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Abstract

Purpose: Diagnosis and treatment of Parkinson’s Disease (PD) are
typically supported by a kinematic gait analysis. Nonetheless, the main
drawbacks of the classical analysis, based on a reduced set of markers, are
the loss of small dynamical changes, the invasive methodology, and the
sparse representation from few points, restricting the disease analysis.
This work aims to perform a robust regional kinematic characteriza-
tion, which may result in a potential digital biomarker of the disease
to complement personalized analysis, treatment and monitoring of PD.
Methods: This work introduces a markerless computational frame-

work based on a full body-segment kinematic characterization related
with PD motor alterations. Firstly, a set of dense motion tra-
jectories are computed to represent locomotion. Such trajectories
are grouped using a deep learning based body segmentation, that
partitions the human silhouette into regions corresponding to the
head, trunk and limbs. Each resultant region is described using
dartboard-like kinematic histograms computed along the trajectories.
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2 Quantification of Parkinsonian kinematic patterns in body-segment regions

Results: The proposed approach was validated using different pre-
trained classification models. The proposed method was evaluated
on a set of 11 control subjects and 11 PD patients, achieving
an average accuracy of 99.62% for lower-limbs and head regions.
Conclusion: This work proved to be effective to classify Parkin-

sonian patterns w.r.t control gaits. A major contribution of the
proposed strategy is the capability to recover kinematic pat-
terns in different body segments, particularly, for head and trunk
regions, which turned out to be a decisive PD biomarkers.

Keywords: gait analysis, kinematic analysis, dense trajectories, Parkinson’s
disease
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1 Introduction

Parkinson’s disease (PD) is the second most common neurodegenerative dis-
order, with a prevalence greater than 3% in people over 80 years old, currently
reporting more than 6.9 million cases and 177 000 associated deaths worldwide
[1, 2]. The PD diagnosis is strongly correlated with movement disorders of
upper and lower limbs, which alter among others the gait patterns [3]. During
locomotion are observed pattern alterations like arm swing and footstep size
reduction, decreasing of ground clearance, slowness and rigidity on displace-
ments, and postural instability [4]. Specifically, the walking process requires a
fine balance between trunk stiffness and mobility, absorbing movement-related
forces, and therefore, amplifying other motor alterations as result of typi-
cal instability of the trunk on PD patients [5]. For instance, head stability,
segment stiffness and postural abnormalities, typical and co-occurrent in PD
patterns, are amplified during locomotion due to the loss of dynamical stabil-
ity. These patterns represent relevant but currently under-explored features in
the characterization of PD [6].

The kinematic gait analysis (KGA), related with the qualitative and quanti-
tative description of body segments displacements, allows to support diagnosis,
treatment and monitoring of diseases related with motion disorders [7]. KGA
usually uses several cameras placed around a walkway and a set of markers
located at points of reference on the body. From the marker information, the
gait is usually characterized by measures such as the bending angle of knees
or hips during a gait cycle. These approaches, however, strongly simplify the
complexity of PD movements to a few markers and can affect the natural ges-
ture of gait [8]. On the other hand, the KGA of Parkinsonian gait is usually
focused on the study of different measures of lower limb movements, reducing
the importance of the information given by all other body segments [9, 10].
Furthermore, traditional methods ignore the hidden patterns characteristic of
PD, focusing on providing general gait measurements and ignoring Parkin-
son’s patterns that arise from the instability produced by the disease. However,
some works have shown the relevance of the head, neck and upper limbs move-
ments during walking in the characterization of PD, demonstrating that such
patterns provide complementary information and are not the result of simple
reflex movement [11, 12]. For instance, complementary works on KGA have
shown that velocity patterns and freezing of gait initiation turn out to be highly
descriptive for PD, with demonstrated statistical independence w.r.t age and
health conditions [13, 14]. Also, Parisi et al. presented a comparative evalua-
tion of leg agility, sit-to-stand and Gait tasks based on a correlation analysis,
emphasizing the shorter steps and reduced velocity patterns as signature of
PD patients [15].

Hence, novel approaches that capture a full description of segmented body
parts during locomotion result fundamental to explore particular behaviours
that could be associated to PD. In the literature have been presented different
approaches as alternatives to explore dynamic during locomotion. For instance,
some silhouette-based methods have managed to follow the position of some
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lower limbs, as well as to compute gait speed, stride length and cadence,
from sagittal gait captures [16, 17]. These approaches however are prone to
self-occlusion and ignore upper limbs information. Alternatively, Parkinson
quantification methods have recently focused on measuring head and pelvis
accelerations, which are in turn correlated with other dynamic variables and
allows to predict PD [18]. Along the same line, Buckley et al explored upper
body accelerations to measure postural control, and reported greater magni-
tude in the mid-lateral direction in people with PD [19]. Such findings evidence
the importance of measuring postural control in PD, however, the wearable
capture systems affect the patient’s natural gait and lead to a corrupted or
unreliable characterization of the disease. Moreover, these methods limit explo-
ration of other kinematics, potentially suitable for PD representation like the
ground clearance, the reduction of arm swing and dragging of feet.

Promising works to characterize Parkinsonian gait have integrated spatio-
temporal patterns with learning and prediction approaches. For instance Baby
M. et al. represent feet motion information from wavelet coefficients, mapped
in a neural network scheme, to classify PD and control subjects [20]. Similarly,
Lee et al. used a neural network with weighted fuzzy membership functions
as PD classifier, modelling on 40 features of vertical force records [21]. Also,
Sarbaz et al. computed the power spectra of stride and swing signals, taking
advantage of the semi-periodicity of the gait, to characterize PD patients, val-
idating the potential of frequency analysis as biomarker of the disease [22]. A
main limitation of such approaches is the significant amount of data required
to learn a proper representation of Parkinsonian patterns. The variability mod-
elling of such case could be limited then to trained patterns, with potential
overfitting on boundary definition between control and disease trained sam-
ples. Additionally, these methods are based on global measurements of specific
parts of the body typically considered the most descriptive. They assume that
the movements of the other body segments correspond to reflex movements
and overlook their potential contribution to the characterization of the disease.

This work introduces a markerless strategy that captures, models and
allows to analyze body segment kinematics to obtain a PD characterization
during walking, captured in sagittal video-sequences. This strategy supports
the diagnosis of Parkinson’s disease (PD) and complement the analysis, which
may be important to the management and monitoring of the disease. Initially,
the proposed approach performs a regional and dynamic segmentation of body
segments, allowing to individualize head, trunk and limbs. Kinematic patterns
are densely captured in each of the segmented regions by densely computing a
set of long motion trajectories that represent per-pixel motion during displace-
ment. The whole point-wise trajectories are summarized on a proposed gait
descriptor using dartboards that encode the temporal distribution of different
kinematics such as velocity, acceleration and curvature. These dartboards con-
stitute a motion body-segment representation that allows to distinguish control
and PD population, and could be a digital biomarker to quantify motion pat-
terns at different body segments, which have remarkable correlation with the
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disease. This method was evaluated on 176 gait video sequences of 22 patients,
that is, 11 patients per class and 8 videos per patient.

Fig. 1 a) Original video sequence. b) Dense motion trajectories estimation. c) Body seg-
mentation masks. d) Dense trajectories grouped by body segment. e) For each trajectory ti,
the temporal distribution of the 2D displacement (velocity), its derivative (acceleration) and
curvature (oriented toward radial acceleration) is encoded into polar kinematic histograms.
f) Binary classification scheme.

2 Methods

A markerless strategy is herein introduced to observe and analyze regional
body parts kinematics during gait. This approach makes possible to find cor-
relations and discover particular motion patterns related to Parkinson disease
and focus on particular spatial regions and specific gait stages. The method
automatically recovers body silhouette and respective segmentation for head,
torso, upper and lower limbs, among others (Figure 1.c). Then, motion tra-
jectories are mapped over computed masks, obtaining a local movements
description for each body segment during walking (Figure 1.d). From such
segmented trajectories, a set of key kinematics are codified into polar his-
tograms (dartboards) obtaining a comprehensive kinematic description of each
body-segment (Figure 1.e). Each kinematic segment representation can be ana-
lyzed w.r.t the capability to predict and group patients diagnosed with PD. A
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description of each step of our method is presented in the following subsections.

2.1 Regional Analysis

Parkinson’s disease differs from other neurological pathologies by the lateral
body asymmetry in symptoms, and the focus of motor alterations on specific
body parts, especially at early stages [23]. Nevertheless, much of the proposed
markerless strategies only perform a global shape characterization during gait,
losing description of localized movements. In fact, head, trunk, upper and
lower limbs describe specific Parkinsonian patterns that should be treated
independently during kinematic analysis due to independent dynamic, asym-
metry, and the response of specific body parts during locomotion [12, 24]. For
instance, abnormal head movements produced by instability of the trunk have
been shown to be significant in describing Parkinson’s disease [25] but remain
poorly explored. Taking into account such considerations, the first step in this
work was to obtain dynamic dense segmentation to approximate anatomical
segments during locomotion.

To do so, it was implemented the DensePose [26] approach that obtains
dynamic pose mask with the capability to also determine specific body segment
regions. DensePose was herein implemented to obtain general pose mask but
also body segmentation parts during walking. The model was trained by its
authors with around 50K images under the Mask R-CNN framework lo learn
correspondence between training images and body-segment labels. It achieves,
in real time, a robust body part segmentation in the presence of complex
background, occlusions and scale variations. In our work, only the channel
that corresponds to the segmentation labels of body parts is used in order to
group the motion trajectories using the body part labels. The segmentation of
the body silhouette into rigid movement sections facilitates the description of
patterns with semantic and symptomatic meaning. Additionally, it is effective
in differentiating each side, that is, the right limbs from the left ones, allowing
the identification of asymmetric PD patterns. A typical dynamic body part
segmentation obtained in our work is illustrated in Figure 1.d and Figure 4.

2.2 Dense Motion Trajectories

The optical flow is the most known and standard tool to capture motion
patterns from videos. From such motion field it is possible to recover spa-
tiotemporal patterns that may be representative of some particular human
behaviours. Nonetheless, these patterns could be insufficient to study gait fea-
tures, which are usually studied along a set of semi-periodic movements known
as gait cycles (developed through multiple frames). Even worse, for Parkinson
disease, where patients typically exhibit slowness of their movements [27], the
optical flow could be insufficient to capture relevant kinematic patterns.

Hence, a natural way to extend the optical flow is to track local motion
through the video, which results in long point trajectories, that represent the
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movements of patients during walking [28]. Thus, dense trajectories are local
motion primitives based on the concatenation of optical flow vectors, tracking
numerous points along the video sequence, which allows a more robust repre-
sentation of motion patterns [29] (see on Figure 1.b). Since trajectories span a
large number of frames, they facilitate the description of temporally complex
structures of Parkinson’s disease. The uniformly dense sampling over the video
of these trajectories provides a rich regional description of the patients’ move-
ments during locomotion. Dense trajectories extraction starts by computing
the Farnebäck dense flow, based on polynomial expansion [30]. In this method
the neighborhood value f of each image pixel is approximated by quadratic
polynomial expression, defined as: f(x) ≃ xTAx+bTx+ c, where x = (x, y)T

are pixel positions, A, b and c are the estimated quadratic (matrix), linear
(vector), and constant (scalar) terms, respectively. Then, the d vector field dis-
placement is obtained from the polynomial coefficients in consecutive frames ft
and ft+1, as follows: d = − 1

2A
−1
t (bt+1 − bt). Then, the computed dense flow

is smoothed by using a 2d median filter over the displacement field. In prac-
tice, the points xt = (xt, yt) are densely sampled on a regular grid, tracked in
time t at different spatial scales and rounded to integer values after the median
smoothing. The matched points are finally concatenated to form a trajectory
(xt0 ,xt1 ,xt2 , . . . ,xtn).

2.3 Regional kinematic representation

Based on the assumption that the motor symptoms of Parkinson’s disease can
be properly characterized by the computation of regional kinematics given by
the velocity and its derivatives, a kinematic representation is herein proposed
from dense trajectories. For doing so, a polar histogram scheme (dartboards) is
proposed for coding kinematic gait behavior. The main idea of this descriptor is
that local kinematics during gait can be described by the distribution of body
parts movements in terms of their magnitudes and directions. Each trajectory
can be seen as a series of concatenated motion vectors. As any vector, they are
described from their magnitude and orientation, and within each trajectory,
a vector occurrence histogram is compiled into a quantified polar histogram
as depicted in Figure 2 . Finally, to improve accuracy, the local histograms
are normalized using L2 norm. This codification allows a statistical kinematic
representation of pathological movements of PD during walking. The use of
different kinematic measures can be supported according to disease findings,
as:

• Bradykinesia or slowness of movement, one of the main signs of PD can be
approximated by velocity patterns. This movement disorder is not caused
by muscle weakness but by the incorrect transmission of neuromuscular
signals. Bradykinesia can affect one limb, one side of the body, or the whole
body, which can define a particular locomotion signature for each patient.
In order to kinematically describe bradykinesia, let −→v = v(t) be the 2D
displacement of a video element between frames t and t + 1. We construct
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Fig. 2 Building of the trajectory level descriptor.

a half-dartboard quantization of vector −→v in terms of its magnitude and
direction, since the gait is supposed to be in the same direction for the whole
sequence, as depicted in Figure 2.

• Some typical symptoms of PD such as tremor, and others like dyskinesia
(involuntary and uncontrollable movements) or dystonia (simultaneous con-
traction of opposing muscles) are characterized by the sudden variation in
the speed or direction of movements, i.e., by acceleration patterns. Addi-
tionally, instability of the trunk and head leads to the emergence of abrupt
compensatory movements to maintain balance and avoid falls. Moreover,
Parkinsonian symptoms often varies from time to time, that is, good qual-
ity of movement can quickly be followed by poor quality. A reasonable way
to kinematically describe these symptoms is by computing the local accel-
eration of the body segments: −→a = d−→v

dt . Analogous to velocity coding (but
symmetric to support negative accelerations), a dartboard quantization of
acceleration vectors is made in terms of magnitude and direction.

• Finally, the rigidity or the stiffness, causes muscles to become rigid because
of their inability to relax, fact that could be represented from trajectories
by measuring curvature patterns. This typical symptom can prevent mus-
cles from stretching and relaxing as they should. As a consequence rigidity
may be experienced as: stiff and/or inflexible muscles, the stooped pos-
ture commonly associated with PD, pain and muscle cramps, difficulty to
turn, reduced arm swing, among others. The curvature information of body
segments movements can accurately describe all these symptoms. Mathe-

matically it can be written as κ = aN

∥−→v ∥2 , where aN =
∥−→v ×−→a ∥
∥−→v ∥ . As the

direction also makes sense, we use a vector with normal direction to the dis-
placement (i.e. direction of the radial acceleration, that points toward the
center of osculating circle to the trajectory), and with magnitude given by
the curvature.
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2.4 Global encoding and prediction

After describing each trajectory by a set of dartboards representing the distri-
bution of the kinematics along the trajectory, a regional descriptor is built, by
spatially aggregating, for each region, the trajectory-level descriptors to form
a unique motion descriptor for each region. In this work were explored three
different versions of regional descriptors, described as follows:

• In the first version, for each region, a clustering algorithm is run on the
trajectory-level descriptors, to obtain N groups using a k-means approach.
The centroid of each group is then considered as representative atomic
information. The descriptor of each region is then defined as the set of N
centroids. This version is referred to as KC in the results section.

• The second version is a bag-of-words approach, where a N -word dictionary
is built for each region, using a clustering algorithm on the trajectory-
level descriptors extracted for a particular body segment. Then each region
descriptor is built as a histogram of occurrence over the Regional Dictionary.
This version is referred to as RD in the results section.

• The third version also uses a bag-of-words approach, to form regional
descriptors, but this time one unique global dictionary is built, and the
same dictionary is used to code every regional descriptors by histogram of
occurrences. This version is referred to as GD in the results section.

These temporal region-wise histograms constitute the final descriptors
which allow to describe rigid parts during locomotion, and emphasize kine-
matics that statistically describe the type of gait. Each resulting descriptor
is mapped to a learning strategy to perform an automatic classification. In
this work was implemented a Support Vector Machine (SVM), a technique
widely used in many problems of supervised learning thanks to an attractive
trade-off between accuracy and computational cost [31]. Here the classes are
”Parkinson” and ”Control”, and the optimal hyper-planes separate them using
a classical maximum-margin formula. A parameter sensitivity analysis (γ,C)
was performed using a k-fold cross validation scheme and selecting the param-
eters with the highest number of true positives. As an alternative classification
scheme, Random Forest (RF) [32] was also evaluated.

2.5 Experimental setup

Video sequences were recorded at the foundation FAMPAS (Fundación del
Adulto Mayor y Parkinson Santander) and at the nursing home Asilo San
Rafael, under semi-controlled conditions. This study was approved by the
Ethics Committee of the Universidad Industrial de Santander and counts on a
written informed consent. The dataset consists of a set of videos captured with
a RGB camera, from 22 participants, being 11 control patients and 11 patients
diagnosed with Parkinson’s disease. The PD patients were in stages of the dis-
ease between 2.5 and 3.0 according to the Hoehn and Yahr scale estimated
by a physical therapist during the video recording of the study. Moreover, the
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patient’s condition was initially diagnosed by a treating neurologist, which
served as basis for the observation of the therapist during the video recording.
Each subject in the study was recorded 8 times while performing a natural
markerless walking, 4 times to the right and 4 times to the left, for a total of
176 video sequences. The patients were medicated with Levodopa, and during
the study the medication was not suspended. Regarding capture conditions,
the gait trial was carried out in a bidirectional way, freely, and without any
time restriction. In fact, before each capture, it was asked to each patient to
walk as naturally as possible, with conventional speed and without any extra
condition. The videos show patients that are already walking, i.e., start and
stop periods were suppressed. This dataset is age matched, i.e., the mean age
is 72.2± 6.1 for control patients and 72.3± 7.4 for PD patients. The subjects
are 12 men and 10 women distributed as follows: 2 women and 9 men in PD
group and 8 women and 3 men in control group. The whole set of videos was
recorded indoor, with a static camera, a colored background and the patients
wearing different clothes. The average duration of the videos is 4 seconds. For
the experiments the videos were sub-sampled to 60 frames and cropped to
520 × 520 pixels. Samples of video captured in this study are illustrated on
figure 3.

Fig. 3 Parkinsonian gait dataset. A sample frame of each control subject (a) and PD
patient (b).
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2.5.1 Comparison between DensePose and a clustering
algorithm

One contribution of this work is the regional grouping using DensePose dur-
ing locomotion video sequences. To this end, we ran the DensePose algorithm
previously trained on a public dataset (the COCO dataset [33]). This general
domain dataset represents a challenge regarding the multiple pose configura-
tions, the multiple point of views, and the multiple actors in the scene. As a
consequence, the original training was sufficient to segment the sagittal silhou-
ettes that are required in our study. To evaluate the real benefit of DensePose
segmentation, we also used an alternate grouping strategy using a clustering
algorithm. We used the k-means algorithm, that group objects into k clusters
by following a neighborhood trajectory criterion on a Euclidean multidimen-
sional space. Then, a set of five clusters, that coarsely correspond to spatial
body segments, were defined as an alternative region split. To perform k-
means clustering, all trajectories were aligned temporally and then an affinity
similarity matrix was computed among the corresponding points of each tra-
jectory. The distance of similarity herein implemented to compare trajectories
is described in [34], and expressed as:

d(a, b) =

(
max

n∈[1,L]
dspatial[n]

)(
1

L

L∑
n=1

dvelocity[n]

)
, (1)

where L is the length of trajectories, dspatial[n] = xa[n]−xb[n] is the spatial
distance between the trajectory points and dvelocity[n] = va[n] − vb[n] is the
distance between point velocities. Such distance penalizes trajectories that are
spatially far apart and associate trajectories with similar velocity patterns. An
affinity matrixW is then obtained byW(a, b) = exp(−d(a, b)/1000) computed
at each trajectory pair. The affinity matrix has dimension T×T , where T is the
number of trajectories in the video. To ensure the spatial group compactness,
trajectories that are not spatially close are forced to zero (we used the condition
max(dspatial) ≥ 120 pixels in our experiments).

2.5.2 Method configuration

The proposed approach was evaluated with a fixed length motion trajectories
of 16 frames, computed on a grid spaced by 5 pixels and tracked in 8 different
spatial scales. This configuration was set as a trade-off between accuracy and
computational cost. Once the final motion descriptor was obtained from any of
the three coding schemes, two different classifiers were implemented: The SVM
and the RF. An evaluation of best parameters was carried out to tune best
classification performance. Additionally, the performance of the DensePose
trajectory grouping method was compared with a classic k-means clustering.
Finally, the relevance of the proposed regional approach was tested comparing
it with a global classification over the whole body without clustering.

For validation, it was used a ”leave-one-patient-out” classification method
(k-fold cross validation), where at each iteration, one patient is left out for
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testing and the remaining ones (21 subjects in our particular experiment) are
used for training. The Parkinsonian patients correctly classified were counted
as true positive (TP) and the correct control patients as true negative (TN).
The global descriptors for each region were evaluated separately and identified
as follows: C1 - head and torso, C2 - upper arms, C3 - lower arms and hands,
C4 - upper legs, and C5 - lower legs and feet, which corresponds to the main
rigid movements of body segments from a sagittal point of view as depicted in
Figure 4. The final descriptor, for all the experiments, was set to 200 elements
long. This value was obtained from a previous global tuning.

3 Evaluation and results

Figure 4 illustrates the observational results achieved by the proposed
approach. In such case the body segmentation (second row) and recovered
motion trajectories (third row) can be used as observational tool during clini-
cal evaluation. An integrated visualization is illustrated in fourth row, in which
kinematic information (extracted from trajectories) is spatially differentiated,
according to its body localization. From such last plot, occurrence motion
patterns, expressed from trajectories, at specific body part could suggest
associations with Parkinson disease.

Fig. 4 First row: Original video sequence. Second row: DensePose mask. Third row: Dense
motion trajectories. Fourth row: Clustered motion trajectories at current frame.
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Table 1 Summary of the performance of different classification methods for each cluster
using velocity description. Global Dictionary (GD), Regional Dictionary (RD), K-means
Centroids (KC).

C1 C2 C3 C4 C5

RF SVM RF SVM RF SVM RF SVM RF SVM
DP-GD 94.73 92.05 94.73 92.61 98.86 94.32 99.62 94.89 99.62 97.73
DP-RD 98.83 93.18 98.69 90.91 98.86 88.64 98.86 84.66 99.62 97.73
DP-KC 77.22 72.02 75.02 72.32 68.82 70.20 71.20 66.26 67.29 73.22

KM-GD 96.56 96.59 97.73 96.59 98.86 94.32 97.73 96.59 98.86 90.34
KM-RD 93.13 79.66 93.07 91.02 92.90 89.32 93.45 89.32 93.40 87.05
KM-KC 72.02 70.52 71.20 66.82 70.80 67.29 72.54 66.26 72.48 66.62

Table 2 Kinematic evaluation per cluster using the best performance classification
method (DP-RD with RF).

C1 C2 C3 C4 C5

velocity 98.83 98.69 98.86 98.86 99.62
acceleration 90.31 88.28 91.45 88.28 89.39
curvature 99.62 97.80 96.74 93.89 94.30

Tables 1 and 2 present an ablation study of the proposed approach, using
different configurations, baseline components and evaluating the capability of
motion descriptors, coded at each body segment, to classify automatically
PD patterns. For each video, a set of kinematic trajectories was extracted,
and for each trajectory, dartboards were computed with a number of radial
bins set to 4 (each bin being 6 pixels wide) and 18 angular bins (9 for the
velocity) of 20 degrees. We also evaluated the best regional coding descriptor,
regarding the three defined schemes: the bag of words (BoW) with global dic-
tionaries (GD), BoW with regional dictionaries (RD) and K-means Centroids
(KC). Each regional descriptor was evaluated with body-part segmentation,
obtained from two different strategies: 1) using the dense pose approach (DP)
and 2) using a spatial k-means trajectory clustering (KM). Besides, to ana-
lyze regional correlation of motion patterns with the PD, the evaluation was
carried out independently for each of the considered segments.

Finally, each video descriptor was classified using either Random Forest
(RF) or Support Vector Machine (SVM). As shown in Table 1 the proposed
approach has a stable performance w.r.t. the different configurations, and
using different classifiers. It should be noted that the best spatial clustering is
achieved from DensePose (DP), using a regional dictionary (RD) and RF. The
better performance of Random Forest can be explained by a finer boundary
construction of the model based on the set of discrete trees. As expected, the
lower limb regions provide the best results, with major discriminative perfor-
mance to classify PD patterns, achieving an average accuracy of 99.62% (see
Table 1).

Interestingly enough, the proposed approach exploits the kinematic descrip-
tion of various body regions, which could be determinant in PD diagnosis. For
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instance, the head region achieves by itself an average accuracy of 94.73%,
using the best approach configuration. C3 (region that includes lower arms
and hands) also achieves a remarkable accuracy of 98.86%. These regions can
then be integrated in a clinical analysis to better understand a particular stage
and progress of the disease, fact that could be key to understand early stages
of the disease.

In Table 2 is carried out a second experiment, from which the best classifi-
cation setup was analyzed regarding the three different kinematics computed
for each cluster. The purpose is to determine the kinematic patterns that are
most relevant w.r.t. the disease. The velocity patterns appear to have major
description capability on lower limbs, which in fact is related with a well know
PD pattern. In fact, the use of only velocity patterns obtains an almost perfect
score on classification. Regarding head patterns, the curvature coded from tra-
jectories could be strongly correlated with PD. This can be related to rigidity
of the head and part of the trunk. Finally, the velocity and curvature reach
the best classification performance with an average accuracy of 99.62% for C5
and C1, respectively. Also worth mentioning is the region C3, related with
hands, that is the most discriminant when the descriptor is formed from accel-
eration only. This could be related with hand tremor and suggest to combine
complementary patterns to better differentiate among PD and control patients.

Fig. 5 Kinematics evaluation. Accuracy for cluster C1 (head and torso) for different param-
eters values where N represents the number of radial bins and α represents the angle of each
angular bin.

Figure 5 shows a more detailed analysis w.r.t. the dartboard parameter
tuning. For this purpose cluster C1 was chosen, due to the capture of two of the
most relevant biomarkers for PD, i.e., head motion rigidity, and trunk stabil-
ity. Confirming previous experiments, all kinematics obtain fair performance,
and the curvature reports the highest accuracy. Parameters selection seems to
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be dependent on each kinematic. On the one hand, in general, both the cur-
vature and the velocity present good results, above 95%. The acceleration on
the other hand, varies around 90% of accuracy and reaches its maximum value
with the configuration N:8-α:15, achieving a 93% score.

Fig. 6 Global Motion Descriptor. Accuracy for the whole set of trajectories without seg-
menting the body in regions, and with Dartboard parameters variation where N represents
the number of radial bins and α represents the angle of each angular bin.

In a final experiment, the motion representation from dense trajectories
was obtained without taking into account body segments. The purpose is both
to assess the interest of body part segmentation and to check the capability of
a global pattern to represent PD. Figure 6 summarizes the obtained results,
for different kinematics, and using different dartboard configurations. It turns
out that the global motion representation achieves a remarkable result, where
velocity in general has the best and more stable performance. Interestingly,
the analysis of motion descriptor over specific body regions (previous experi-
ments) result in a better representation, even considering that there are less
trajectories to carry out the analysis.

4 Discussion and concluding remarks

This work introduced a novel markerless approach that exploits dense beams of
trajectories, grouped and analyzed at each body segment, that allows to finely
characterize motion alterations related with Parkinson’s disease. This model is
able to obtain a multi-level motion representation, starting from a description
of each trajectory by its distribution of local kinematics, computing dart-
boards (polar histograms) which encode velocity, acceleration and curvature
features. In a second motion-representation level, using the body segmentation
provided by DensePose, the method uses clustering to obtain regional locomo-
tion patterns. Finally, those motion patterns are used in a supervised learning
framework to predict and automatically classify Parkinsonian conditions. The
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proposed approach, on a dataset with 22 patients, demonstrated a high dis-
crimination power with respect to disease classification. In fact, during the
evaluation, and using only the lower body segments, the proposed approach
achieves an average classification score of 99.62%. This result was obtained
by only using the velocity as basic kinematics. Interestingly enough, the pro-
posed approach properly captures head and trunk motion patterns, achieving
for both regions 94.73% of classification accuracy. Such fact results very rele-
vant, since recent works have determined the head and trunk patterns as major
biomarkers of the disease. In fact, the proposed method exploits the augmen-
tation of tremor and postural instability during locomotion, which could be
key to model patterns on early stages of the disease.

In clinical routine, Parkinsonian, and motion alteration patterns in gen-
eral, are quantitatively captured from classical gait analysis, that includes the
approximation of body dynamic from a set of markers. This markers method-
ology has standard protocols that allows an easy interpretation of a particular
patient analysis. Nonetheless, this approach is invasive, alters the natural ges-
ture, and its coarse dynamic analysis can limit the description of PD. In fact,
several motion patterns like trunk instability (stationary feature), as well as
hand and head tremor motions, could be easily undetected or associated to
control patterns. Hence, novel approaches that capture the natural movement
and recover a major dynamic description, are needed, to better characterize
PD. For instance, Verlekar et al [17] achieved 98.8% of accuracy classifying
control gait and three emulated impairments on nine male and one female per-
sons. They achieved a right and left feet differentiation using a silhouette-based
method. On the other hand, our method shows kinematic complementary in
the regional description of movement. Acceleration, for example, turns out to
be particularly useful to characterize the motion patterns of the upper body.
This has already been suggested in other works such as Latt et al [35]. They
model acceleration using the root mean square of torso signals of PD patients
with fall history, PD patients without a fall history control subjects, and con-
clude that acceleration patterns of the upper body during gait differ between
older people with and without PD. This approach however, performed a visual
analysis of the measures and did not evaluate their utility in the prediction of
the disease.

The proposed approach was quantitatively assessed, and proved to be effec-
tive to classify Parkinsonian patterns w.r.t control gaits. A major contribution
of the proposed strategy is the capability to recover kinematic patterns in dif-
ferent body segments, particularly, for head and trunk regions, which turned
out to be decisive PD biomarkers. Also, the characterization of lower limbs
segments resulted totally effective to determine abnormal patterns. In such
sense, this strategy may be introduced on clinical protocol and Parkinsonian
index complementing observational assessments to support clinical diagnosis
as a digital biomarker of the disease. In fact, the proposed strategy carried out
a kinematic analysis at different body parts, including upper limbs that may
be key to understand disease asymmetry, as well as the trunk rigidity patterns,
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that have been widely documented as correlated with PD [36]. Besides, this
strategy may be adjusted to monitor other locomotor diseases, by including a
related population into the study. In such case, we need to re-train the local
kinematic analysis and the machine learning algorithms to predict new classes
or face a multiclass problem. It should be noted that the proposed approach
only requires 200 scalar values to represent a global gait descriptor, which is
a guarantee of computational efficiency.
The proposed approach coded a set of dense trajectories that capture dynamic
of each body segment, contrary to the gait laboratory that follows specific
and well-suited trajectories in specific joints. In such sense, we are dedicated
to exploit motion descriptors that allows an automatic classification of PD
patterns with respect to control motions. In contrast, the gait lab gives a
complete kinematic description of each joint trajectory, which allows to ana-
lyze angular anomalies during gait cycle, for a wide spectrum of locomotor
diseases. We consider that the proposed methodology may complement the
classical gait analysis, achieved from optical marker system, and may con-
tribute with dense kinematic patterns obtained for different body segments.
These kinematic descriptors may help to analyze disease in more early stages
or into personalized setups to discover the main affected body side. The pro-
posed methodology is limited to analyze PD patterns, during locomotion of
autonomous patients that do not have any extra requirement to carry out the
displacement, i.e., any mobility aid. Nonetheless, the patients with these limi-
tations are already in an advanced stage of the disease, and therefore this type
of diagnostic support tools is not required. Future works will include addi-
tional studies to compare the effectiveness of the method by considering the
medication (or non-medication) of patients in the experiments. Perspectives of
this work also include the effect of integrating kinematic patterns that result
from different body parts, to establish a more personalized signature of each
patient with respect to PD progression. The Parkinsonian patients involved
in this study were characterized in stages 2.5 and 3 of the disease. Further
works will test this descriptor in early stages and make a longitudinal study
to characterize the evolution of the disease.
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