Giorgio Gobat 
  
Valentina Zega 
email: valentina.zega@polimi.it390223994213
  
Patrick Fedeli 
  
Luca Guerinoni 
  
Cyril Touzé 
  
Attilio Frangi 
  
Cyril Touzè 
  
Reduced order modelling and experimental validation of a MEMS gyroscope test

 

Introduction

The spread of Micro-Electro-Mechanical Systems (MEMS) in the consumer world triggered a revolution in gaming, mobile phones and navigation. Similarly, in the near future, the evolution of the Internet of Things in its different declinations will require new generations of sensors and actuators with improved performances, smaller dimensions and innovative working principles. As a consequence, MEMS designers more and more frequently will have to deal with complex mechanical structures exhibiting nonlinear dynamic behaviors [1][2] .

Among others, MEMS gyroscopes represent a meaningful example of such a trend. They are electro-mechanical systems able to measure the angular rate by exploiting the Coriolis force. To guarantee a correct functioning, where at least two modes are coupled through the Coriolis force, and to satisfy the strict requirements on the footprint, the mechanical structure is usually very complex, i.e. made by folded springs and rigid masses. Nonlinear phenomena often arise [START_REF] Nitzan | Self-induced parametric amplification arising from nonlinear elastic coupling in a micromechanical resonating disk gyroscope[END_REF][START_REF] Polunin | Self-induced parametric amplification in ring resonating gyroscopes[END_REF][START_REF] Nitzan | Countering the Effects of Nonlinearity in Rate-Integrating Gyroscopes[END_REF][START_REF] Nabholz | Nonlinear Dynamical System Model for Drive Mode Amplitude Instabilities in MEMS Gyroscopes[END_REF][START_REF] Zega | Softening, and Linear Behavior of Elastic Beams in MEMS: An Analytical Approach[END_REF][START_REF] Gobat | Interpolation based reduced order modelling for non-linearities in MEMS IEEE Sensors[END_REF] but are difficult to decipher.

Among the wide variety of nonlinear phenomena arising in MEMS devices, internal resonance, i.e. when two or more modes get nonlinearly coupled and exchange energy, is attracting increasing interest for its potential benefits on the performances of MEMS devices 2,[START_REF] Shaw | Periodic responses of a structure with 3:1 internal resonance Mech[END_REF][START_REF] Alfosail | Theoretical and Experimental investigation of two-to-one internal resonance in MEMS arch resonators[END_REF][START_REF] Qalandar | Frequency division using a micromechanical resonance cascade[END_REF][START_REF] Sarrafan | Development and characterization of an H-shaped microresonator exhibiting 2:1 internal resonance[END_REF] . It has been demonstrated that thanks to internal resonance it is indeed possible (i) to stabilize the oscillation frequency of non-linear self-sustaining micromechanical resonators [START_REF] Antonio | Frequency stabilization in nonlinear micromechanical oscillators[END_REF] , (ii) to redistribute and store mechanical energy among vibrational modes and coherently transfer it back to the principal one when the external excitation is off [START_REF] Chen | Direct observation of coherent energy transfer in nonlinear micromechanical oscillators[END_REF] and (iii) to tune the quality factor Q of the driven mode over a wide range [START_REF] Flader | Tunable quality factor through 1:1 modal coupling in a disk resonator[END_REF][START_REF] Keskekler | Tuning nonlinear damping in graphene nanoresonators by parametric-direct internal resonance[END_REF] . Moreover, internal resonance has been recently employed in MEMS gyroscopes as a new and very promising detection technique of angular rate signals [START_REF] Sarrafan | A nonlinear rate microsensor utilising internal resonance[END_REF] and to design innovative MEMS bandpass filters [START_REF] Hajjaj | Mode coupling and nonlinear resonances of MEMS arch resonators for bandpass filters[END_REF] .

In view of its high potentiality for the design of innovative and high-end MEMS devices, internal resonance has been analyzed theoretically [START_REF] Nayfeh | Nonlinear Interactions: analytical, computational and experimental methods[END_REF] and experimentally verified on a variety of simple MEMS structures [START_REF] Karabalin | Nonlinear dynamics and chaos in two coupled nanomechanical resonators[END_REF][START_REF] Ruzziconi | Two-to-one internal resonance in the higher-order modes of a MEMS beam: experimental investigation and theoretical analysis via local stability theory[END_REF][START_REF] Vyas | A microresonator design based on nonlinear 1: 2 internal resonance in flexural structural modes[END_REF][START_REF] Czaplewski | Bifurcation diagram and dynamic response of a MEMS resonator with a 1:3 internal resonance[END_REF][START_REF] Sarrafan | Analytical Modeling and Experimental verification of Nonlinear Mode Coupling in a Decoupled Tuning Fork Microresonator[END_REF] , ranging from arch resonators [START_REF] Hajjaj | Multiple internal resonance in MEMS arch resonators[END_REF][START_REF] Hajjaj | Two-to-one internal resonance of MEMS arch resonators[END_REF][START_REF] Bi | Analysis of non-linear dynamics and bifurcations of a shallow arch subjected to periodic excitation with internal resonance[END_REF] to micro-mirrors [START_REF] Nabholz | Spontaneous Parametric Down-Conversion Induced by Non-Degenerate Three-Wave Mixing in a Scanning MEMS Micro[END_REF] . In most cases, the coefficients of Reduced Order Models (ROMs) are obtained from simplified electro-structural theories [START_REF] Hajjaj | Two-to-one internal resonance of MEMS arch resonators[END_REF][START_REF] Younis | A reduced-order model for electrically actuated microbeam-based MEMS[END_REF] or are calibrated on experimental data [START_REF] Czaplewski | Bifurcation diagram and dynamic response of a MEMS resonator with a 1:3 internal resonance[END_REF] . Despite the great interest of the topic, a general a priori simulation tool that could predict in real-time the nonlinear dynamic behavior of complex MEMS structures like e.g. gyroscopes under different actuation conditions, is still missing. Such a tool would also dramatically improve the design process and pave the way to a new class of sensors/actuators experiencing complex nonlinear dynamic phenomena.

Numerical methods able to simulate the Full Order Model (FOM) have been proposed as a generalization of simplified appoaches [START_REF] Putnik | Predicting the resonance frequencies geometric nonlinear actuated MEMS[END_REF] , but their computational cost remains a major issue especially if complex MEMS structures are considered. Dedicated Harmonic Balance techniques or shooting procedures are indeed overwhelmingly complex and time consuming [START_REF] Kerschen | Nonlinear normal modes, Part I: A useful framework for the structural dynamicist[END_REF][START_REF] Renson | Numerical computation of nonlinear normal modes in mechanical engineering[END_REF] .

As a consequence, the focus has been set on the generation of nonlinear ROMs starting e.g. from large FEM models that might reshape the governing equations into a nonlinear, dynamical system featuring a much lower dimensionality, yet able to capture the physical features of the problem 29,33- 35 . The Stiffness Evaluation Procedure (STEP) in its various variants [START_REF] Mignolet | A review of indirect/non-intrusive reduced order modeling of nonlinear geometric structures[END_REF] assumes a trial subspace spanned by a set of linear modes which however must also include all the coupled high-frequency modes that are often difficult to identify [START_REF] Muravyov | Determination of nonlinear stiffness with application to random vibration of geometrically nonlinear structures[END_REF][START_REF] Vizzaccaro | Non-intrusive reduced order modelling for the dynamics of geometrically nonlinear flat structures using three-dimensional finite elements[END_REF] . The Proper Orthogonal Decomposition (POD) [START_REF] Kerschen | The method of proper orthogonal decomposition for dynamical characterization and order reduction of mechanical systems: an overview[END_REF] is also based on a linear trial space but this is generated from a set of FOM snapshots employing Singular Value Decomposition, thus allowing to identify all the relevant contributions automatically. A different approach is taken by the implicit condensation and expansion (ICE) method [START_REF] Hollkamp | Reduced-order models for non-linear response prediction: Implicit condensation and expansion[END_REF][START_REF] Nicolaidou | Indirect reduced-order modelling: using nonlinear manifolds to conserve kinetic energy[END_REF][START_REF] Frangi | Reduced order modelling of the non-linear stiffness in MEMS resonators[END_REF] which defines a small set of master modes and assumes a quasi-static coupling with the high frequency contributions (slave modes). Also modal derivatives (MD) [START_REF] Idelsohn | A reduction method for nonlinear structural dynamic analysis[END_REF][START_REF] Weeger | On the use of modal derivatives for nonlinear model order reduction[END_REF][START_REF] Jain | A quadratic manifold for model order reduction of nonlinear structural dynamics[END_REF] have been introduced with the aim of accounting for the amplitude dependence of modes. ICE and MD are indeed very accurate when a slow/fast separation between the frequencies of the master and slave modes exist [START_REF] Vizzaccaro | Comparison of nonlinear mappings for reduced-order modelling of vibrating structures: normal form theory and quadratic manifold method with modal derivatives[END_REF][START_REF] Shen | Reduced order models for geometrically nonlinear structures: assessment of implicit condensation in comparison with invariant manifold approach European[END_REF] . Recently, Nonlinear Normal Modes (NNMs) have received considerable attention as a technique for generating ROMs. Initially defined as a vibration in unison of the system [START_REF]Touzè Normal form theory and nonlinear normal modes: Theoretical settings and applications Modal analysis of nonlinear mechanical systems[END_REF][START_REF] Touzè | Nonlinear normal modes for damped geometrically nonlinear systems: Application to reducedorder modelling of harmonically forced structures[END_REF][START_REF] Jiang | Nonlinear normal modes for vibratory systems under harmonic excitation[END_REF] , they have been later extended by the notion of invariant manifold [START_REF] Shaw | An invariant manifold approach to nonlinear normal modes of oscillation[END_REF] and of spectral submanifold (SSM) [START_REF] Haller | Nonlinear normal modes and spectral submanifolds: existence, uniqueness and use in model reduction[END_REF][START_REF] Ponsioen | Automated computation of autonomous spectral submanifolds for nonlinear modal analysis[END_REF] . However, only very recently efficient approaches have been proposed for the computation of invariant manifolds for large FEM models [START_REF] Vizzaccaro | Direct computation of nonlinear mapping via normal form for reduced-order models of finite element nonlinear structures[END_REF][START_REF] Opreni | Model Order Reduction based on Direct Normal Form: Application to Large Finite Element MEMS Structures Featuring Internal Resonance[END_REF] , but applications have been limited so far to mechanical structures with geometrical nonlinearities and no multiphysics coupling.

In this work, we elaborate on the Implicit Condensation approach based on static modal loadings recently tailored by the authors for simple MEMS structures [START_REF] Frangi | Reduced order modelling of the non-linear stiffness in MEMS resonators[END_REF] . In particular, the ICE applies to structures which undergo transformations which are no-longer infinitesimal, but still moderate.

The approach has been verified on a double-ended tuning fork resonator experiencing both geometric, electrostatic and damping nonlinearities [START_REF] Zega | Numerical modelling of non-linearities in MEMS resonators[END_REF] , and represents a fast a priori multiphysics simulation tool able to reproduce the nonlinear dynamics caused by the interaction of two modes of a complex MEMS gyroscope test-structure without the need of calibration procedures. To the authors best knowledge this represents the first fast numerical predictive tool able to simulate a priori the internal resonance phenomenon including bifurcations of the periodic response in a complex structure and in general, the nonlinear dynamic behavior of MEMS devices. Numerical results are compared with experimental data and an excellent agreement is achieved for different actuation conditions, thus proving the versatility and the predictivity of the proposed tool.

Results

MEMS gyroscope test-structure

A schematic view of the MEMS gyroscope test-structure employed in this work is reported in Fig. 1a, close-up views and geometrical dimensions are instead reported in the Supplementary Information for the sake of clarity. The mechanical structure is constituted by four masses and several folded springs that provide the suspension of the device and the coupling of the masses with a central auxiliary component. The gyroscope test-structure is fabricated through the Thelma process of STMicroelectronics in polysilicon (E = 167GPa, υ = 0.22, ρ = 2330 Kg/m 3 ) and has an overall footprint of 1.5mm x 1.3mm x 24µm. Comb finger and parallel plate electrodes allow for the in-plane actuation/readout, while electrodes located on the substrate are employed for the outof-plane actuation/readout. In Fig. 1b-c, two modes of the MEMS gyroscope test-structure are reported: they will be referred to in the following as roll mode (Fig. 1b) and spurious roll mode (Fig. 1c). Their natural frequencies are computed through a FEM modal analysis and read 𝑓 1 = 22522 Hz and 𝑓 2 = 43386 Hz, respectively. 1:2 internal resonance between the two modes can be triggered by driving the roll mode through the electrodes on the substrate. The two linear natural frequencies have an initial ratio of 1.926, which evolves to almost exactly 2 as the applied electrostatic bias increases and due to the electrostatic nonlinearities given by the parallel-plate electrostatic scheme [START_REF] Zega | Numerical modelling of non-linearities in MEMS resonators[END_REF] .

ROM based on Implicit Static Condensation

A numerical FOM made by discretizing the geometry of the MEMS gyroscopes test-structure with quadratic pentahedrons, properly distributed so as to have at least two elements in the spring thickness, consists of around 2.5 million of degrees of freedom which become 17 million if electromechanical coupling is considered. This makes any direct numerical simulation computationally unaffordable especially if complex nonlinear dynamic phenomena such as the 1:2 internal resonance are investigated. As an example, to simulate the nonlinear dynamic response of the MEMS quad-mass structure through fully coupled time domain analyses in COMSOL Multiphysics v.5.6, we estimate around a year of simulation with a standard workstation (AMD Ryzen 9 5950X, 16 Cores, 128Gb RAM).

The implicit static condensation method validated by the authors on simple structures [START_REF] Frangi | Reduced order modelling of the non-linear stiffness in MEMS resonators[END_REF][START_REF] Zega | Numerical modelling of non-linearities in MEMS resonators[END_REF] is here applied to reduce the system to two degrees of freedom (i.e. the amplitudes of the two master roll and spurious-roll modes), thus dramatically reducing the computational effort without losing accuracy and physical meaning (see Methods Section).

By considering a constant Direct Current (DC) voltage 𝑉 𝐷𝐶 on the MEMS gyroscope test-structure proof masses and an Alternate Current (AC) signal 𝑉 𝐴𝐶 ≪ 𝑉 𝐷𝐶 at an angular frequency 𝜔 close to the one of the roll mode on the electrodes on the substrate, the resulting nonlinear system describing the dynamics of the device reads:

𝑞1 + 𝜔 01 𝑄 1 𝑞1 + 𝛽 1 (𝑞 1 , 𝑞 2 ) -𝐹 ̌𝑒1 1 (𝑞 1 , 𝑞 2 )𝜖 0 𝑉 𝐷𝐶 2 = 2𝜖 0 𝑉 𝐷𝐶 𝑉 𝐴𝐶 𝐹 ̌𝑒2 1 (𝑞 1 , 𝑞 2 ) sin 𝜔𝑡, (1) 
𝑞2 + 𝜔 02 𝑄 2 𝑞2 + 𝛽 2 (𝑞 1 , 𝑞 2 ) -𝐹 ̌𝑒1 2 (𝑞 1 , 𝑞 2 )𝜖 0 𝑉 𝐷𝐶 2 = 0, (2) 
where 𝜖 0 is the vacuum permittivity, 𝑞 𝑖 is the modal coordinate, 𝑄 𝑖 is the quality factor, 𝜔 0𝑖 = 2𝜋𝑓 𝑖 is the natural pulsation, 𝛽 𝑖 (𝑞 1 , 𝑞 2 ) is the nonlinear mechanical force and 𝐹 ̌𝑒1 𝑖 (𝑞 1 , 𝑞 2 ) is a time independent nonlinear electrostatic force for the i-th mode, with i=1 for the roll mode and i=2 for the spurious roll mode. 𝐹 ̌𝑒2 1 (𝑞 1 , 𝑞 2 ) is the time dependent nonlinear electrostatic force that acts

on the driven roll mode. In the following, 𝑄 1 = 2400 and 𝑄 2 = 3480 according to the simplified numerical tool [START_REF] Fedeli | Near vacuum gas damping in MEMS: Simplified modeling[END_REF] proposed by the authors to compute fluid damping in MEMS resonant structures working in low pressure conditions such as in this case. Note that a nonlinear quality factor can in principle be also considered in the case of very large displacements of the proof mass with respect to the air gap between it and the fixed electrodes [START_REF] Zega | Numerical modelling of non-linearities in MEMS resonators[END_REF] .

For the sake of simplicity, we approximate 𝛽 𝑖 (𝑞 1 , 𝑞 2 ), 𝐹 ̌𝑒1 𝑖 (𝑞 1 , 𝑞 2 ) and 𝐹 ̌𝑒2 1 (𝑞 1 , 𝑞 2 ) with a complete third order polynomial whose coefficients are reported in the Supplementary Information. Once the voltage levels are fixed, Eqs. ( 1)-(2) are solved through numerical continuation, using the package MANLAB [START_REF] Guillot | A Taylor series-based continuation method for solutions of dynamical[END_REF] that implements a combination of Harmonic Balance (HB) with an asymptotic numerical method (ANM) for path-following. The nonlinear frequency

response of the roll mode in terms of amplitude and phase is reported in continuous light blue line in Fig. 2 In Fig. 2, numerical curves in terms of displacements obtained by integrating Eqs. ( 1)-( 2) are converted in terms of current as detailed in Zega et al. [START_REF] Zega | Numerical modelling of non-linearities in MEMS resonators[END_REF] to simplify the comparison with experimental data.

Experimental results

In order to validate the proposed simulation tool, the experimental frequency response of the to an out-of-plane maximum displacement of the proof masses of 71nm. The maximum displacement experienced by the proof masses in this experimental campaign is then in the order of a couple of hundreds of nanometers (i.e. orange curve in Fig. 3a), which is fully compatible with a stable operation of the device far from pull-in instabilities (the gap between the masses and the underlying electrodes is of 1.2µm) and with the assumption of moderate transformations required by the proposed ICE method. In the inset of Fig. 3(b), the evolution of the resonant frequency of the roll mode for different VDC is reported and compared with half the resonant frequency of the spurious roll mode, highlighting the strong link between the nonlinear dynamic behavior of the structure under study and the ratio between the resonant frequencies of the two coupled modes.

MEMS
A good agreement in terms of amplitude and phase, e.g. experimental jumps in proximity of Saddle-Node bifurcations predicted by the proposed MOR (see Fig. 2(a) of Supplementary Information), is found for all the DC-voltage levels, thus proving the predictive ability of the simulation tool. It is worth noting that the proposed ROM is able to catch the nonlinear dynamic response of the MEMS gyroscope test structure under different actuating conditions without any need of ad-hoc calibration of the coefficients. This make this simulation approach extremily versatile and general.

Discussion

The proposed ROM based on implicit static condensation is able to accurately and ab-initio reproduce the complex nonlinear dynamics of a MEMS gyroscope test-structure undergoing 1:2 internal resonance including bifurcations of the periodic response. The obtained two degrees of freedom model accounts for the multi-physics nature of the problem and does not require any calibration of the parameters: nonlinear coefficients come indeed exclusively from numerical simulations and can be estimated without the need of experimental data. Moreover, thanks to the reduction of the number of degrees of freedom of the system, simulations run almost real-time and are thus very helpful for design purposes and experimental data post-processing.

This technique represents, to the authors' best knowledge, the first tool able to estimate a priori and in real-time the nonlinear dynamics of a complex multiphysics system like a MEMS gyroscope test-structure under different actuation conditions.

MEMS designers and the MEMS industry in general, will strongly benefit of such tool since it will simplify the understanding of experimental data and the design process of complex nonlinear MEMS devices.

Methods

Implicit static condensation

The implicit static condensation is based on the assumption that it is possible to describe the steady state non-linear oscillation of a resonator as a combination of few master modes (MM). The dynamics of the ROM is described by a stress manifold obtained by implicitely condensing the effects of higher order modes that locally modify the internal forces and thus the global stiffness of the system [START_REF] Idelsohn | A reduction method for nonlinear structural dynamic analysis[END_REF] . For the case under study where two modes interact through the internal resonance, this method allows to formulate a ROM where the active degrees of freedom are the modal coordinates 𝑞 𝑖 of the roll and the spurious roll modes associated to the maximum out-of-plane displacement of the proof masses. Let 𝜓 𝑖 (𝑥) denote the displacement field of the i-th MM, mass normalized, the non-linear elastic force manifold is evaluated by statically forcing the structure with suitable body forces F which are proportional to 𝜓 1 (𝑥) and 𝜓 2 (𝑥): 𝐹 = 𝛽 1 𝜓 1 (𝑥) + 𝛽 2 𝜓 2 (𝑥). The motivation for this choice, apart from simplicity, is that these loads are a very good approximation of inertia forces occurring during the steady state oscillation. Once the body forces are defined, a series of static non-linear analyses are run spanning the (𝛽 1 , 𝛽 2 ) space. The range of the load-multipliers (𝛽 1 , 𝛽 2 ) is prescribed so as to cover the expected displacements of the structure, e.g. maximum out-of-plane displacements allowed by the gap between the proof masses and the underlying substrate. Let (𝑞 1 (𝛽 1 , 𝛽 2 ), 𝑞 2 (𝛽 1 , 𝛽 2 )) denote the solution for a given (𝛽 1 , 𝛽 2 ),

we invert such relations and we obtain the terms (𝛽 1 (𝑞 1 , 𝑞 2 ), 𝛽 2 (𝑞 1 , 𝑞 2 )) of Eqs. ( 1

)-(2).

A similar procedure is adopted to determine the electrostatic nonlinear manifold of the ROM. This represents a quasi-static approach which assumes that the dynamics of electromagnetic forces is much faster than the frequency of oscillation of the resonators, which is verified in the case of the MEMS under consideration. We then suppose that the gyroscope vibrates according to a combination of the two main modes, i.e. roll and spurious roll modes, and we update the coordinates of the conductor surfaces, i.e. surfaces of the proof masses of the gyroscope teststructure that face the underlying electrodes employed for actuation/readout, as 𝑥 + 𝜓 1 𝑞 1 + 𝜓 2 𝑞 2 , being 𝑥 the initial position of the conductor surfaces. The map of the charge surface density 𝜎(𝑥, 𝑞 1 , 𝑞 2 ) caused by the interaction between the conductor surfaces with the underlying electrodes, is then computed as a function of (𝑞 1 , 𝑞 2 ) through integral equations accelerated with fast multipole methods [START_REF] Frangi | Multipole BEM for the evaluation of damping forces on[END_REF] . Once the charge surface density is available, the nonlinear load participation factor is computed as:

𝐹 𝑒 𝑖 = ∫ 𝜎 2 2 𝜓 𝑛 𝑖 𝑑𝑆 𝑆 ≈ 𝜖 0 𝐹 ̌𝑒1 𝑖 𝑉 𝐷𝐶 2 , (3) 
where 𝜓 𝑛 𝑖 = 𝜓 𝑖 ⋅ 𝑛 is the projection of the modal shape function 𝜓 𝑖 along the outward unit normal vector on the conductor surface and S is the surface portion of the proof masses that faces the underlying electrodes. An analogous procedure [START_REF] Zega | Numerical modelling of non-linearities in MEMS resonators[END_REF] allows us to determine the nonlinear amplitude of the forcing term 𝐹 ̌𝑒2 1 (𝑞 1 , 𝑞 2 ) in Eqs. ( 1)- (2).

Experimental set-up

The MEMS is bonded to a ceramic carrier and then connected to a Plastic Circuit Board (PCB) as shown in Fig. 4a. Electrostatic actuation of the roll mode is provided through two power suppliers (Fig. 4b-c): the Agilent E3631A provides the DC voltage while AC signal is generated through the Agilent AG4395A. The output current measured on the electrodes on the substrate is amplified through the Signal amplifier SRS model SR570 (Fig. 4d) and read in the frequency domain through the Agilent AG4395A (Fig. 4c). A LabView script (Fig. 4e) acquires the output and corrects the AC signal to guarantee a close-loop control of the circuit.

The coefficients utilized for the different contributions are reported in 

Nonlinear frequency response in presence of 1:2 internal resonance

In the presence of a 1:2 internal resonance, the frequency response of each of the two coupled modes takes the peculiar shape reported in Fig. 2. As the two peaks of the frequency response are strongly nonlinear, i.e. one hardening and one softening, Saddle-Node bifurcations (red stars in Fig. 2) are also present to delimit their unstable branches (red path in Fig. 2). Unstable branches cannot be followed experimentally using a standard set-up and, as a consequence, jumps are expected in the proximity of Saddle-Node bifurcations. The experimental frequency response will be then strongly dependent on the sweep direction as shown by arrows in Figs. It is worth mentioning that a variable-phase feedback loop on the resonator would allow to track the response beyond the critical bifurcation regime 1 but the implementation of such control circuit is outside the scope of the present work.

Finally, Neimark-Sacker bifurcations (dark blue stars) also appear, thus delimiting the quasiperiodic region (green path in Fig. 2) where the steady-state periodic response is no longer stable and bifurcates into a quasi-periodic response. This latter is no longer characterized by a single frequency, given by the external excitation, but also by an incommensurate smaller frequency that modulates the response 2 . Moreover, within this region, the quasi-periodic regime can further bifurcate into a nearly chaotic response that is extremely hard to predict. Neimark-Sacker bifurcations have been predicted numerically as illustrated in the body of the paper.

4.

Simplified analytical model

In order to further validate the numerical results obtained from the ROM with specific reference to the prediction of the quasi periodic region, we discuss an analytical model obtained starting from the normal form theory. Considering nonlinear terms up to the quadratic order for the sake of simplicity, the normal form for the 1:2 internal resonance reads 2 :

𝑞̈1 + 2𝜇 

where 𝑞 𝑖 are the modal coordinates, 2𝜇 𝑖 the damping coefficients, ω the external forcing pulsation and 𝛿 𝑖𝑐 1 are almost unitary correction factors used to force a perfect match of the eigenfrequencies of the model with the measured ones. The other symbols have the same meaning used in the Implicit Condensation approach proposed in the paper.

Coefficients of the analytical model (1) are retrieved from the proposed numerical Implicit Condensation Method (see Table 1 of Supplementary Information) and summarized in Table 2.

As shown in a recent contribution 2 , starting from the normal form (1), it is possible to estimate in a closed form both the frequency response curve of the two-dofs system and the Neimark-Sacker boundary curve, i.e. locus of the bifurcation points in the parameters space.

A comparison between the frequency response curve obtained through the full ROM studied in the paper and the simplified analytical model is shown in Fig. 3 A very good agreement between the two models is found in the quasi-periodic region, while small discrepancies are evident at high amplitudes. This is justified by the simplifying hypotheses adopted in the analytical model that does not take into account nonlinearities of higher orders, which are known to play a quantitative role at large amplitudes. 

  for a VDC= 4.28V and a VAC = 3.16mV. For this actuation condition, the model correctly reproduces the activated 1:2 internal resonance as demonstrated by the characteristic shape of the frequency response made with two peaks and by the presence of a quasi-periodic/chaotic region (see green path in Fig.2(a) of Supplementary Information) delimited by Neimark-Sacker bifurcations (dark blue stars in Fig.2) in the central region of the spectrum58. Red stars represent the Saddle-Node bifurcations predicted by the ROM model and delimit the unstable part of the solution branch (see red path in Fig.2(a) of Supplementary Information). To further validate the adequacy of the proposed ROM, in the Supplementary Information we report the comparison between the curves obtained through the full ROM here proposed and the ones analytically derived through the Multiple Scale Method 58 from a simplified ROM based on the coefficients numerically extracted through the Implicit Condensation Method.

  gyroscope test-structure is measured in the same actuation condition previously considered for the theoretical model: VDC= 4.28V and VAC = 3.16 mV. Experimental curves are reported in orange dashed lines in Fig.2 and well agree with the numerical predictions. Note that the jumps of the experimental upward frequency sweep shown in Figs.2(a),(c) are in a satisfactory agreement with the Saddle-Node bifurcations (red stars) predicted by the models (see Fig. 2(a) of Supplementary Information). Moreover, in the close-up views of Figs.2(b),(d), it is evident that the Neimark-Sacker bifurcations predicted by the ROM correctly delimit the experimental quasiperiodic region, thus further proving the accuracy of the proposed a priori simulation tool. Additional experimental curves measured for a VAC = 3.16 mV and different levels of VDC are reported in dashed-lines in Fig.3 together with corresponding numerical predictions. Only experimental upward frequency sweeps are reported for the sake of clarity and all the curves, both numerical and experimental, are normalized with the maximum amplitude of the hardening peak of the experimental curve obtained for VDC= 4.28V and VAC = 3.16 mV. This value corresponds

  2(a)-(b).
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 2 Figure 2: Nonlinear frequency response in presence of a 1:2 internal resonance. (a) Upward and (b) downward frequency sweeps.
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 3 Figure 3: (a) Frequency response of the MEMS gyroscope test-structure for a VAC = 3.16mV and a VDC =4.28V. Comparison between the full ROM model proposed in the paper and the simplified analytical model. (b) Close-up view of the quasi-periodic region of the frequency response.
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 1 Figure 1: (a) Schematic view of the MEMS gyroscope test-structure. (b) Roll (𝒇 𝟏 = 22522 Hz) and
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 3 Figure 3: Frequency responses of the MEMS gyroscope test-structure for VAC = 3.16mV and
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 4 Figure 4: Set-up employed to measure experimental frequency responses.

  

Table 1 .

 1 It is worth noting that such coefficients do not depend on the VDC and VAC values and thus able to describe the nonlinear dynamics of the MEMS gyroscope test-structure under different actuating conditions.

		𝜷 𝟏 (𝒒 𝟏 , 𝒒 𝟐 )	𝜷 𝟐 (𝒒 𝟏 , 𝒒 𝟐 )	𝑭 ̌𝒆𝟏 𝟏 (𝒒 𝟏 , 𝒒 𝟐 )	𝑭 ̌𝒆𝟏 𝟐 (𝒒 𝟏 , 𝒒 𝟐 )	𝑭 ̌𝒆𝟐 𝟏 (𝒒 𝟏 , 𝒒 𝟐 )
		[µN]	[µN]	[µN µm/V 2 pF] [µN µm/V 2 pF]	[µN µm/V 2 pF]
	𝒄 𝟎	3.67 10 -6	-2.24 10 -6	-0.08555	-284.389	-476.658
	𝒄 𝟏	0.020024	-2.38 10 -6	11.23799	0.087044	5.565844
	𝒄 𝟐	-2.33 10 -6	0.074312	0.087168	9.511499	4.334514
	𝒄 𝟑	5.19 10 -11	-1.75 10 -8	-2.68 10 -5	-0.071	-0.04597
	𝒄 𝟒	-1.49 10 -8	1.41 10 -8	-0.1424	-3.65 10 -5	-0.07233
	𝒄 𝟓	-5.80 10 -9	1.14 10 -9	-2.12 10 -5	-0.03227	-0.02853
	𝒄 𝟔	-3.05 10 -11	-1.69 10 -12	0.000826	7.66 10 -7	0.000413
	𝒄 𝟕	-3.80 10 -12	-2.83 10 -10	1.22 10 -6	0.001439	0.000899
	𝒄 𝟖	-4.01 10 -10	-5.49 10 -12	0.001488	9.37 10 -7	0.000734
	𝒄 𝟗	-9.80 10 -12	-2.03 10 -9	4.41 10 -7	0.000497	0.000263

Table 1 :

 1 Coefficients of the polynomial expansion of the mechanical and electrostatic nonlinear forces obtained through the Implicit Condensation Method.

  1 𝑞̇1 + (𝜔 01 2 -𝑭 ̌𝒆𝟏 𝟏 𝒄 𝟏 𝜖 0 𝑉 𝐷𝐶 2 )𝛿 1𝑐 1 𝑞 1 + (𝜷 𝟏,𝒄 𝟒 -𝑭 ̌𝒆𝟏 𝟏 𝒄 𝟒 𝜖 0 𝑉 𝐷𝐶 2 )𝑞 1 𝑞 2 = 2 𝑭 ̌𝒆𝟐 𝟏 𝒄 𝟎 𝜖 0 𝑉 𝐷𝐶 𝑉 𝐴𝐶 cos ω𝑡

	𝑞̈2 + 2𝜇 2 𝑞̇2 + (𝜔 02 2 -𝑭 ̌𝒆𝟏 𝟐 𝒄 𝟏 𝜖 0 𝑉 𝐷𝐶 2 )𝛿 2𝑐 1 𝑞 2 + (𝜷 𝟐,𝒄 𝟑 -𝑭 ̌𝒆𝟏 𝟐 𝒄 𝟑 𝜖 0 𝑉 𝐷𝐶 2 )𝑞 1 2 = 0,

  in terms of amplitude of the modal coordinate of the driven roll mode for a VAC=3.16mV and a VDC=4.28V. Red and black stars denote Saddle-Node and Neimark-Sacker bifurcations identified through the numerical model, while the green dashed line represents the analytical Neimark-Sacker boundary curve estimated from eq. (1) through the Multiple Scales Method 2 .

	Parameter	Value	Units
	𝟐 𝝎 𝟎𝟏 𝝎 𝟎𝟐 𝟐	0.020024 0.074312	µN/µm µN/µm
	𝑭 ̌𝒆𝟏 𝟏 𝒄 𝟏	11.23799	µN/ µm V 2 pF
	𝑭 ̌𝒆𝟏 𝟐 𝒄 𝟏	9.511499	µN/ µm V 2 pF
	𝑭 ̌𝒆𝟏 𝟏 𝒄 𝟒	-0.1424	µN/ µm 2 V 2 pF
	𝑭 ̌𝒆𝟏 𝟐 𝒄 𝟑	-0.071	µN/ µm 2 V 2 pF
	𝜷 𝟏,𝒄 𝟒	-1.49 10 -8	µN/µm 2
	𝜷 𝟐,𝒄 𝟑	-1.75 10 -8	µN/µm 2
	𝑭 ̌𝒆𝟐 𝟏 𝑐 0	-476.658	µN/V pF
	𝜹 𝟏𝒄 𝟏	0.99948	-
	𝜹 𝟐𝒄 𝟏	0.99994	-
	𝝁 𝟏	2.948 10 -5	µN µs/µm
	𝝁 𝟐	3.916 10 -5	µN µs /µm

Table 2 :

 2 Coefficients of the simplified analytical model.
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Additional information

Implicit Condensation Method: nonlinear mechanical and electrostatic forces

In this work, the nonlinear mechanical and electrostatic forces (eqs. ( 1