt; �opt), determined by the necessary conditions given by
Eq. (C.5), is a global optimum. In our problem, it can be easily veri�ed that gi(�; �) are
convex and the Hessian of P (�; �) is positive de�nite, hence a global optimality can be met
once Eq. (C.5) is solved.

Using the power output de�ned in Eq. (11), restricting to the RL circuit in series with

 = 0 and solving for KKT conditions given in Eq. (C.5) allows one to derive analytically the
optimal parameters for the series-RL circuit together with the maximum harvested power as
Eqs. (18)-(19), given in the main text.
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