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Abstract

A unimorph piezoelectric cantilever equipped with an Acoustic Black Hole (ABH) termina-
tion is designed for broadband energy harvesting. The ABH termination, with its tapered
region, induces a focusing of the flexural vibrations which can be used to increase the efficien-
cy of an energy harvesting device. A modal-based analytical model is presented, providing
an explicit form of the electro-mechanical coupling for each beam eigenmode. Closed-form
expressions for the coupled mechanical response and electrical outputs are obtained, allow-
ing one to draw out a complete parametric study to optimize the device. The optimization
procedure is conducted following two steps: first, optimal location and dimensions of a s-
ingle piezoelectric patch are achieved by maximizing the modal electro-mechanical coupling
factor (MEMCF) for each structural mode. Thanks to the proposed analytical approach, it
is clearly shown that by putting the piezoelectric patch at the maximum of the strain field
in the tapered termination, and by adjusting its length in accordance with the focalization
created by the ABH effect, the ABH cantilever produces much higher MEMCFs over a wide
frequency range and thus outperforms those of a uniform beam. Second, optimization of
the shunted circuit is comprehensively performed for a circuit with only resistance, or both
resistance and inductance, in series or in parallel. Analytical results show that the key design
rule resides in matching the time scale of the circuit with that of the forcing frequency. Ad-
dition of the inductance allows enhancing the performance, but on a narrow frequency band.
Finally, broadband advantages can be further obtained by considering multiple piezoelectric
patches, in which the optimum is obtained when the shunted circuit in each patch is tuned
targeting an eigenmode of the ABH beam.
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1. Introduction

The Acoustic Black Hole effect (ABH) refers to a specific structural design embedded
in a thin-walled structure (beam or plate), permitting an efficient passive vibration control.
It consists of a local decrease in the thickness of the structure according to a power-law
profile, associated to a local increase of the damping provided by a thin viscoelastic coating
[1]. Such an arrangement induces a focusing effect for the flexural waves, leading to a light-
weight efficient vibration absorber: the vibration field in an ABH beam is trapped into the
tapered edge, leading to significant local damping. A review of the models and experimental
tests of beams and plates with such embedded ABH is given in [2]. The advantages brought
by the ABH mechanism for vibration damping have been confirmed from many aspects,
such as a low reflection coefficient of flexural waves [3, 4], a significant improvement of the
modal damping ratios and of the modal overlap factor [5]. Optimization of the ABH design
regarding its host structure and the feature of its damping layers has been widely discussed
in [6–13]. Experimental evidence of ABH effect using a variety of beam-like and plate-like
structures are also numerous [6, 14–17]. Recent advances could be found in [18] for the exact
analytical solutions of the beam ABHs equations, and in [19] to interpret the ABH effect
using the critical coupling concept. Some special designs including elastic metastructures
[20], vibro-impact systems [21] and cochlear systems [22], have also been investigated and
confirmed the effectiveness of ABH in various areas of applications.

Regardless of the numerous works aiming at damping structural vibrations, it is only
in 2014 that ABH has been applied to the field of energy harvesting using a piezoelectric
transducer. The central idea of this research line is to take advantage of the focusing effect
of the ABH area. In this field, the first contribution is performed by Zhao et. al. in [23], who
use finite element simulations to study the harvesting performance of a beam configuration
with five distributed unimorph ABH indentations. It was proven numerically that the energy
harvesters embedded in ABH beams are more efficient than those based on uniform beams,
which has also been experimentally demonstrated by the same authors in [24]. More recently
in [25], a compound ABH is proposed as a mean to achieve an enhanced broadband energy
harvesting performance. The results confirm again that by taking advantage of the wave
localization property, ABHs could be designed as more effective energy harvesting systems,
as compared to the classical ones.

Although these works have successfully demonstrated the advantages of using an ABH
for energy harvesting, some points still need further investigations. In particular the char-
acteristics of the electro-mechanical coupling mechanisms in an ABH structure associated
with piezoelectric materials, is a key challenge that remains unsolved in this topic. To the
best of the authors’ knowledge, the only existing attempts are the two recent studies con-
ducted in [26] and [27], where an electro-mechanical model is developed based on variational
principles. To follow up on these works, there is a need to establish a clear analytical depen-
dency between the electro-mechanical coupling and parameters such as the placement and
dimension of the PZT patch, the ABH profile parameters. Therefore, the main purpose of
this contribution is to provide a general understanding of such problems by deriving analyt-
ical modal-based formulation that allow systematic parametric optimisations of harvesting
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power.
The modeling approach used here can be dated back to the distributed parameter models

introduced by Erturk et. al. in [28–30], which are widely accepted by the energy harvesting
community. They provide analytical solutions for classical piezoelectric cantilever harvesters
based on Euler-Bernoulli beam with uniform thickness. The reader can also refer to [31–33]
for useful references regarding piezoelectric technologies. By applying Erturk’s approach to
beams of variable thickness, a modal-based model for a general unimorph ABH harvester is
established in this paper. Moreover, the so-called modal electro-mechanical coupling factors
(MEMCF) are naturally defined, as dimensionless parameters related to a piezoelectric patch
and a given eigenmode of the compound ABH beam. It is shown that those MEMCFs
are similar to the effective electromechanical coupling factor (EEMCF) derived in many
other piezoelectric systems as in [34–39]. Their importance in optimizing the harvesting
performance has been highlighted by several authors in [40], for resistive and inductive shunts,
and in [41] for switch circuits. The optimization of the power output in the harvester based
on the MEMCF as a control parameter, is divided into two successive steps. First, the ABH
structure with a bonded piezoelectric patch is modeled so as to characterize the MEMCFs
in terms of the patch geometry and parameters. The expressions of the MEMCFs are then
used to compute the patch’s location and dimensions that maximize the MEMCF of a given
single mode. Once the MEMCFs are optimized, the second step consists in determining the
optimal electrical parameters of the shunt. Up to now, all the existing studies on ABH based
energy harvesting concentrates only on the pure resistive circuits. The inductive circuits, as
being a significant technique to improve the performance of a piezoelectric energy harvesting
device such as in [42, 43], has not yet been discussed. The main idea of such a technique is
to include an inductance, which, together with the intrinsic capacitance of the piezoelectric
patch, allows to build a resonant circuit. As such, effective harvesting performance could be
awaited from the resonance between the circuit and the mechanical vibration of the ABH
beam. In the present study, a comprehensive performance optimization for both resistive and
inductive shunts will thus be conducted by taking advantage of our analytical framework.

The paper is organized as follows: In Section 2, a refined electromechanical model for
an ABH beam with a unimorph piezoelectric patch is given. The structural eigenmodes
computed in the short-circuit configuration are used to compute the vibration response and
the electrical outputs under harmonic excitation. This model leads naturally and rigorously
to analytical expressions for the MEMCFs. Dimensionless quantities are defined in order to
reduce the parameter space and simplify the optimization procedure. Considering only pure
resistive circuit, the MEMCF-based analytical optimization procedure and the normalized
harvesting performances are then presented in Section 3, along with a comparison to the
performances obtained for the uniform beam. The performances of different types of RL
circuits and the effect of using multiple PZT patches are respectively investigated in Section
4 and Section 5.
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2. Electromechanical model of the ABH energy harvester

2.1. Equations of motion

An ABH beam with a tapered termination is considered and its efficiency in harvesting
vibrational energy is investigated. To that purpose, a piezoelectric layer is added to the
beam in order to convert mechanical energy to electrical energy. The considered system is
shown in Fig. 1. The ABH beam is of length L and width b. The uniform region has constant
thickness h0, while the ABH region with length lABH is tapered with the local thickness hb(x)
decreasing from h0 to ht according to the following power law:

hb(x) = ht + (h0 − ht)
(x− L)2

(lABH − L)2
. (1)

The piezoelectric patch consists of a unimorph piezoceramic (PZT) layer, located in the
region x ∈ [x1, x2] and assumed to be perfectly bonded to the beam. x ∈ [x1, x2]. Electrical

Fig. 1. Layout of the ABH beam coated with a PZT layer. (a) 3D view, (b) side view, (c) schematic

view of the electrode and harvesting resistance, (d) equivalent circuit.

energy is harvested from the vibration of the ABH beam by connecting the electrode with
a general RL circuit depicted in Fig. 1(c-d), which consists of a load resistance R, a series
inductor Ls, and a parallel inductor Lp. The PZT is represented equivalently by a current
source with a capacitance in parallel. The complete electro-mechanical equations for such an
ABH harvester can be derived following the general framework given in [30], with a special
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emphasis to the tapered region where important thickness variations occur. For the sake
of conciseness, the calculation details are reported to Appendix A. The coupled equations
write:

ρ (x)A (x)
∂2w

∂t2
+

∂2

∂x2

[
Γ∗ (x)

∂2w

∂x2

]
+
∂2θ (x)

∂x2
Us (t) = F (t) δ (x− xF ) (2a)

CpU̇s + is = −d31Epb
d

dt

[∫ x2

x1

hpc (x)
∂2w

∂x2
dx

]
(2b)

where w = w(x, t) is the transverse displacement of the ABH beam, Us is the electric tension
between the electrodes, and is is the generated current. The density, cross-sectional area,
and complex bending stiffness of the composite beam are denoted respectively as ρ (x), A (x),
and Γ∗ (x).

The effect of the piezoelectric patch including its added mass, stiffness, and damping,
is taken into account by adapting the Ross-Kerwin-Ungar (RKU) model developed in [44],
as done in previous ABH modelisations [5, 45], see details in Appendix A. It has to be
noted that Γ∗ (x) is complex-valued, the imaginary part quantifying the mechanical damping.
The variable θ (x) = −d31Epbhpc (x) [H (x− x1)−H (x− x2)] defines the coupling term,
where d31 and Ep are respectively the piezoelectric constant and the Young’s modulus of
the PZT layer. The electrodes are perpendicular to 3 axis (z-axis, see Fig. 1(a)) and the
piezoelectrically induced strain is in the 1 direction (x-axis). The distance hpc (x) is defined
between the center of the PZT patch and the neutral axis, as shown in Fig. 1(b). H(x) is
the Heaviside function, so that [H (x− x1)−H (x− x2)] indicates that the PZT electrode
covers only the region x1 ≤ x ≤ x2. The right-hand side term of Eq. (2a) represents a time-
dependent pointwise forcing applied at x = xF . Finally Cp is the equivalent capacitance
of the PZT layer, as shown in Fig. 1(d). The electromechanical behaviour of the system is
restricted to the linear range, based on the assumption that the vibration amplitude is small
as compared to the beam thickness in the uniform area. More involved modelings, such as the
use of Timoshenko’s assumptions for a more accurate high-frequency representation [27], or a
geometric nonlinear model to take into account large amplitude vibrations [45], could also be
developed for specific interests. In this paper, our main focus is on the improved harvesting
performance brought by the ABH effect and its corresponding optimization problems based
on the linear electromechanical coupling, thus the nonlinear terms are neglected.

As for the boundary conditions, the beam is considered to be clamped at x = 0 and free
at x = L, so that:

∀ t, w(0, t) = 0,
∂w

∂x

∣∣∣∣
x=0,t

=0,
∂2w

∂x2

∣∣∣∣
x=L,t

= 0,
∂3w

∂x3

∣∣∣∣
x=L,t

= 0. (3)

One specific goal of the present study is to derive simple analytical formula in order to
give a detailed insight on the use of an ABH beam as an energy harvester. For that purpose,
and following previous derivations led in [5, 21, 45], a modal approach is used to discretize
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the equations of motion. The flexural displacement w (x, t) is written as

w (x, t) =
Nm∑
k=1

φk (x)ηk (t) , (4)

where ηk(t) is the modal coordinate associated to the k-th real normal mode φk(x), Nm is
the total number of modes selected in the expansion. The eigenmodes are normalized with
respect to mass such that, ∀ 1 ≤ k, l ≤ Nm,

∫ L
0
ρ (x)A (x)φk (x)φl (x)dx = δkl, with δkl

the Kronecker delta. The modal expansion is then inserted into the equations of motion E-
q. (2), yielding the dynamical equations for each eigenmode k, associated with the dynamical
equation for the circuit:

η̈k + 2ξkωkη̇k + ω2
kηk + ΘkUs = φk (xF )F (t) , (5a)

CpU̇s + is =
Nm∑
k=1

Θkη̇k, (5b)

where φk (xF ) is the k-th modal displacement at the excitation point x = xF and Θk is the
modal electro-mechanical coupling (MEMC). The latter writes:

Θk = −d31Epb
∫ x2

x1

hpc (x)
d2φk (x)

dx2
dx. (6)

Then, applying Kirchhoff’s current law in accordance with Fig. 1(d), the following rela-
tionship for the electrical circuit can be retrieved

Us = iRR + Ls
diR
dt
, (7a)

is = iR +
1

Lp

∫ t

0

Usdt, (7b)

iR =
U

R
. (7c)

In terms of the voltage across the load resistance, the five equations in Eqs. (5) and
Eqs. (7) can then be expressed as

η̈k + 2ξkωkη̇k + ω2
kηk + Θk

(
U +

Ls
R
U̇

)
= φk (xF )F (t) , (8a)

CpLs
R

...
U + CpÜ +

(
Ls
LpR

+
1

R

)
U̇ +

1

Lp
U =

Nm∑
k=1

Θkη̈k. (8b)
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Before solving Eq. (8), the eigenmodes, eigenfrequencies, and modal damping ratios
should be computed. Such an eigenvalue problem is formulated considering a short-circuit
condition without external force, i.e. by setting U = 0 and F = 0 in Eq. (8a). Due to
the thickness variation, a finite-difference scheme with non-uniform grid is used, and the
damping is treated using the RKU model by introducing a complex bending stiffness (all the
calculation details are reported in Appendix B). Once the eigenvalue problem is solved, the
MEMCs in Eq. (6) can be computed and the response of the system analysed.

2.2. Closed-form solutions for the coupled electro-mechanical system

In order to derive closed-form solutions, we focus on the steady response of the system
subjected to an harmonic excitation of amplitude F0 and circular frequency ω, namely F (t) =
F0e

jωt. Since the system is linear, the output voltage reads U = U0e
jωt where U0 is the

complex voltage amplitude of the response. Substituting those expressions into Eq. (5) gives
the relationship between the k-th modal displacement ηk and the voltage amplitude U0 as:

U (t) =
jαS

1− β + βγ + jα− jαγ + (jα− β)ψ
F0e

jωt, (9a)

ηk (t) =

[
φk (xF )− jα− β

1− β + βγ + jα− jαγ + (jα− β)ψ

SΘk

Mk

]
F0e

jωt, (9b)

with

α = ωRCp, β = ω2LsCp, γ =
1

ω2LpCp
, Mk = ω2

k − ω2 + 2jξkωkω,

χk =
Θk

ωk
√
Cp
, S =

Nm∑
k=1

ωkφk (xF )χk
Mk

, ψ =
Nm∑
k=1

ω2
kχ

2
k

Mk

, T =
Nm∑
k=1

φ2
k (xF )

Mk

.

(10)

The closed-form solutions for both the modal vibration ηk (t) and the output voltage U(t)
are of particular interest in order to draw out parametric study of the efficiency of the ABH
as an energy harvester.

To investigate the performance of the system, two different quantities will be analyzed.
The first one is the electrical power output normalized by the forcing amplitude, denoted as
P . The second is ratio between the electrical power and the total input power, denoted as
ε. They write:

P =
ωCpα|S|2

|1− β + βγ + jα− jαγ + (jα− β)ψ|2
, ε =

α∣∣∣ TS2 − jα−β
1−β+βγ+jα−jαγ+(jα−β)ψ

∣∣∣ . (11)

In these equations, α, β and γ are dimensionless parameters comparing the mechani-
cal timescale ω to that of the electrical circuit. More specifically, the concerned electrical
timescales are respectively that of a capacitance Cp discharging in a resistance R, a series
RLC circuit, and a parallel RLC circuit. The dimensionless parameter χk is referred to as the
Modal Electro-Mechanical Coupling Factor (MEMCF) of the k-th eigenmode. The system
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depends finally on eight parameters: α, β, γ, χk, ωk, ξk, ω and φk (xF ). These key parame-
ters should be designed in order to optimize the harvesting performance fully described by
α, β, γ, and χk. The optimization of α, β, and γ highlights the effect of the shunted circuit
and is to be conducted mainly in the electrical domain. On the other hand, χk, concerns the
electro-mechanical coupling and is mainly related to the geometry and location of the PZT
layer. Combining the definition of χk in Eqs. (10) and (6), the MEMCF χk finally writes:

χk = −d31Ep√
εS

√
bhp
Lpzt

∫ x2

x1

hpc (x)
1

ωk

d2φk (x)

dx2
dx. (12)

where εS is the permittivity of the PZT layer.

3. Results and discussions in the case of a pure resistive circuit

In order to draw out the optimization, an ABH beam with fixed parameters as reported
in Table 1 is considered. The material properties of the PZT is also considered as fixed with
the values given in Table 1. A first optimization of the harvested energy is conducted in
terms of the location and dimensions of the PZT patch, meaning that x1, x2, and hp are
first considered as variables, with the aim of selecting the optimal design depending on the
targeted frequency band.

ABH beam PZT Layer
L=60 cm x1= /
b=2 cm x2= /
h0=4 mm hp =/
ht =200 µm d31 = −190 pm/V
lABH=10 cm εS33 = 16 nF/m
Eb=100 Gpa Ep=66 Gpa
ρb=8700 kg ·m3 ρp=7800 kg ·m3

σb=1% σp=1%

Tab. 1: Parameters selected for the ABH beam and the piezoelectric layer.

The discussion is conducted as follows. First, the modal electro-mechanical coupling
factor χk is analyzed and optimized in section 3.1, by emphasizing the importance of the
geometry of the PZT layer. Then in section 3.2, the effect of harvesting circuit is studied,
and the complete optimization is performed. Finally, the impact of the mechanical dampings
in the ABH beam and the PZT layer are discussed in 3.3.

3.1. Modal Electro-Mechanical Coupling Factor (MEMCF), χk

The MEMCF χk derived in Eq. (12) plays an important role in the energy harvesting
process, since it characterizes the ability of efficiently transferring the vibrational energy of a
given mode to the electrical circuit. Eq. (12) shows that χk depends first on the integral term,
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which involves both the k-th mode shape through its second derivative and the associated
eigenfrequency, as well as the distance hpc(x) of the center of the PZT to the neutral axis
of the composite beam. Note that the eigenmodes are computed in presence of the patch
so that modifying its geometry or its location has a direct consequence on the modal basis.
This is also the case if the patch’s thickness is increased, since it implies a change in hpc(x) or
if the patch is moved, since it implies a change in the region [x1, x2]. Finally, the geometrical

and material constants d31Ep√
εS

and
√

bhp
Lpzt

accounts for the magnitude of the integrated terms

as physical constants.
Fig. 2(a) shows a global characterization of the MEMCF χk over a large frequency range

[0,4000] Hz including numerous modes, and compares four different configurations. The first
two cases are the uniform and ABH beam with PZT located at the same area [50, 60] cm,
which corresponds to the ABH tapered region. The other two cases consider the ABH
beam with two small patches of 1 cm long, located at [56.5, 57.5] cm (black), and [58, 59] cm
(magenta) respectively. One can observe that although a global improvement of the coupling
appears when considering an ABH beam, very different patterns are observed depending on
the selected PZT patch, thus leading to important differences on the normalized harvested
power |P | depicted in Fig. 2(b).

To better understand the coupling mechanism, let us first focus on the case of mode 9
as an example. In the ABH case, this mode is localized into the tapered region, as shown
in Fig. 2(c) where only the last 10 cm of the beam, corresponding to the ABH region, are
represented. The mode shape is characterized by the appearance of two strain nodes N1 and
N2, where the beam strain changes from compression (in green) to tension (in orange). The
PZT patch shall not cross such strain nodes since it leads to an important decrease of the
performance due to charge cancellation. This explains why the long (10 cm) patch shows an
important decrease in harvested power in Fig. 2(b) in the high-frequency range.

Coming back to the definition of χk in Eq. (12), Fig. 2(d) shows that even though hpc
is constantly decreasing in the tapered region, this can be compensated by an important

increase of the amplitude of the strain field d2φ(x)
dx2

. As a matter of fact, the ABH termination
creates strongly localized modes with large variations on a short frequency range. This effect
is of prime importance and a short PZT patch allows taking advantage of this to severely
increase the harvesting performance. Finally, Fig. 2(e) underlines that the accurate location
of the patch, depending on the mode shape, leads to optimization or cancellation of this
effect. The patch located at [56.5, 57.5] cm is not optimal for mode 9 since crossing a strain
node, resulting in a poor MEMCF (see the corresponding black point in Fig. 2(a) around
910 Hz). On the other hand, the optimized location is [58, 59] cm, at the local maximum of
the mode shape, resulting in a very important value of χ9 in Fig. 2(a).

Fig. 3 reports parametric variations in order to find the optimal design regarding the
location and thickness of the PZT patch, based on the values of the coupling coefficient |χk|.
Figs. 3(a-b) represents the values of |χ9| and |χ15|, for modes 9 and 15 respectively, when
varying the length of the patch and its location (abscissa of the endpoint x2). In both cases
it is found that the MEMCF decreases importantly for PZT layers located at the very end of
the ABH, resulting from the combined effects of the vanishing bending moment at the free
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Fig. 2. (a) electromechanical coupling coefficient |χk| as a function of the frequency for four different
beam configurations: In blue, the uniform beam. In red, a ABH profile equipped with a long patch
located at [50, 60] cm. In magenta and in black, ABH profiles equipped a patch located at [56.5,
57.5] cm and at [58, 59] cm respectively. (b) harvested power for the selected configurations. (c-e)
illustration of the strain nodes as related to the value of the electromechanical coupling for PZT
with different lengths and positions, with mode 9 selected as an illustrative example.

boundary condition, and the added thickness that decreases the ABH effect. For mode 9, two
optimal values are found, the one with about 2 cm length placed near the ABH termination
at x2 = 59.5 cm, outperforming the second maximum with 4 cm length at x2 = 57 cm. The
same pattern is found for mode 15 with more maxima, related to the smaller wavelength of
the eigenmode shape. To offer a broadband view, Fig. 3(c) shows the average values of |χk|
for the first 20 modes, up to 4000 Hz. It underlines that an optimal location can be found
with a PZT patch of about 1 cm length and located near the ABH termination.

Figs. 3(d-f) investigates the effect of the thickness of the PZT patch on the performance.
Again, two specific modes are selected by plotting |χ9| and |χ15| in Figs. 3(d-e), while the
integrated effect on the whole frequency range [0, 4000] Hz is reported in Fig. 3(f). The
length is fixed at Lpzt = 1cm for this parametric study. In particular one can observe that
the optimal value does not depend on the thickness on a large portion but then severely
decreases when the thickness of the patch is becoming too important. This finding can
be important for an experimental design since the terminal thickness of the ABH beam is
supposed to be as small as possible to enhance the ABH effect. In this calculation, ht=200
µm has been selected, hence the largest values of thickness considered for the patch in the
figure is hp = 1 mm. Regarding the overall performance by considering the average value
of |χk| over the first 20 modes in Fig. 3(f), one can observe that a PZT located around

10



0.1 0.2 0.5 1 2 5

h
p
 / h

t

52

54

56

58

60

x
2
 (

c
m

)

(d)

0.01 0.02 0.03 0.04 0.05 0.06

0.1 0.2 0.5 1 2 5

h
p
 / h

t

52

54

56

58

60

(e)

0 0.02 0.04 0.06

0.1 0.2 0.5 1 2 5

h
p
 / h

t

52

54

56

58

60

(f)

0 0.01 0.02 0.03 0.04

Fig. 3. Coupling coefficient |χk| as a function of the location x2 and either the length Lpzt of the
PZT patch (first row, plots (a-c), with hp/ht=0.5) or the thickness ratio hp/ht (second row, plots
(d-f), with Lpzt = 1 cm). Left column: k = 9, center column: k = 15, right column: average
value of |χk| for the first 20 modes up to the frequency of 4000 Hz. Note that the ABH profile is
characterized by the region [50, 60] cm and the PZT is located only inside this ABH region with
endpoint x2, and length Lpzt.

[58.5, 59.5] cm with thickness hp/ht around [0.5, 1] is recommended.
Fig. 4 draws a mode-by-mode comparison of the values obtained for the coupling coef-

ficient |χk| in the frequency band [0,4000] Hz, for the uniform and the ABH beam. Two
different lengths of PZT layers are considered, the results for Lpzt = 1 cm being reported
in Fig. 4(a) while those for Lpzt = 3 cm are given in Fig. 4(a). The figures show both the
best location endpoint x2 of the patch and the value of |χk| is given by the area of the
circle. In Fig. 4(a), the length of the patch Lpzt = 1 cm is smaller than the half-wave length
of the highest mode in the ABH tip when considering the modes up to 4000 Hz. In this
case the gain in using an ABH beam as compared to a uniform one is clearly assessed by
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the result, since all the modes considered in this frequency range show an important gain
in magnitude. Also one can observe a clear convergence in the best location of the patch
on the whole frequency band for the two beams. On the other hand, with Lpzt = 3 cm as
shown in Fig. 4(b), the gain in using an ABH beam is important for the first ten modes in
the range [0,1200] Hz, but is not significant for the higher modes. This is linked to the fact
that 3 cm corresponds to the half-wave length of mode 10, consequently the magnitude of
the coupling coefficient decreases due to the charge canceling effect. One can also observe
that the optimal location does not show a clear trend once the length of the patch is larger
than the considered wavelength. These results clearly advocate for using a small PZT patch
in the ABH termination, located near the tip end, in order to maximize the performance in
terms of energy harvesting.
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Fig. 4. Coupling coefficients |χk| represented by disks of variable areas, as a function of the frequency
and of the optimized endpoint location x2. The black points in the bottom right are defining the
correspondence between the values and the disks areas. Comparison of the uniform beam (blue
points) to the ABH beam (red points), locations optimized with respect to each eigenmode for two
different lengths of PZT layer: (a) Lpzt = 1 cm, (b) Lpzt = 3 cm.

3.2. Optimization of the resistive circuit

While the previous section was focused on geometrical aspects to better understand
the dependence of χk on the location and length of the PZT patch, the present section is
dedicated to investigating the effect of the electrical parameters (with a special emphasis
on the load resistance) on the harvesting power and efficiency. Again, our derivations using
analytical calculations allow one to draw out a complete parametric study and shed light on
the optimization of the problem.

The harvested power near the natural frequency of mode 9 is first investigated in order
to understand the physical mechanism for a single mode. As depicted in Fig. 5(a), one can
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see that the power reaches a peak value at a specific resistance Ropt that depends on the
frequency. In order to derive an analytical expression for the optimal resistance Ropt, let us
consider the harvested power expressed in Eq. (11):

P =
α

α2|1 + ψ|2 − 2αIm (ψ) + 1
ωCp|S|2. (13)

In this expression, α = ωRCp is the only parameter involving the load resistance R. Differ-
entiating the previous expression with respect to α, leads to the definition of αopt, optimized
in terms of the power output as

∂P

∂α
= 0→ αopt =

1

|1 + ψ|
. (14)

Using Eq. (11), the optimal load resistance Ropt and the maximum power Popt are be obtained
respectively as

Ropt =
1

ωCp |1 + ψ|
, Popt =

ωCp|S|2

2 |1 + ψ| − 2Im (ψ)
. (15)

where ψ and S are defined as in Eq. (10).
The term 1/ωCp indicates that the optimal resistance, in absence of resonance phe-

nomenon, is optimal when the timescale of the equivalent RC circuit is the same as the
oscillation timescale (i.e, the inverse of the forcing frequency). This general rule is slightly
modified by the presence of the term 1/|1 + ψ|, which is due to the resonant behavior of
the beam, coupled to the electrical circuit. The optimal resistance is plotted in Fig. 5(b)
for a 1 cm PZT located at [58, 59] cm. At the non-resonant low frequencies, Ropt is well
approximated by 1

ωCp
, meaning that the time constant of the harvesting circuit τ = RCp

should be adjusted targeting the forcing frequency ω. On the other hand, near the resonant
frequencies, fluctuations around 1

ωCp
are observed. As such, near the natural frequencies, the

effect of eigenvalues ξk and ωk, and the associated MEMCF χk become also significant. The
main conclusion here agrees well with the observations reported in [25, 26] for ABH based
harvesters, but also in [35] and [46] in the context of passive damping and flow energy har-
vesting respectively. However, in [26], an exact form for the optimal resistance is not derived,
while in [25], the optimal resistance is simply retrieved as 1

ωCp
based on a constant charge

assumption, thus neglecting the effect of the modal eigenvalues. As shown in Fig. 5(b), the
effect of the mechanical resonances is important and the simple constant charge assumption
cannot be used in the vicinity of each eigenfrequency.

Up to now, the mechanical and electrical parts have been optimized separately. In partic-
ular, clear design strategies have been underlined for the optimal location of the PZT layer,
and an optimal load resistance Ropt has been found, which depends on the frequency, and is
not easily achievable. The combined effects are now investigated in order to reach the opti-
mal harvesting performance. Also, practical questions regarding the frequency performance
when a constant load resistance R is selected, are addressed.
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Fig. 5. Effect of the load resistance R. (a): harvested power in the neighborhood of mode 9 as a
function of the load resistance R and the excitation frequency ω. (b): Optimal value of the load
resistance Ropt at each frequency for, red: exact value, blue: approximated value. The PZT layer
is placed in the region [58,59] cm and with thickness hp = 100 µm.

For that purpose, the harvested power and efficiency are first investigated as functions of
the MEMCF χk defined by Eq. (12). In order to vary the values of χk without affecting the
mechanical characteristics of the system, only the piezoelectric constant d31 is varied, while
fixing the location of the PZT at [58, 59] cm and its thickness at 100 µm. Recalling Eq. (11),
and focusing on the behavior in the vicinity of the k-th mode by discarding all other modes
from the summation, one can impose to cancel the derivative of the harvested power with
respect to χk in order to retrieve a local optimal coupling factor χk,opt as

∂P

∂χk
= 0→ χ2

k,opt =
(1− Ω2

k)
2

+ 4ξ2kΩ
2
k

α

√
1 + α2. (16)

Fig. 6 shows the results by considering mode 9 as an example, and represents the harvest-
ed power and efficiency as well as the output displacement at the exciting point xF = 0.2 m.
In this figure, the variation of χ9 in the interval [0, 0.7] is realized by changing the piezo-
electric constant d31 of the PZT from 0 to 290 pm/V. These values are realistic and can be
mostly obtained by selecting appropriate piezoelectric materials [31, 32, 34]. Note that a
usual design with d31= 190 pm/V leads to χ9 = 0.45. Fig. 6(a) shows that when the value
of R is fixed, the harvested power reaches its maximal value at χk,opt as stated by Eq. (16),
and then decreases. Since χk,opt depends on α, the optimal value following Eq. (14) can be
selected for each value of χk,opt. Using the optimal resistance value Ropt for each case under
study in the range χk,opt ∈ [0, 0.7], results in the red curve shown in Fig. 6(a). Interestingly,
this optimal curve does not decrease but rather reaches the optimal value asymptotically.

Fig. 6(b) shows that the harvesting efficiency tends to reach a limit value as the coupling
coefficient ratio increases in each case investigated: either a constant R value, or an optimal
value Ropt selected at each point. In the latter case, this limit value is 1/2 (50%), meaning
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an equipartition between the power harvested in the electric circuit and the power dissipated
by the mechanical damping. Finally, Fig. 6(c) shows that the beam displacement reaches a
limit value if Ropt is selected, otherwise it continuously decreases for increasing values of the
MEMCF when R is fixed.
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Fig. 6. Variation of the power, efficiency, and displacement with the coupling coefficient for different
values of load resistance. Examples shown for the resonant response of mode 9.

The results in Fig. 6 underlines two important points: first, as a necessary condition,
in order to reach as much as possible the limit saturation of the harvesting power at each
frequency, both the mechanical part should be optimized to ensure a sufficiently large enough
coupling factor χk and the electrical part should be tuned to Ropt. Second, as a sufficient
condition, once the mechanical part χk is maximized and the electrical optimal resistance
Ropt is selected, it naturally leads to the optimal harvesting power. These two points, to a
certain extent, generally allow one to optimize the electrical part and the mechanical part
separately, so as to simplify the optimization problem to design appropriately the ABH
harvester.

Fig. 7 shows a synthetic view of the comparison of performance in terms of harvested
energy and efficiency, for a uniform and an ABH beam. Four different cases are contrasted:
a uniform beam with a small PZT patch and the optimal (frequency-dependent) resistance,
three ABH beams with different size of patches with optimization on both electrical load
resistance and mechanical coupling (red case), or the mechanical part only (black), or the
electrical circuit only (magenta). Following the conclusions reached by the previous investi-
gations, a short thin PZT layer placed near the ABH end (but not at the exact end) gives the
best performance. The ABH beam outperforms the uniform one in a very systematic way.
The efficiency tends to be close to the maximum achievable of 50% in the high-frequency
range for the small PZT patch, while both the harvested power and efficiency severely de-
crease when the patch is too long. This figure clearly illustrates how improved performance
can be reached by combining ABH effect together with the optimization rules derived from
the previous developments.

In order to better quantify the performance of the device and specify the results by
frequency bands, an average power indicator 〈P 〉[f1, f2] is introduced on the interval [f1, f2]
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Fig. 7. Comparison between the ABH beams and the uniform one on (a): harvested power, and
(b): harvesting efficiency. Blue represents a uniform beam with a small PZT patch and the opti-
mal (frequency-dependent) resistance, the other three cases are ABH beams with different size of
patches with optimization on both electrical load resistance and mechanical coupling (red case),
the mechanical part only (black) or on the electrical circuit only (magenta).

as

〈P 〉[f1, f2] =

∫ f2
f1
Pdf

f2 − f1
, (17)

Fig. 8 shows the values reached by 〈P 〉[f1, f2] for four different frequency bands, and for the
four cases reported in Fig. 7. The first investigated band, [4, 160] Hz, characterizes the low-
frequency performance, and is selected since it contains the three vibration modes that are
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below the cut-on frequency of the selected ABH beam. In the second band [160, 1600] Hz
corresponding to the mid-frequency performance, modes 4 to 11 are present and are char-
acterized by the appearance of localization. The third band [1600, 4000] Hz with modes 12
to 20 underlines the high-frequency performance with strongly localized modes. Finally, an
overall indicator over [4, 4000] Hz informs on the global performance. One can see that in
all the frequency ranges, the ABH outperforms the uniform beam, and a shorter patch with
optimized values for both electrical load resistance and mechanical coupling (red case), gives
the optimal overall performance. The other two cases correspond to the optimization of the
mechanical part only (black) or of the electrical circuit (magenta) are both less optimal, but
already gives excellent results as compared to the uniform beam, showing that the ABH
effect is very important in order to improve the energy harvesting device. In addition, it is
noted again that a shorter PZT layer is important for harvesting energy both in the high-
frequency range and for the global indicator (broadband harvesting), while a longer layer
may lead to a performance decrease in the high-frequency range.
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10

-8

10
-7

10
-6

10
-5

10
-4

10
-3

Fig. 8. Indicator of average power calculated at different frequency ranges for the four cases shown
in Fig. 7.

3.3. Effect of the mechanical damping

In this section, the effect of mechanical damping is investigated. More precisely, two
different sources of losses can be examined: the structural damping present in the beam,
and the added damping due to the presence of the PZT layer, needed to harvest energy. In
a usual ABH implementation, see e.g. [2, 5, 47], a viscoelastic layer with a strong energy
dissipation is coated to the anechoic termination in order to enhance the trapping effect
of the waveguide and efficiently damp out the vibrations. In the present context of energy
harvesting, the ABH tapered profile is mainly leveraged for its ability in localizing vibrational
energy thus opening the doors to more efficient harvesting. Consequently it is awaited that
too large values of the damping in the PZT patch should counteract the searched effect.

These statements are illustrated in Fig. 9 where both damping coefficients pertaining
to the beam and the patch are investigated. Fig. 9(a) represents the harvested power with
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optimal load resistance R = Ropt in the vicinity of mode 9, thus considering a small frequency
band [917,922] Hz, and varying values of the modal damping ratio ξ9. When the damping
ratio increases, the harvested power decreases, and it changes from double-peak to single
peak. Such an interesting effect has been well documented in [32] based on a single degree
of freedom system, where the critical damping and resonant frequency are also expressed.
What should be emphasized here is that, in our case, this phenomenon could be observed in
the vicinity of each eigenmode as the modal damping ratio changes.
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Fig. 9. Effect of the mechanical damping on the performance of the harvesting power, (a): harvested
power in the neighborhood of mode 9 in variation of excitation frequency ω and its modal damping
ration ξ9, performance at R = Ropt, (b): harvested power at R = Ropt for for the loss factor σp of
he PZT layer increases from σp = 0.2% (blue), to σp = 5% (red), and to σp = 80% (black), the
loss factor of the ABH beam is set to σb = 0, (c-e): the variation averaged power in three different
frequency band as σpzt increases from 0.2% to 80% in three different beam loss factors σb = 0,
σb = 0.2%, σb = 1%.

In order to see the global effect of the mechanical damping on the performance, the
optimal harvesting power is plotted as a function of the frequency in Fig. 9(b), assuming the
loss factor of the ABH beam σb = 0, and for three values of the loss factor of the PZT layer:
σp = 0.2% (blue), σp = 5% (red), and σp = 80% (black). It is noted that as σp increases, the
mid- and high-frequency peaks show dramatically decrease while the low-frequency peaks
do not show a significant difference. This is consistent with the observations in usual ABH,
where the increase of σp mostly affects the modal damping in mid-and high-frequency modes,
which are highly localized in the ABH region, but not the low-frequency modes.

To provide a more quantitative evaluation of the effect of damping at different frequency
ranges, let us recall the power indicator 〈P 〉[f1, f2] defined in Eq. (17), and the aforementioned
low-frequency range [4, 160] Hz, mid-frequency range [160, 1600] Hz, and high-frequency
range [1600, 4000] Hz. The power indicators in each frequency range 〈P 〉[f1, f2] are then
calculated as a function of σp and compared in three different cases of beam losses σb = 0,
σb = 0.2%, and σb = 1%, as shown in Figs. 9(c-e). It appears that the mid- and high-
frequency performances are very sensitive to σp and undergo a significant decay when σp
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increases from 0.2% to 80%. Hence in order to maximize the harvesting power in the high-
and mid-frequency ranges, the damping in the PZT has to be minimized. On the other hand,
the low-frequency performance shows a different behaviour. Indeed, the power remains small
for all the values of σp in this range. This is caused by the cut-on frequency effect, where
the local damping in the PZT does not have a significant effect on the damping of the
modes below cut-on. Finally, comparing the indicators in Figs. 9(c-e), it is concluded that
the beam damping σb generally affects the performance in all the frequency range, while
the local damping in the PZT layerσp mainly influences the performance at mid- and high-
frequency range, that are beyond the cut-on frequency of the ABH.

4. Performance of different types of RL circuits

The previous section deals with the optimization of a pure resistive circuit for energy
harvesting. In this section, the potential of using RL circuits as a mean to provide further
improvement on the harvesting performance is discussed. More precisely, two different cir-
cuits are investigated, where the inductance and resistance are placed in parallel or in series.
The optimal values are derived in Section 4.1 using Karush-Kuhn-Tucker (KKT) condition-
s, enlarging the results of the previous section. Section 4.2 addresses the practicality and
robustness of the optimized results.

4.1. Power optimization based on KKT conditions

The optimization procedure is first derived in the case of a RL circuit in series, such
that γ = 0 in Eqs. (10). The harvesting power P (α, β) thus depends on two parameters
only, and is a nonlinear function of two non-negative variables α and β. In this case, the
associated nonlinear optimization problem can be solved using the classical Karush-Kuhn-
Tucker (KKT) conditions. The complete derivation of this optimization step is given in
Appendix C. For the sake of brevity, only the main result is here provided. Optimizing
P (α, β) with respect to the non-negativity conditions for α and β leads to the following
analytical solutions for the series-RL circuit:

αopt = − Im (ψ)

|1 + ψ|
> 0, βopt =

1 + Re (ψ)

|1 + ψ|
> 0. (18)

Meanwhile, the maximum power harvested is found as

Popt =
ωCp|S|2

4 |Im (ψ)|
. (19)

Similar procedures can also be carried out for the parallel-RL circuit, by setting β = 0
and rewriting P = P (α, γ) as a function of non-negative variables α and γ. The resulting
optimum pair (αopt, γopt) is given by

αopt = − 1

Im (ψ)
> 0, γopt = 1 + Re (ψ) > 0, (20)
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and the maximum harvested power reads

Popt =
ωCp|S|2

4 |Im (ψ)|
. (21)

One can note in particular that the optimal values depend on ψ defined in Eq. (10) and
are thus frequency-dependent. It should also be emphasized that the results obtained from
Eq. (18) to Eq. (20) are obtained in the context of strictly positive pairs of (αopt, βopt) or
(αopt, γopt). Otherwise, the problem is ill-posed and the optimal performance can not be
found in the series- or parallel- RL circuits, as it converges to that of the pure resistive case
investigated in the last section.

Comparing Eq. (21) with Eq. (19) underlines that the same optimal power is retrieved
if the inductance is set in series or in parallel. To provide a more complete picture on the
optimized results, the displacement, voltage, power, and efficiency, for the above RL circuits
as well as the standard pure resistive circuit discussed in the last section, are compared in
Fig. 10. The main result is the important gain brought by considering an optimal RL circuit
as compared to a pure resistive circuit in terms of energy harvested, as shown in Fig. 10(c-d).
Also, the mechanical displacements in the case of RL circuits are smaller than those of the
pure resistive circuit near the mechanical natural frequencies, while they are much larger
in the non-resonant part of the spectrum. As a result, the RL circuits can be tuned to be
resonant at almost all the frequencies to provide much higher power outputs and harvesting
efficiencies than the pure resistive one.

The major difference between the two RL circuits is reflected in the voltage response
depicted in Fig. 10(b), in which one can clearly see that the voltage generated by the par-
allel RL circuit is much more important, while the series RL circuit and the pure resistive
circuit are at a similar and much smaller level. The opposite observation could be noted by
comparing the current response among the three circuits instead. Such a difference could
be easily explained by to the fact that the inductor in parallel generally divides the current,
while the series configuration divides the voltage. As such one may expect that even though
both configurations can provide significant improvements as compared to the pure resistive
circuit, a series RL circuit may be more favourable for the applications requiring high current
such as storage devices, while a parallel configuration may be more recommended in the high
voltage preferred fields like wireless sensors.

4.2. Practicality and robustness of the optimal results

One specific concern of the optimized results is their frequency dependence, preventing
for reaching such optimal conditions in a real circuit with fixed values for R and L. The aim
of this section is to examine the consequence with regard to applications.The optimal values
for inductance and resistance as found from the analytical expressions, Eqs. (18) and (20),
are shown in Fig. 11

First of all, one can observe that the optimal inductance is almost identical for both
parallel and series circuits, and shows a perfect 1/f 2 trend as frequencies are increasing. This
trend indicates that the energy transfer is maximized when the electrical circuit exhibits a
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Fig. 10. Optimal performance comparison among three different harvesting circuits, red: pure
resistive circuit, responses at optimal load resistance Ropt, black: parallel-RL circuit, response at
optimal resistanceRopt and inductor Lopt, magenta: series-RL circuit, response at optimal resistance
Ropt and inductor Lopt. (a): Displacement at the exciting point xF = 0.2m, (b): Harvested voltage,
(c): Harvested power, (d): Harvesting efficiency.

resonance. The actual value of β and γ along these trends are indeed almost equal to unity, as
it can be readily deduced from Eqs. (18) and (20). However, a very slight deviation from the
1/f 2 behaviour at each mechanical resonance is observed. i.e. when the electromechanical
coupling is such that the electrical resonance is affected by the mechanical resonance.

On the other hand, the optimal resistances show very different behaviour depending on
the arrangement of the circuit. In particular the variations in the vicinity of the eigenfrequen-
cies of the ABH beam are very important. With applications in mind and in correspondence
with usual values for R and L, one can observe that in the high frequency range, the optimal
load resistance and inductance are, respectively, among several Ω to several kΩ and below

21



100 mH, which are the most practical values. On the other hand at low frequencies, the
required inductance could be rather large at about 1000 H and the required resistance could
be either very small (less than 10−2 Ω in the series configuration) or very large (higher than
1010 Ω in the parallel configuration), meaning less accessible values. Moreover, the design of
such a large inductance implies non negligible internal resistance not taken into account in
the present approach, that may lower the available power. These considerations underline
that RL circuits are easier to design for harvesting applications in the high-frequency range
due to the ease of tuning resistance and inductance values.
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Fig. 11. Optimal values of the load resistance and inductance as function of the forcing frequency,
for both parallel and series RL circuits.

Fig. 12 illustrates the robustness of a specific harvesting circuit, designed to perform
optimally at a unique frequency for fixed values of inductance and resistance, and compares
the broadband performance of the three types of considered circuits. Two different situations
are selected. Fig. 12(a) shows a case where the parameters of the circuits are tuned at an
eigenfrequency of the ABH. For illustrative purpose, mode 6 at 412 Hz has been selected.
Fig. 12(b) shows a case where the circuits have been optimized at a non-resonant frequency
1000 Hz, which is far from any eigenfrequency of the ABH. As an eyeguide, the optimal value
for frequency-dependent parameters, is represented as a red curve. The superiority of the
RL circuit as compared to a pure resistive one is observed only at the targeted functioning
frequency (respectively 412 Hz and 1000 Hz). This is particularly striking in the case of the
non-resonant frequency, Fig. 12(b), where the difference between RL and R circuits is very
important. But as soon as other input vibration frequency is considered, the performance of
the RL circuits deteriorates faster than the pure resistive one.

This result, in conjunction with Fig. 11, shows that an optimal use of an RL circuit
would be for a system functioning at a given, selected frequency, in the high-frequency
range. On the other hand, the frequency content of the ABH beam is not known a priori
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Fig. 12. Global performance of harvesting circuits optimized at a given frequency, selected as: (a)
412 Hz, near the natural resonant frequency of mode 6; (b) 1000 Hz. Red curve is the ideal case
one cannot realize in practice of the optimal frequency-dependent values of R and L. Black dotted
line: pure resistive circuit. Dashed blue line: RL circuit in parallel. Magenta line: RL circuit in
series.

and if broadband harvesting is targeted in the application, then the pure resistive circuits
show interesting advantages. Nevertheless, it should be noted that even if the performance
of the RL circuit is more sensitive to the frequency variation than the pure resistive one,
this disadvantage could be overcome when using multiple patches of PZTs in the harvesting
system. This will be discussed in the next section.

5. Enhancement using multiple PZT patches

The objective of this section is to investigate and quantify the gain one can expect from
using multiple PZT patches instead of a single one. As underlined in the previous sections,
the advantages of using a multi-patch solutions can be twofold. First, in the mechanical
domain, the existence of strain nodes and the resulting undesired charge cancellation can
be circumvented with numerous small patches. Second, on the electrical part, the frequency
dependence of optimal resistance and inductance values can be leveraged to design a more
broadband solution for energy harvesting.

In order to illustrate and quantify the expected gain in efficiency, 6 different cases are
investigated, as shown in Tab. 2. Three of these cases are concerned with single patch
solutions (with either pure resistive circuit denoted as R, or RL-circuits in series and in
parallel, denoted as S and P), while three others consider three patches: a first case with
three pure resistive circuits (RRR), then two cases with three RL-circuits, either in parallel
(PPP) or in series (SSS). The targeted frequency range for energy harvesting is selected as
[800, 1600] Hz. Three eigenmodes of the ABH are present in this band, modes 9, 10 and
11. The PZTs are assumed to have equal length, and their location and length are obtained
by maximizing their average MEMCFs for mode 9-11, following the guidelines reported in
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Tab. 2: Optimal parameters and optimal outputs for each harvesting configuration

Name Configuration Optimal values Power output

800 1000 1200 1400 1600

10
-6

10
-4

10
-2 Ideal

R R = 2.08kΩ

800 1000 1200 1400 1600

10
-6

10
-4

10
-2 Ideal

Total

P
3

P
2

P
1

R1 = 2.57kΩ
RRR R2 = 2.01kΩ

R3 = 2.33kΩ

800 1000 1200 1400 1600

10
-6

10
-4

10
-2 Ideal

P R = 12.3kΩ
L = 284mH

800 1000 1200 1400 1600

10
-6

10
-4

10
-2 Ideal

S R = 360Ω
L = 271mH

R1 = 72.9kΩ

800 1000 1200 1400 1600

10
-6

10
-4

10
-2 Ideal

P
2

P
1

P
3

TotalR2 = 39.7kΩ
PPP R3 = 21.9kΩ

L1 = 501mH
L2 = 217Ω
L3 = 316mH
R1 = 118Ω

800 1000 1200 1400 1600

10
-6

10
-4

10
-2 Ideal

Total

P
3

P
1

P
2

R2 = 92Ω
SSS R3 = 245Ω

L1 = 500mH
L2 = 216Ω
L3 = 311mH
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Section 3.1. As a result, for three patches configuration, a total length Lpzt=5.4 cm located
in [54, 59.4] cm is found. The single patch case uses only the last piece of the PZT located in
[57.6, 59.4] cm. For analyzing the results, the output power in the frequency range of interest
[800, 1600] Hz is shown in the right column of Tab. 2, where the ideal case in red refers to
the frequency-dependent choice of resistance and inductance. Fig. 13 reports the average
power indicator 〈P 〉[f1, f2] introduced in Eq. (17). The same color code is used for the figures
allowing one to distinguish the harvested power in each patch for multi-patch solutions.
The selected values of R and L for each case are reported in the third column of Tab. 2.
Note that in the present case, the optimal values have been computed using a different
method than in the previous sections. The harvested power has been optimized under the
constraint of maximizing the average power indicator 〈P 〉[f1, f2] instead of a single frequency.
This numerical computation has been made using nonlinear programming method, switching

between KKT conditions and conjugate gradients, and implemented in the MATLAB®
function fmincon.

The first two lines of Tab. 2 compares the gain by using three pure resistive circuits
instead of a single one. As shown in Fig. 13, this gain is very small since for this particular
case most of the energy is harvested by the third patch, as also ascertained by comparing
the power output in the last column of the Table. This is due to the fact that this location
gives the maximum MEMCF, such that the two added PZT do not bring a significant
improvement. Considering a single patch solution with RL circuit drastically improves the
device, resulting in a much larger value of output power on the frequency band of interest,
as shown in Fig. 13. As noted in the previous section, parallel and series circuits give the
same harvested power, the only difference being in the selected values for resistance and
inductance. Finally, using a three patches solution with RL circuits in parallel (PPP) or
in series (SSS), again significantly improves the solution. Even though most of the power
is harvested from the last patch, close to the tip of the ABH, in this specific case the two
added patches contributes in a non-negligible manner.

These results clearly underline the gain in using RL circuits in conjunction with multi-
patch solutions in order to design energy harvesters based on ABH beam with broadband
harvesting properties. These findings are in the line of previous investigations led in [26]
which considers a five patches solution with only resistive circuit. The analysis is here
completed by adding the effect of the inductance. Finally, one can note that on a practical
point of view, designing a compound with a large number of PZT rapidly becomes intractable.
Consequently, the analysis has been here voluntarily limited to a small number of PZT
patches.

6. Conclusion

In this contribution, the question of using an ABH beam with a unimorph PZT layer for
energy harvesting is investigated.

A modal approach is applied to deliver a general analytical framework for the electro-
mechanical problem, giving also an explicit form for the modal electromechanical coupling
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Fig. 13. Comparison of power indicator 〈P 〉[f1, f2] in the range [800, 1600]Hz, for optimal results
obtained using single-patch configurations R, S and P circuits, and three-patch configurations RRR,
SSS, and PPP.

factor (MEMCF) associated to each eigenmode of the composite ABH beam. Based on
the derived formulations, the dependence of the MEMCFs on the location and dimensions
of the PZT patch is clearly evidenced. Then, under harmonic excitation assumption, the
closed-form response of the mechanical vibrations and the electrical outputs is derived, and
the harvesting performance is discussed and compared to the uniform beam.

The optimization procedure is conducted in two different steps, by studying separately
the electromechanical coupling and the harvesting circuit. The former leads to question
the location and dimensions of the bonded PZT layer to maximize the MEMCFs, which
is achieved by using a short and thin PZT layer near the ABH termination, at the local
maximum of the strain field function. The latter problem questions the value of the cir-
cuit parameter, and is comprehensively studied under three types of configurations: a pure
resistive circuit, a series-RL circuit, and a parallel-RL circuit. Following such optimization
procedure, an appropriately designed energy harvester using an ABH beam could provide
much higher MEMCFs and outperforms the one using a uniform beam in terms of power
output over a wide band above the cut-on frequency. By achieving the resonance between
the circuit and the vibration of the ABH beam, the RL circuits can increase significantly the
harvesting performance in a narrow frequency range, which, in case of multiple PZT patches,
leads to further broadband advantages.

To sum up, the developed model provides a simple analytical formulation for ABH-
based piezoelectric energy harvesting systems, and provides also physical guidelines for the
optimization problem in more general applications not restricted in the discussions in this
paper. Future studies could be conducted on experimental validations in order to further
validate the analytical findings and explore the practical limitations.
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Appendix A. Derivation of Eq. (2)

The starting point for the modeling of the unimorph ABH cantilever is the linear consti-
tutive equations for piezoelectric materials, which reads:[

σ
D

]
=

[
Ep −e
e εS

] [
S
E

]
, (A.1)

where D is the electric displacement, σ and S are the stress and strain inside the PZT, Ep is
the Young’s modulus of the PZT. εS is the permittivity of the PZT and e is the piezoelectric
coupling coefficient.

The electric field E in the PZT is assumed to be uniform and can be expressed as the
voltage difference Us(t) divided by its thickness, hp,

E = −Us (t)

hp
. (A.2)

In our discussion the PZT works in the 31 mode, i.e, the electrical charge is generated through
the 3-direction (thickness direction, z) with strain in the 1-direction (length direction, x).
As such, one has the following relatinship:

e = d31Ep, (A.3)

where d31 is called as the piezoelectric constant. On the other hand, for bending motions,
the mechanical strain S(x, t) in the x-direction can be expressed as

S (x, t) = −z∂
2w (x, t)

∂x2
, (A.4)

where w(x, t) is the transverse displacement of the beam, as a function of x and t, and z is
the position to the neutral axis.

The governing equation of motion for the composite structure can be written as

ρ (x)A (x)
∂2w

∂t2
+
∂2M (x, t)

∂x2
= F (t) δ (x− xF ) , (A.5)

where ρ (x) and A (x) are respectively the mass density and the cross-sectional area of the
beam. Note that due to the added mass of the PZT layer, an equivalent modification of
the thickness h(x) = hb(x) + hp and of the material density ρ(x) = (ρbhb + ρphp) /h are also
implemented in the ABH area, where ρb and ρp are the densities of the ABH beam and
the PZT layer, respectively. M (x, t) is the internal bending moment. F (t) is the applied
external force, with δ (x− xF ) the Dirac delta function meaning that it is induced at the
location x = xF .

To obtain the internal moment, the stress-strain relationship according to the Eq. (A.1)
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for the ABH beam and the PZT layers is recalled

σb1 = EbS
b
1, σp1 = EpS

p
1 − d31EpE, (A.6)

where ’s’ and ’p’ generally refers to the ABH beam and the PZT patch, and ’1’ and ’3’
accounts for the 1 direction and 3 direction. In this case, the bending moment M (x, t) for
the composite beam reads:

M (x, t) = −
∫ z1

z2

σb1bzdz −
∫ z2

z3

σp1bzdz, (A.7)

with z1 the position of the top of the ABH beam to the neutral axis, z2the position of the
bottom of the ABH beam (i.e, top of the PZT patch) to the neutral axis, and z3 the position
of the bottom of the PZT to the neutral axis. Combine Eq. (A.2), Eq. (A.4), Eq. (A.6), and
Eq. (A.7) yields

M (x, t) = Γ∗ (x)
∂2w

∂x2
+ θ (x)Us (t) . (A.8)

Here, Γ∗(x) is the complex bending stiffness of the composite beam. Its expression is ob-
tained from the RKU method, in order to take into consideration the equivalent stiffness and
mechanical damping of the hosted ABH beam and the PZT patch. Note that the role of the
glue between the patch and the beam is not taken into account although it can affect Γ∗(x).
For the PZT patch located at [x1, x2] with thickness hp, the complex bending stiffness Γ∗(x)
reads

Γ∗ (x) =



EbIb(x) (1 + jσb) , ∀x /∈ [x1, x2] ,

EbIb(x)

[
(1 + jσb) +

Ep
Eb

(
hp
hb(x)

)3

(1 + jσp) +

3
(

1 + hp
hb(x)

)2
Ephp
Ebhb(x)

(1− σbσp + j (σb + σp))

1 + Ephp
Ebhb(x)

(1 + jσp)

 , ∀x ∈ [x1, x2] ,

(A.9)

where j is the imaginary unit, Eb, Ib, and σb are respectively the Young modulus, the moment
of inertia and the loss factor of the beam alone, while Ep and σp corresponds to the Young
modulus and the loss factor of the PZT layer. Finally, U (t) is the voltage, and the coupling
term θ (x) is written as

θ (x) = −d31Epbhpc (x) [H (x− x1)−H (x− x2)] , (A.10)

where H(x) is the Heaviside function, so that [H (x− x1)−H (x− x2)] indicates that the
PZT electrode covers only the region x1 ≤ x ≤ x2. The function hpc (x) is the distance of
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the center of the PZT patch to the neutral axis, which is computed via

hpc (x) =
Ebhb (hp + hb)

2 (Ephp + Ebhb)
, ∀x ∈ [x1, x2] . (A.11)

Eq. (A.5) is rewritten using Eq. (A.8):

ρ (x)A (x)
∂2w

∂t2
+

∂2

∂x2

[
Γ∗ (x)

∂2w

∂x2

]
+
∂2θ (x)

∂x2
Us (t) = F (t) δ (x− xF ) . (A.12)

The above equation governs the mechanical motion coupled with the electrical voltage.
To derive the electrical circuit equation taken into account the patch/beam mechanical

coupling, we first write the electric displacement according to the linear constitutive relation
as

D3 (x, t) = −d31Epz
∂2w

∂x2
− εSUs (t)

hp
, (A.13)

where D3 is the z-direction component of electric displacement. Note that the average value
of z is hpc, one thus has

D3 (x, t) = −d31Ephpc (x)
∂2w

∂x2
− εSUs (t)

hp
. (A.14)

The electric charge q(t) generated in the PZT is derived by integrating the electric dis-
placement D over the electrode area Ap as

q (t) =

∫
Ap

D · ndAp, (A.15)

where n is the unit outward normal. These vectors are both oriented in the z-direction.
Consequently, the current is(t) writes,

is (t) =
dq (t)

dt
= −d31Epb

d

dt

[∫ x2

x1

hpc (x)
∂2w

∂x2
dx

]
− CpU̇s (t) (A.16)

where Cp = εSbLpzt/hp is the capacitance of the PZT layer. It is obvious that the current is
a sum of two components: The first term accounts for the beam vibration and the second
component involves the internal capacitance Cp. Combining Eq. (A.12) and Eq. (A.16) gives
the complete electromechanical model, Eq. (2) in the main text.

Appendix B. Eigenvalue problem for the unimorph cantilever in short circuit

The eigenvalue problem mentioned in Section 2.1 is formulated by solving Eq. (2a) with
U = F = 0. A finite difference method with a non-uniform grid spacing is used, following
[5, 45, 48]. Practically, a coordinate change is introduced that maps the physical coordinate
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x ∈ [0, L] onto a uniform mesh grid λ ∈ [0, 1]. It is selected according to the variations of
the flexural wavelength and reads :

λ(x) =
1

X̄

∫ x

0

1√
h (θ)

dθ , with X̄ =

∫ L

0

1√
h (θ)

dθ . (B.1)

The uniform grid spacing λl is then simply introduced as λl = l∆λ, for l = 1, ..., Nλ, with
∆λ = 1/Nλ the spatial step. All the functional fields appearing in the linearized Eq. (2) are
computed on these grid points, with for example Γl = Γ(λl), ρl = ρ(λl), ... The eigenvalue
problems to be solved can then be expressed in λ and reads:

−ρlAlω2φl +
h
−1/2
l

X̄4
δλ+

((
µλ−h

−1/2
l

)
δλ−

(
Γlh

−1/2
l δλ+

((
µλ−h

−1/2
l

)
δλ−φl

)))
= 0. (B.2)

where δλ+, δλ− and µλ− are operators defined as

δλ+u =
ul+1 − ul

∆λ

, δλ−u =
ul − ul−1

∆λ

, µλ−u =
ul + ul−1

2
. (B.3)

The boundary conditions in Eq. (3) are then discreted as

u0 = u1 = 0, for x = 0

δλ+
((
µλ−φ

−1/2) δλ−uN) = δλ+
((
µλ−φ

−1/2) δλ−uN−1) = 0, for x = L
(B.4)

The solution of the eigenvalue problem relies on two separate computations for Eq. (B.2):
The first computation uses the real bending stiffness Γ (x) = Re (Γ∗ (x)) in order to identify
the undamped eigenmode shape ϕk(x) and the circular eigenfrequency ωk for the ABH beam,
with k = 1, ..., Nm. Taking losses into account, a second computation is then realized, but
considering the complex bending stiffness Γ∗ introduced in Eq. (A.9). As a result, complex
eigenfrequencies ω?k are retrieved, whose relationship to those obtained real ωk writes

jω?k = ωk

(
−ξk ± j

√
1− ξ2k

)
, (B.5)

from which the unknown modal damping ratios ξk associated to each eigenmode can thus be
identified.

Appendix C. Karush-Kuhn-Tucker derivations for the RL circuits

In this appendix, the Karush-Kuhn-Tucker conditions are derived in order to find the
optimal values of resistance and inductance for a series-RL circuit. The problem writes
as finding the optimal values of P (α, β) under the constraint of non-negativity for both
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parameters α and β, which reads

min
α,β

(−P ) , subject to gi (α, β) 6 0, for i = 1, 2 (C.1)

where the non-negative constraints for α and β simply writes

g1 (α, β) = −α, g2 (α, β) = −β, (C.2)

The necessary KKT conditions are stated as follows: if the pair (αopt, βopt) is a local
optimum, then there exists constants µi ≥ 0, i = 1, 2, such that

−∇P (αopt, βopt) + µT · ∇g (αopt, βopt) = 0, (C.3)

and
µigi (αopt, βopt) = 0, i = 1, 2, (C.4)

where ∇ is the gradient operator, and g(α, β) is a column vector combining g1 (α, β) and
g2 (α, β). Expanding the above expression yields

∂P

∂α

∣∣∣∣
(αopt,βopt)

+ µ1 = 0, µ1αopt = 0,

∂P

∂β

∣∣∣∣
(αopt,βopt)

+ µ2 = 0, µ2βopt = 0.

(C.5)

On the other hand, the KKT sufficient conditions state that if P (α, β) and gi(α, β) are
convex, then the local optimum (αopt, βopt), determined by the necessary conditions given by
Eq. (C.5), is a global optimum. In our problem, it can be easily verified that gi(α, β) are
convex and the Hessian of P (α, β) is positive definite, hence a global optimality can be met
once Eq. (C.5) is solved.

Using the power output defined in Eq. (11), restricting to the RL circuit in series with
γ = 0 and solving for KKT conditions given in Eq. (C.5) allows one to derive analytically the
optimal parameters for the series-RL circuit together with the maximum harvested power as
Eqs. (18)-(19), given in the main text.
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