
HAL Id: hal-03564787
https://ensta-paris.hal.science/hal-03564787v1
Preprint submitted on 10 Feb 2022 (v1), last revised 14 Sep 2022 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Deterministic optimal control on Riemannian manifolds
under probability knowledge of the initial condition

Frédéric Jean, Othmane Jerhaoui, Hasnaa Zidani

To cite this version:
Frédéric Jean, Othmane Jerhaoui, Hasnaa Zidani. Deterministic optimal control on Riemannian
manifolds under probability knowledge of the initial condition. 2022. �hal-03564787v1�

https://ensta-paris.hal.science/hal-03564787v1
https://hal.archives-ouvertes.fr


Deterministic optimal control on Riemannian manifolds under probability
knowledge of the initial condition

Frédéric Jeana, Othmane Jerhaouia,b, Hasnaa Zidanib

aUMA, ENSTA Paris, Institut Polytechnique de Paris, 91120 Palaiseau, France
bNormandie Univ, INSA Rouen Normandie, Laboratoire de Mathématiques Appliquées (LMI), 76000 Rouen, France

Abstract

In this article, we study an optimal control problem on a compact Riemannian manifold M with
imperfect information on the initial state of the system. The lack of information is modelled by
a Borel probability measure along which the initial state is distributed. The state space of this
problem is the space of Borel probability measures over M . We define a notion of viscosity in this
space by taking as test functions a subset of the set of functions that can be written as a difference
of two semi-convex functions. With this choice of test functions, we extend the notion of viscosity
solution to Hamilton-Jacobi-Bellman equations in Wasserstein space, we also establish that the
value function of the control problem with imperfect information is the unique viscosity solution of
a Hamilton-Jacobi-Bellman equation in the space of Borel probability measures.

Keywords: Hamilton-Jacobi equations in the Wasserstein space, viscosity solutions,
differentiability in the Wasserstein space, optimal control theory
2010 MSC: 35R15, 49L25, 35D40

1. Introduction

Let T > 0, M be a compact Riemannian manifold and consider a dynamical system defined by{
Ẏ (t) = f(Y (t), u(t)), t ∈ [t0, T ],
Y (t0) = x0, u(t) ∈ U,

(1)

where f : M ×U → TM is the dynamics, x0 ∈M and t0 ∈ [0, T ]. The set U is the set of admissible
control values which is assumed to be a compact subset of some metric space. We associate to a
measurable function u : [t0, T ]→ U an absolutely continuous trajectory t→ Y t0,x0,u

t solution to (1).
A classical control setting consists in minimizing a final cost

l(Y t0,x0,u
T ),

where l : M → R is a given function, over all trajectories that are solutions to (1). This optimal
control problem with perfect information has been extensively investigated, see for instance [34, 14,
5] when the dynamical system is defined in a vector space, and [1, 21, 22, 28] when the dynamical
system is defined in a differentiable manifold. Here, the dynamical system is defined in a compact
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Riemannian manifold. This case appears in the modeling of some optimal control problems related
to robotics [9], mechanical systems [7] or quantum systems.

In this paper, we consider optimal control problems with imperfect information. More precisely,
the initial condition in the state space is not perfectly known and is distributed along some Borel
probability measure µ0. We assume that both the dynamics and the probability measure are known.
The lack of information is very specific in this case, it comes only from the initial condition. The
final cost is the expectation of the deterministic final cost with respect to µ0

L(µ0) =
ˆ
M
l(Y t0,x0,u

T ) dµ0(x0). (2)

Optimal control problems with partial information are of fundamental importance both in terms of
real world applications and mathematical theory. Indeed, in many applications, the initial state of
the system (1) is not perfectly known, either due to the lack of measurements, errors of measure-
ments, or even due to the nature of the system itself, meaning that the uncertainties are inevitable.
As for the theoretical interest, since the optimal control problem with partial information is defined
in the space of Borel probability measures, we need to develop proper tools in this space to describe
the problem. In fact, we want to study the evolution of the lack of information on the initial con-
dition in (1), modeled by a Borel probability measure µ0. The evolution can be seen as a control
system in the Wasserstein space P2(M), where the trajectories in P2(M) are obtained by pushing
forward µ0 by the trajectories of (1). Therefore, the trajectories are of the form{

µt = Y t0,.,u
t ]µ0, t ∈ [t0, T ], and x 7→ Y t0,x,u

t is the flow of (1),
µt0 = µ0.

To the above control system defined on P2(M), we assign the following value function:

ϑ(t, µ) := inf
u(.)∈U

ˆ
l(Y t,x,u

T ) dµ(x), for t ∈ [0, T ], µ ∈ P2(M).

In [20], the authors studied a more general optimal control problem in Wasserstein space over RN
by using non-smooth analysis techniques such as differential inclusions and sub/super differentials.
A new approach was also considered in [27] to define dynamical systems on the space of probability
measures based on tools similar to the theory of Young measures (see [8] for a detailed study on
the subject).

The goal of this paper is to characterize the value function as a unique solution to a Hamilton-
Jacobi-Bellman (HJB) equation defined on the Wasserstein space P2(M). Ideally, the HJB equation
should have the following form:{

∂tv +H(µ,Dµv) = 0, (t, µ) ∈ [0, T )× P2(M),
v(T, µ) = L(µ).

(3)

Furthermore, we want to transpose the techniques commonly used in viscosity theory [15, 6] to
the space P2(M). To achieve this goal, it is necessary to go through several steps. First, we
define a notion of classical solutions to the HJB equation. Then, we define the set of test functions
for viscosity super- and sub-solutions. Finally, we prove a comparison principle that holds for
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any supersolution and any subsolution, which will guarantee uniqueness of the viscosity solution.
Besides, we want to prove that the value function verifies a dynamic programming principle and is
the unique solution of a HJB equation. The difficulty here is that the space of Borel probability
measures does not have a smooth structure. This space is infinite dimensional and when equipped
with the Wasserstein distance dW , it is a compact and separable geodesic space (see for instance
[33, 32, 3, 4]).

In [17, 13, 18, 20] and references therein, viscosity solutions are defined by using a notion of
viscosity sub/super gradient. Our approach is different. We aim at defining a viscosity notion (and
test functions) in the Wasserstein space (P2(M), dW ) in a way that generalizes the one already
known in Euclidean spaces or Riemannian manifolds. In P2(M), real valued Lipschitz functions
that can be represented as a difference of two semi-convex functions (DC functions in short) admit
directional derivatives at every point µ ∈ P2(M). The key idea of this paper is to consider DC
functions as test functions, and define the notion of viscosity solutions using this set of functions. To
do so, we use the characterization of geodesics in P2(M) to define directional derivatives in P2(M)
and we define an appropriate notion of tangent space at any point µ ∈ P2(M) that encodes all the
information about initial velocities of geodesics in the Wasserstein space.

This paper is organized as follows: in section 2, we introduce the optimal control problem
and we prove that the value function is Lipschitz continuous and verifies a dynamic programming
principle. In section 3, we recall some geometric properties of the Wasserstein space (P2(M), dW ).
In particular (see [19, 24]), we recall an abstract notion of tangent cone at a point µ in P2(M). We
then define a notion of differentiable functions in P2(M) and we discuss the relation between the
“analytic tangent space” usually used in optimal transport and the tangent cone at µ. In section 4,
we present the main contribution of the present paper. We go back to our optimal control problem
and we prove that the value function is the unique viscosity solution to an HJB equation of the
form (3) by transposing viscosity theory techniques to the Wasserstein space P2(M).

2. Setting of the problem

Throughout this manuscript, (M, 〈., .〉) is a finite dimensional, compact and connected Rieman-
nian manifold without boundary. We denote by | . | the associated norm on the tangent bundle TM ,
and by d(., .) its Riemannian distance on M . The metric space (M,d), is a complete and compact
space and its topology is equivalent to the topology of the differentiable manifold M . The tangent
bundle TM is itself a complete Riemannian manifold when endowed with the Sasaki metric [30].
We denote by dTM (., .) the Riemannian distance on TM associated with the Sasaki metric (see
Appendix B).

We denote by P(M) the set of Borel probability measures over M and P2(M) the set of Borel
probability measures with bounded second moment

P2(M) := {µ ∈ P(M) :
ˆ
d2(x, x0)dµ(x) <∞, ∀x0 ∈M }.

Actually, since M is compact, we have P2(M) = P(M) but we will keep using the notation P2(M).
Recall that for any two topological spaces X and Y , any Borel probability measure µ on X and any
Borel function g : X → Y , the pushforward measure g]µ on Y is defined by

g]µ(A) = µ(g−1(A)) ∀A ⊂ Y, a Borel set,
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or equivalently,
ˆ
h dg]µ =

ˆ
h ◦ g dµ, ∀h : Y → R, Borel measurable and bounded.

We define the Wasserstein distance dW (., .) over P2(M) by

dW (µ, ν) :=
√

inf
{ ˆ

d2(x, y)dγ(x, y)
}
,

where the infimum is taken over all Borel probability measures of M ×M that have marginals µ
and ν, i.e.

γ(A×M) = µ(A) and γ(M ×B) = ν(B) ∀A,B, Borel sets of M.

Such Borel probability measures are called admissible plans of µ and ν and the set of such plans
is denoted Adm(µ, ν). It is well known that dW verifies all the axioms of a distance and that the
infinimum is always reached [3, Theorem 1.5]. The admissible plans where the minimum is achieved
are called optimal transport plans and the set of such plans is denoted Opt(µ, ν) ⊂ Adm(µ, ν).

Let T > 0 and U be a compact subset of a metric space. Consider the dynamics, defined for
T > t0 ≥ 0 and x0 ∈M , as {

Ẏ (t) = f(Y (t), u(t)), t ∈ [t0, T ],
Y (t0) = x0, u(t) ∈ U,

(4)

where f : M × U → TM satisfies the following assumptions:

(H)
{
f : M × U → TM is continuous and Lipschitz continuous with respect to the state, i.e.

∃ k > 0 : dTM (f(x, u), f(y, u)) ≤ k d(x, y), ∀ u ∈ U, (x, y) ∈M ×M.

(H)co : for all x ∈M , the set f(x, U) := {f(x, u) : u ∈ U} is convex.

Remark 2.1. Hypotheses (H) and (H)co are classical for optimal control problems (see [14, 5] for a
detailed study). Also, since M and U are compact, then the vector field f is bounded. Furthermore,
the Lipschitz assumption on f(., u) in Hypothesis (H) is equivalent to the following: there exists
k′ > 0 such that for all u ∈ U , x, y ∈ M and every smooth curve α : [0, 1] → M joining x and y,
we have

|ταx,y(f(x, u))− f(y, u)|≤ k′ length(α),

with ταx,y is the parallel transport of f(x, u) along the curve α and length(α) is the Riemannian
length of the curve α (see [31, Lemma II.A.2.4]). We set

Lip(f) := max(k, k′).
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We define the set of open-loop controls by

U := {u : [0, T ]→ U : u(.) is measurable}.

Under the assumption (H), classical results of ordinary differential equations hold. In particular,
for any control u(.) ∈ U and x0 ∈M , there exists a unique Lipschitz trajectory t 7→ Y t0,x0,u

t defined
on all [t0, T ]. Moreover, we have the following estimates:

Proposition 2.2. There exist C1, C2 > 0 positive constants such that for all x0, z0 ∈ M , for all
t0 ∈ [0, T ], and t 7→ Y t0,x0,u

t , t 7→ Y t0,z0,u
t be solutions of (4), it holds:

d(Y t0,x0,u
T , Y t0,z0,u

T ) ≤ C1 d(x0, z0),

d(Y t0,x0,u
t , x0) ≤ C2 |t− t0|, t ∈ [t0, T ].

Proof. (Sketch). Since M is compact, then all the statements are local in nature. The global result
is obtained by compactness of M and of [t0, T ]. First, by using Nash embedding theorem, M can
be embedded isometrically into a Euclidean space (RN , ||.||), with N > 0 big enough. Let x0 ∈ M
and V be a small enough open neighborhood of x0. Then for z0 ∈ V we can apply the usual theory
in RN and get

||Y t0,x0,u
T − Y t0,z0,u

T || ≤ eLip(f)T ||x0 − z0||.

Then by using the fact that the Euclidean distance is equivalent to the Riemannian distance in V ,
we get the result. The second assertion can be established with similar arguments, by taking t small
enough so that Y t0,x0,u

t ∈ V .

The control problem aims at minimizing the final cost

L(µ0) =
ˆ
l(Y t0,x0,u

T ) dµ0(x0),

over all trajectories that are solutions of the dynamics (4) with the initial condition x0 ∈ M ,
distributed along the measure µ0 ∈ P2(M). We consider the following assumption:

(Hl) l : M → R is Lipschitz continuous with constant Lip(l).

When µ0 is equal to the Dirac mass δx0 , the resulting system corresponds to the classical case
without uncertainties on the initial condition. This problem is thoroughly studied in the literature.
In particular, it is known that the set of trajectories of (4) is a compact set of C([t0, T ],M) and
therefore the optimal control problem admits a solution. When µ0 is any probability measure of
P2(M), it is better to see this problem as an optimal control problem defined on the space of Borel
probability measures P2(M). First we rewrite the final cost the following way

L(µ0) =
ˆ
l(Y t0,x0,u

T ) dµ0(x0) =
ˆ
l(y) dY t0,.,.u

t ]µ0 (y),

and we minimize this cost over the set of trajectories t 7→ µµ0,u
t of the space P2(M) that verify{

µµ0,u
t = Y t0,.,u

t ]µ0, t ∈ [t0, T ], and x 7→ Y t0,x,u
t is the flow of (4),

µµ0,u
t0 = µ0.
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Furthermore, since for any t 7→ u(t), the vector field f(., u(t)) is uniformly Lipschitz continuous
(see Remark 2.1), then the trajectory t 7→ µµ0,u

t is the unique continuous solution of the continuity
equation (see [4, 8]) {

∂tµ
µ0,u
t + div(f(., u(t))µµ0,u

t ) = 0, t ∈ (t0, T ),
µµ0,u
t0 = µ0,

and the equation is understood in the sense of distributions, i.e.
ˆ T

0

ˆ
M

(∂tφ(t, x) + 〈∇xφ(t, x), f(x, u(t))〉) dµt(x)dt = 0, ∀φ ∈ C∞c ((0, T )×M).

Therefore, the above optimal control problem can be rewritten as
inf
u∈U

ˆ
l(y)dµµ0,u

T (y),

such that
{
∂tµ

µ0,u
t + div(f(., u(t))µµ0,u

t ) = 0, t ∈ (t0, T ),
µµ0,u
t0 = µ0,

(5)

and the infinimum is reached. It is worth pointing out that unlike the existing literature on this
particular problem (see [13] and references therein) or more generally optimal control problems in
the space of probability measures [29], the base space here is not the Euclidean space but rather a
compact Riemannian manifold.

Under hypotheses (H) and (Hl), we can already prove two properties of the value function.

Theorem 2.3 (Dynamic programming principle). Let µ ∈ P2(M), t ∈ [0, T ] and h ∈ [t, T − t].
Then it holds

ϑ(t, µ) = inf
u∈U

ϑ(t+ h, Y t,.,u
t+h ]µ).

Proof. Let u0(.) ∈ U be such that

ϑ(t, µ) =
ˆ
l(Y t,x,u0

T )dµ(x).

We have

ϑ(t, µ) =
ˆ
l(Y t,x,u0

T )dµ(x) =
ˆ
l(Y t+h,x,u0

T )dY t,.,u0
t+h ]µ(x)dµ(x)

≥ inf
u∈U

ˆ
l(Y t+h,x,u

T )dY t,.,u
t+h ]µ(x) = ϑ(t+ h, Y t,.,u

t+h ]µ).

It remains to prove the other inequality. There exists, u(.) : [t, T ] → U such that the restriction
uh : u|[t+h,T ] verifies

ϑ(t+ h, Y t,.,u
t+h ]µ) =

ˆ
l(Y t+h,x,uh

T )d Y t,.,uh
t+h ]µ(x).

On the other hand, we have

ϑ(t, µ) ≤
ˆ
l(Y t,x,u

T )dµ(x) =
ˆ
l(Y t+h,x,uh

T )dY t,.,uh
t+h ]µ(x) ≤ ϑ(t+ h, Y t,.,u

t+h ]µ),

hence the result.
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Proposition 2.4. Assume (H) and (Hl). Then, the value function ϑ is Lipschitz continuous on
[0, T ]× P2(M). In particular, ϑ is bounded.

Proof. Let t ∈ [0, T ], µ, σ ∈ P2(M). There exists a trajectory s 7→ Y t,x,u
s such thatˆ

l(Y t,x,u
T )dσ(x) = ϑ(t, σ).

Hence, we have
ϑ(t, µ)− ϑ(t, σ) ≤

ˆ
l(Y t,x,u

T )dµ(x)−
ˆ
l(Y t,x,u

T )dσ(x).

Let γ ∈ Opt(µ, σ). Then we getˆ
l(Y t,x,u

T )dµ(x)−
ˆ
l(Y t,x,u

T )dσ(x) =
ˆ (

l(Y t,x,u
T )− l(Y t,y,u

T )
)
dγ(x, y)

≤ Lip(l)C1

ˆ
d(x, y)dγ(x, y)

≤ Lip(l)C1

√ˆ
d2(x, y)dγ(x, y) = Lip(l)C1dW (µ, σ),

where C1 > 0 is defined in Proposition 2.2. Thus we get

ϑ(t, µ)− ϑ(t, σ) ≤ Lip(l)C1dW (µ, σ).

We can exchange the roles of σ and µ to get the exact same inequality. Therefore, we get the
Lipschitz continuity with respect to the state variable. To prove Lipschitz continuity with respect
to time, let t, s ∈ [0, T ]. We assume, without loss of generality, that 0 ≤ t < s ≤ T . By Theorem
2.3, there exists a trajectory r 7→ Y t,x,u

r such that

ϑ(t, σ) = ϑ(s, Y t,.,u
s ]σ).

We have

|ϑ(s, σ)− ϑ(t, σ)| =|ϑ(s, σ)− ϑ(s, Y t,.,u
s ]σ)|

≤ Lip(l)C1dW (σ, Y t,.,u
s ]σ)

≤ C2 Lip(f)C1|t− s|,

where C1, C2 > 0 are defined in Proposition 2.2. Thus ϑ is Lipschitz continuous with respect to the
time variable, and the proof is completed.

In the classical theory of viscosity, the value function is the unique viscosity solution of the
Hamilton Jacobi Bellman equation. The goal of the next two sections is to show that the value
function, in this setting, is also a viscosity solution to a Hamilton Jacobi Bellman equation of the
form {

∂tv +H(µ,Dµv) = 0, (t, µ) ∈ [0, T )× P2(M),
v(T, µ) = L(µ),

where the Hamiltonian will be defined precisely later. To do so, we will define a notion of differ-
entiable functions in the Wasserstein space so that the notation Dµv will become rigorous. Fur-
thermore, we will define the test functions we are going to use to define viscosity solutions. This
requires us to first study the geometric structure of the Wasserstein space.
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3. Wasserstein space over compact Riemannian Manifolds

The results of this section are taken from [19, 2]. The first subsection aims to describe the
geodesics in Wasserstein space. In the second subsection we give the definition of the tangent cone
at a point µ ∈ P2(M) obtained using tools of metric geometry. Finally in the last subsection we give
the definition of differentiable functions in Wasserstein spaces and we give an explicit expression of
the differential of the squared Wasserstein distance. All these tools are going to be necessary to give
a precise definition of the Hamiltonian, classical solutions and viscosity notion for HJB equations
in P2(M).

3.1. Geometric and topological properties of Wasserstein space
The Wasserstein space (P2(M), dW ) shares many geometric and topological properties with the

base space (M,d). Indeed, since (M,d) is a Polish space (because it is a complete and separable
metric space), then (P2(M), dW ) is a Polish space. Also, since M is compact, then (P2(M), dW ) is
also compact (see [33, chapter 6]).

Next, we recall some general definitions on metric spaces. Let (X, dX) be a metric space. A
curve α : [0, 1]→ X is called a minimizing constant speed geodesic if

dX(αt, αs) =|t− s|dX(α0, α1).

The metric space (X, dX) is said to be a geodesic space if any two points of X are connected by at
least one minimizing constant speed geodesic. In what follows, we intend by ‘geodesic’, a minimizing
constant speed geodesic. Note that the metric spaces (M,d) and (TM, dTM ) are geodesic spaces.
Furthermore, the Wasserstein space (P2(M), dW ) inherits this property from (M,d) and is also a
geodesic space (see [4] or [33]).

We denote by P(TM) the set of Borel probability measures over TM . Since (TM, dTM ) is a
complete geodesic space, we can define the Wasserstein space over TM

P2(TM) = { η ∈ P(TM) :
ˆ
d2
TM

(
(x, v), (x0, v0)

)
dη(x, v) <∞, ∀ (x0, v0) ∈ TM } (6)

endowed with the following Wasserstein distance for any η, γ ∈ P2(TM):

dW (γ, η) :=
√

inf
{ ˆ

d2
TM (x, y)dα(x, y)

}
,

the infinimum is taken over all admissible plans α with marginals γ and η. Notice that we kept the
same notation for the Wasserstein distance. It would be clear from the context which base space is
considered. Moreover, it is sufficient that the condition

ˆ
d2
TM

(
(x, v), (x0, v0)

)
dη(x, v) <∞, ∀ (x0, v0) ∈ TM

in (6) be verified for only one point (x0, v0) ∈ TM . Thus if we take (x0, 0x0) ∈ TM , then this
condition is equivalent to ˆ

|v|2dη(x, v) <∞.
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For µ ∈ P2(M), we denote by P2(TM)µ ⊂ P2(TM), the set of plans γ such that πM ]γ = µ, where
πM : TM → M is the canonical projection onto M . This set is equivalent to the set of plans
γ ∈ P(TM) such that

πM ]γ = µ, and
ˆ
|v|2dγ(x, v) <∞.

Let exp : TM → M be the exponential map of (M, 〈., .〉). The exponential expµ(γ) of a plan
γ ∈ P2(TM)µ is defined by

expµ(γ) := exp ]γ ∈ P2(M).

We define the map exp−1
µ : P2(M)→ P2(TM)µ by

exp−1
µ (ν) := { γ ∈ P2(TM)µ : expµ(γ) = ν and

ˆ
|v|2 dγ(x, v) = (dW (µ, ν))2 },

or in other words, the set of plans γ ∈ P2(TM) such that (πM , exp)]γ is an optimal plan from µ to
ν and

ˆ
|v|2 dγ(x, v) = (dW (µ, ν))2. We introduce the following notation

∆t(x, v) = (x, tv), ∀t ∈ R, (x, v) ∈ TM.

Remark 3.1. The map exp−1
µ is not really an inverse map to expµ since only optimal plans in

the inverse image of ν are considered. While this might seem confusing, the map exp−1
µ is defined

this way so that for all γ ∈ exp−1
µ (ν), the curve t → exp(∆t)]γ is a geodesic connecting µ and ν,

see the theorem below.

Theorem 3.2. ([19, Theorem 1.11]) Let µ, ν ∈ P2(M). A curve (µt)t∈[0,1] ⊂ P2(M) is a geodesic
connecting µ to ν if and only if there exists a plan γ ∈ exp−1

µ (ν) such that

µt := exp ◦∆t]γ, ∀ t ∈ [0, 1]. (7)

The plan γ is uniquely identified by the geodesic. Moreover, for any t ∈ (0, 1) there exists a unique
optimal plan from µ to µt. Finally, if there exist two different geodesics connecting µ to ν, they do
not intersect in intermediate times (i.e. on (0, 1)).

Introducing the following rescaling of a plan:

t � γ = ∆t]γ, ∀t ∈ R, γ ∈ P2(TM),

equation (7) can be rewritten in a more elegant way as

µt = exp ◦∆t]γ = expµ(t � γ), ∀t ∈ [0, 1].

From Theorem 3.2, we get the following result about geodesics emanating from any µ ∈ P2(M).

Proposition 3.3. ([19, Proposition 1.12]) Let µ ∈ P2(M) and let (µt)t be a geodesic emanating
from µ and defined in some interval [0, ε], with ε > 0. Then there exists a unique plan γ ∈ P2(TM)µ
such that

µt = expµ(t � γ), ∀t ∈ [0, ε].
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In what follows, we will need to use couplings of plans in P2(TM)µ. We denote by T 2M the set

T 2M :=
{

(x, v1, v2) : v1, v2 ∈ TxM
}
.

We equip this set with the following distance:

d2
T 2M

(
(x, v1, v2), (y, w1, w2)

)
:= d2

TM

(
(x, v1), (y, w1)

)
+ d2

TM

(
(x, v2), (y, w2)

)
.

We define the following three projections πM , π1, π2

πM (x, v1, v2) = x ∈M, π1(x, v1, v2) = (x, v1) ∈ TM, π2(x, v1, v2) = (x, v2) ∈ TM.

Then, consider the Wasserstein space P2(T 2M) over (T 2M,d2
T 2M ). A plan α ∈ P2(T 2M) is said to

be an admissible coupling of γ1, γ2 ∈ P2(TM)µ if

π1]α = γ1, π2]α = γ2,

and we write α ∈ Admµ(γ1, γ2).

To summarize, we have seen in this section that the Wasserstein space (P2(M), dW ) is a compact
geodesic space, and its geodesics can be characterized by plans of P2(TM) as shown in Proposition
3.3. Next, we are going to define a notion of “tangent space” of the Wasserstein space.

3.2. Tangent cone of Wasserstein space
The space (P2(M), dW ) has a formal Riemannian structure. This has been first pointed out by

Otto in [25]. loosely speaking, it was noticed that given an absolutely continuous curve I 3 t 7→ µt
in P2(M), there exists a family of vector fields (vt) in M , defined for almost every t, such that
vt ∈ L2

µt (with L2
µt is the space of squared integrable vector fields with respect to µt) and the

following continuity equation
d

dt
µt + div(vtµt) = 0, (8)

is satisfied in the distributional sense, i.e.
ˆ
I

ˆ
M

(∂tφ(t, x) + 〈∇xφ(t, x), vt(x)〉) dµt(x)dt = 0, ∀φ ∈ C∞c (I ×M).

First, notice that there is no unique choice of vt. Indeed, all the vector fields of the form

vt + {∇ψ : ψ ∈ C∞(M)}⊥

also satisfy (8) in the distributional sense (the set {∇ψ : ψ ∈ C∞(M)}⊥ is the orthogonal set to
{∇ψ : ψ ∈ C∞(M)} in L2

µt). This means that vt acts only on gradients of smooth functions in the
continuity equation. Furthermore, the previous observation means that one can select the vt’s to
belong to the set of gradients. Hence, one could consider the following space of gradients at some
µ ∈ P2(M)

SpGrµ(P2(M)) := {∇φ : φ ∈ C∞(M)}L
2
µ ,
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to be the tangent space of P2(M) at µ. This construction is analytical and it has the advantage to
retain the link between the tangent space and the continuity equation (8). On the other hand, it
was shown in [19, 24] that the space of gradients is linked to the so-called tangent cone, a notion
that is central in metric geometry, much like the notion of tangent space in Riemannian geometry,
and could be defined for any geodesic space. The tangent cone is constructed in a purely geometric
way using only germs of geodesics. Roughly speaking, geodesics in the Wasserstein space are of the
following form:

µt = expµ(t � γ), γ ∈ P2(TM)µ.

These plans can be seen as “initial velocities” of Wasserstein geodesics. The set of such plans that
produce geodesics starting from µ0 generates the tangent cone at µ0. Actually, we will see that we
have the following analogy between M and P2(M):

Space M P2(M)
Geodesics t→ expx(tv) t→ expµ(t � γ)
Tangent space TxM γ ∈ P2(TM)µ, such that t→ expµ(t � γ) is a geodesic
Tangent bundle TM P2(TM)

We start first by introducing the tangent cone at any point µ ∈ P2(M), then we will define a notion
of differentiable functions in P2(M) and show that the squared Wasserstein distance is differentiable.
Finally, we will highlight the link between the space of gradients and the tangent cone.

Let µ ∈ P2(M). We denote by Geoµ(P2(M)) the set of all geodesics emanating from µ. Let
(µt), (νt) ∈ Geoµ(P2(M)) be two geodesics emanating from µ. We define the following equivalence
relation on Geoµ(P2(M)):

(µt) R (νt) if and only if µt = νt in some right neighborhood [0, ε], with ε > 0.

The quotient space Geoµ(P2(M))/R, is called the spaces of directions. We denote the equiva-
lence class of the geodesic (µt) starting from µ by [µt]. This equivalence class represents the initial
velocities of geodesics starting from µ.

Proposition 3.4. ([19, Proposition 3.6]). Let µ ∈ P2(M) and (µt), (νt) ∈ Geoµ(P2(M)) be two
geodesics emanating from µ and defined in some right neighborhood of 0. Then the following limit
exists:

dWµ ([µt], [νt]) := lim
ε↓0

dW (µεt, νεt)
ε

.

This limit defines a distance in the space of directions Geoµ(P2(M))/R.

The completion of Geoµ(P2(M))/R with respect to dWµ is going to be play the role of the tangent
space. Actually, this set does not have the structure of a vector space but rather a structure of a
cone. Hence it is called the tangent cone.

Definition 3.5. ([19, Definition 3.7] Tangent cone). Let µ ∈ P2(M). The tangent cone at µ of
P2(M) is defined as:

TµP2(M) := Geoµ(P2(M))/R dWµ ,

the closure is with respect to the distance dWµ .
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This notion of tangent cone is abstract and it is constructed only from the geodesics and the
Wasserstein distance. Actually, this construction is valid for any geodesic space (see [12, 10, 11, 2]
for more details). From its definition, the tangent cone is defined only up to an isometry. Therefore,
we are going to choose an isometric representative specific to the Wasserstein space.

Definition 3.6 (The distance Wµ). Let µ ∈ P2(M) and γ, η ∈ P2(TM)µ. We define the following
distance on P2(TM)µ:

W 2
µ(γ, η) :=

ˆ (
dW (γx, ηx)

)2
dµ(x),

where (γx)x∈M and (ηx)x∈M are the disintegration with respect to the projection πM (see Appendix
A).

Proposition 3.7. ([19, Proposition 5.2]). Let µ ∈ P2(M) and γ, η ∈ P2(TM)µ. Then

Wµ(γ, η) =
√

inf
α∈Admµ(γ,η)

ˆ
|v1 − v2|2 dα(x, v1, v2) ,

where α ∈ P2(T 2M) is an admissible coupling of γ and η. The infinimum is achieved, Wµ defines
a distance on P2(TM)µ and the metric space (P2(TM)µ,Wµ) is complete and separable.

Now, we get to the isometric representative of the tangent cone.

Theorem 3.8. ([19, theorem 5.5] Representation of the tangent cone). Let µ ∈ P2(M). The space
of directions (Geoµ(P2(M))/R, dWµ ) is (isometric to) the following subset of (P2(TM)µ,Wµ),

Dirµ :=
{
γ ∈ P2(TM)µ : t 7→ expµ(t � γ) is a geodesic in some neighborhood [0, ε].

}
.

Given two geodesics t 7→ µt = expµ(t � γ), t 7→ νt = expµ(t � η), starting from µ and defined in a
right neighborhood of 0, we have the following equality:

dWµ ([µt], [νt]) = lim
ε↓0

dW (expµ(εt � γ), expµ(εs � η))
ε

=
√ˆ (

dW (γx, ηx)
)2
dµ(x) = Wµ(γ, η).

Hence, we write
[µt] = η, [νt] = γ,

to be the directions of (µt) and (νt) respectively.
The tangent cone (TµP2(M), dWµ ) is (isometric to) the following subset

TµP2(M) = Dirµ
Wµ

=
{
γ ∈ P2(TM)µ : t 7→ expµ(t � γ) is a geodesic in some neighborhood [0, ε].

}Wµ

,(9)

with the closure taken with respect to the distance Wµ.

Furthermore, one can see clearly the structure of a cone on TµP2(M) since we have

∀γ ∈ TµP2(M), ∀λ ∈ R+, λ � γ ∈ TµP2(M).

We end this section with a definition of velocity of curves.
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Definition 3.9 (Velocity of curves). Let α : [0, a)→ P2(M) be a curve in P2(M) such that α0 = µ.
We say that γ ∈ TµP2(M) is the derivative of α at 0, if there exists a sequence of γ(n) ∈ Dirµ such
that γ(n) converges to γ, and a sequence of geodesics α(n) such that α(n)

t = expµ(t � γ(n)) and

lim
n→∞

[
lim sup
ε→0

d(αε, α(n)
ε )

ε

]
= 0.

In this case, γ is also called velocity of α at 0.

Notice that if α is a geodesic, then the definition is trivially verified and γ ∈ Dirµ.

3.3. Differentiable functions and DC functions
In P2(M), semiconvex and semiconcave functions admit directional derivatives at every point.

Furthermore, their directional derivatives are used to construct a notion of a differential at every
point. These functions are going to serve us as test functions in the definition of viscosity solutions.
Moreover, the squared distance function

(
dW (., σ)

)2 (for some σ ∈ P2(M) fixed) is a semiconcave
function and an explicit formula will be given for its directional derivatives at every point.

Definition 3.10 (Differential). Let F : P2(M) → R be a given function. We say that φ :
TµP2(M) → R is the differential of F at µ ∈ P2(M) if for any map α : [0, a) → P2(M) such
that α(0) = µ and α admits a velocity at 0 (in the sense of Definition 3.9), denoted γ ∈ TµP2(M),
the derivative at 0 of the curve F ◦ α is equal to φ(γ). The function φ is denoted by DµF .

Real valued Lipschitz functions of P2(M) that can be represented as a difference of semiconvex
functions behave well in this setting.
Definition 3.11 (Semiconvex functions). Let F : P2(M)→ R be a given function. We say that F
is semiconvex if there exists λ ∈ R such that for every geodesic α : [0, 1] → P2(M) the following
inequality holds

F (αt) ≤ (1− t)F (α0) + tF (α1)− λ

2 t(1− t)d
2
W (α0, α1).

Definition 3.12 (Directional derivative). Let F : P2(M) → R be a Lipschitz and semiconvex
function. Let µ ∈ P2(M). The directional derivative of F at µ along a geodesic α emanating from
µ is defined as:

σµF (α) := lim
h↓0

F (αh)− F (α0)
h

.

The limit exists by the monotonicity of incremental ratios of convex functions. The fact that the
limit is finite comes from the Lipschitz assumption on F .

Proposition 3.13. ([2, Proposition 5.7.2] Differential of semiconvex functions). Let F : P2(M)→
R be a Lipschitz and semiconvex function. Let µ ∈ P2(M). Then F is differentiable at µ.

Moreover, the differential DµF : TµP2(M) → R, is such that its restriction to the dense set
Dirµ is equal to

DµF � γ = σµF (α) ∀ γ ∈ Dirµ, and αt = expµ(t � γ) in a right neighborhood of 0.

Furthermore, the differential is Lipschitz and positively 1-homogeneous, i.e.

DµF � (λ � γ) = λDµF � γ, for any γ ∈ TµP2(M) and λ ≥ 0.
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Definition 3.14 (Semiconcave functions). Let F : P2(M) → R be a function. We say that F
semiconcave if and only if (−F ) is semiconvex.

From Proposition 3.13, if F is Lipschitz and semiconcave, then it is differentiable and the
differential is Lipschitz and positively 1-homogeneous.

Definition 3.15 (DC functions). Let F : P2(M)→ R be a given function. We say that F is DC if
it can be represented as a difference of Lipschitz and semiconvex functions.

From Proposition 3.13, if F is DC, then it is differentiable and the differential is Lipschitz and
positively 1-homogeneous.

Definition 3.16 (Notation). For µ ∈ P2(M), we denote by Lip1(TµP2(M)) the class of Lipschitz
and positively 1-homogeneous functions of TµP2(M) and we set

Lip1(TP2(M)) :=
⋃

µ∈P2(M)
{µ} × Lip1(TµP2(M)).

Next, we define the differential of the squared Wasserstein distance. First, we recall some facts
about the Riemannian distance d2(., y), for some y ∈ M fixed. Since M is compact, then the
squared distance function is semiconcave, i.e. there exists a constant C ∈ R+ such that for any
geodesic α : [0, 1]→M emanating from x ∈M , we have

d2(y, αt) ≥ (1− t)d2(y, α0) + td2(y, α1)− Ct(1− t)d2(α0, α1). (10)

From equality (10), one can show the following.

Proposition 3.17. ([24, Proposition 3.1], [19, Proposition 4.1]). Let µ ∈ P2(M), γ ∈ P2(TM)µ,
and a curve t 7→ expµ(t � γ), not necessarily a geodesic, defined on [0, 1]. Then the function
t 7→ (dW (σ, µt))2, for some σ ∈ P2(M) fixed, is semiconcave with constant C, i.e.(

dW (σ, µt)
)2
≥ (1− t)

(
dW (σ, µ0)

)2
+ t
(
dW (σ, µ1)

)2
− Ct(1− t)

(
dW (µ0, µ1)

)2
.

In particular, we get that the function (dW (., σ))2 is semiconcave in the sense of definition 3.14,
if we take γ ∈ Dirµ (i.e. t 7→ expµ(t � γ) is a geodesic). Hence it is differentiable in the sense of
Definition 3.10. In fact, we have a more general result summarized in the following theorem:

Theorem 3.18. ([19, Theorem 4.2]). Let µ, σ ∈ P2(M), Let γ ∈ P2(TM)µ, and any curve
t 7→ expµ(t � γ) starting from µ, not necessarily a geodesic. Then it holds

d

dt

∣∣∣
t=0

(dW (expµ(t � γ), σ))2 = −2 sup
β

ˆ
〈v1, v2〉dβ(x, v1, v2), (11)

where the supremum is taken over all β ∈ P2(T 2M), such that

π1]β = γ, and π2]β ∈ exp−1
µ (σ).
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Notice that if γ is of the form γ = g]µ, with g a squared integrable vector field with respect to
µ, then equation (11) becomes

d

dt

∣∣∣
t=0

(dW (expµ(t � γ), σ))2 = −2 sup
ζ∈exp−1

µ (σ)

ˆ
〈g(x), v〉dζ(x, v). (12)

If γ ∈ TµP2(M), then by Proposition 3.13, we get

Dµ(dW (., σ))2 � γ = d

dt

∣∣∣
t=0

(dW (expµ(t � γ), σ))2.

3.4. Link with the space of gradients
Usually, the ‘space of gradients’ is the one taken as the tangent space. We recall that the space

of gradients at a point µ ∈ P2(M) is

SpGrµ(P2(M)) := {∇φ : φ ∈ C∞(M) }L
2
µ ,

where C∞(M) is the space of smooth functions and L2
µ is the space of squared integrable vector fields

with respect to µ. There is a deep link between the tangent cone and the space of gradients, given
by the barycentric projection: first observe that there is a natural embedding ςµ : L2

µ 7→ P2(TM)µ
given by

ςµ(g) = g]µ,

and it is an isometry. Consequently, a transport plan γ ∈ P2(TM)µ is induced by a map if γ = ςµ(g),
for some g ∈ L2

µ. The right inverse of ςµ(.) is the barycentric projection

B(γ)(x) =
ˆ
v dγx(v),

where {γx}x∈M is the disintegration of γ with respect to the projection πM (see appendix A). The
barycentric projection is characterized by the following equality,

ˆ
〈u(x), v〉dγ(x, v) =

ˆ
〈u(x),

ˆ
vdγx(v)〉 dπM ]γ(x) =

ˆ
〈u,B(γ)〉 dµ, ∀u ∈ L2

µ.

The barycentric projection links the tangent cone with the space of gradients in the following way.

Proposition 3.19. ([19, Corollary 6.4]). Let µ ∈ P2(M), then

B(TµP2(M)) = SpGrµ(P2(M)),

which is equivalent to

SpGrµ(P2(M)) = {g ∈ L2
µ : ςµ(g) ∈ TµP2(M)}.
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Remark 3.20. If µ ∈ P2(M) is an absolutely continuous measure, then Proposition 3.19 shows
that there is a 1 to 1 correspondence between the space of gradients and the tangent cone via the
isometry ςµ [19, Corollary 6.6]. Indeed, in this case, a result due to McCann [23] shows that all
geodesics emanating from µ are of the form

µt = exp(t∇φ)]µ, with φ : M → R is a semiconvex function.

In particular, the tangent cone is a Hilbert space when µ is absolutely continuous. Another conse-
quence of Proposition 3.19 is that given g ∈ L2

µ and πµ : L2
µ → SpGrµ(P2(M)) is the orthogonal

projection onto SpGrµ(P2(M)), the plan πµ ◦ g]µ belongs to the tangent cone, i.e.

πµ ◦ g]µ ∈ TµP2(M),

since πµ ◦ g ∈ SpGrµ(P2(M)).

From Proposition 3.19, we know that if ζ ∈ TµP2(M), then B(ζ) ∈ SpGrµ(P2(M)). Hence, we
can deduce that equation (12) is equal to ( γ = g]µ )

d

dt

∣∣∣
t=0

(dW (expµ(t � γ), σ))2 = −2 sup
ζ∈exp−1

µ (σ)

ˆ
〈g(x),

ˆ
vdζx(v)〉dµ(x)

= −2 sup
ζ∈exp−1

µ (σ)

ˆ
〈g(x),B(ζ)(x)〉dµ(x)

(3.19)= −2 sup
ζ∈exp−1

µ (σ)

ˆ
〈πµ ◦ g(x),B(ζ)(x)〉dµ(x)

= −2 sup
ζ∈exp−1

µ (σ)

ˆ
〈πµ ◦ g(x), v〉dζ(x, v).

Remark 3.21. The above equality shows that for any µ ∈ P2(M), the derivative of the squared
Wasserstein distance along plans of the form γ = g]µ, with g ∈ L2

µ, acts only on their projection onto
the space of gradients. Consequently, one can always consider that the derivative along transport
plans of the form γ = g]µ, is a derivative in the sense of Proposition 3.13, i.e.

d

dt

∣∣∣
t=0

(dW (expµ(t � γ), σ))2 = d

dt

∣∣∣
t=0

(dW (exp(t g)]µ, σ))2

= −2 sup
ζ∈exp−1

µ (σ)

ˆ
〈πµ ◦ g(x), v〉dζ(x, v)

= d

dt

∣∣∣
t=0

(dW (exp(t πµ ◦ g)]µ, σ))2

= Dµ(dW (., σ))2�
(
πµ ◦ g]µ

)
,

since πµ ◦ g]µ ∈ TµP2(M) by Proposition 3.19.

4. Time-dependent Hamilton Jacobi Bellman equation in P2(M)

We have defined all the elements we need to give a precise definition of the Hamiltonian, vis-
cosity solutions and test functions. In this section, we prove that the value function is the unique
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viscosity solution to a Hamilton Jacobi Bellman equation. We recall the following notation from
Section 3: Lip1(T (P2(M))) =

⋃
µ∈P2(M)

{µ}×Lip1(Tµ(P2(M))). Consider the following Hamiltonian

H : Lip1(T (P2(M)))→ R defined by

H(µ,Dµv) = inf
u∈U

Dµv �
(
πµ ◦ f(., u)]µ

)
, (13)

where v : P2(M) → R is a differentiable function in the sense of Definition 3.10. Notice that by
Remark 3.21, πµ ◦ f(., u)]µ ∈ TµP2(M), for any µ ∈ P2(M), and that the quantity

Dµv �
(
πµ ◦ f(., u)]µ

)
is well defined for any differentiable function v.

Remark 4.1. The Hamiltonian (13) has the same form as in the classical case. In fact, if µ = δx,
is the Dirac measure for some x ∈M , then we have

L2
δx = TxM, (πµ ◦ f(., u))]δx = δf(x,u), H(δx, Dδxv) = inf

u∈U
Dδxv �

(
δf(x,u)

)
,

which is the expression of the Hamiltonian in the absence of uncertainty on the initial condition.

The Hamiltonian used in [13, 20] is similar to ours. In fact, let v : P2(M)→ R be the differen-
tiable function

v(µ) = −(dW (µ, σ))2, ∀ µ ∈ P2(M), and σ ∈ P2(M) fixed.

Then from Theorem 3.18 and Remark 3.21, we get that for all µ ∈ P2(M) an absolutely continuous
measure, the Hamiltonian (13) is equal to

H(µ,Dµv) = inf
u∈U

ˆ
〈∇φ(x), f(x, u)〉dµ(x),

with φ : M → R is a Lipschitz and semiconvex function such that the curve

t 7→ exp(t∇φ)]µ, ∀t ∈ [0, 1],

is the geodesic connecting µ and σ. The above expression of the Hamiltonian is similar to the one
used in [13, 20]. This motivates us to use test functions that are in form of v. We will see bellow
the choice of test functions based on this observation. We consider the following Hamilton Jacobi
equation: {

∂tv +H(µ,Dµv) = 0, (t, µ) ∈ [0, T )× P2(M),
v(T, µ) = L(µ).

(14)

In order for the partial differentials ∂tv and Dµv to be well defined in equation (14), we need the
following lemma.

Lemma 4.2. [10, Proposition I.5.3] (Product of geodesic spaces). Let (Y, dY ) and (Z, dZ) be two
generic geodesic spaces. Then the product (Y × Z, dY×Z) equipped with the distance

d2
Y×Z

(
(y1, z1), (y2, z2)

)
:= d2

Y (y1, y2) + d2
Z(z1, z2),
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is a geodesic space. Furthermore, a curve c : [0, 1] → Y × Z such that ct = (c(1)
t , c

(2)
t ) is a geodesic

if and only if c(1) and c(2) are geodesics in Y and Z respectively.
Lastly, if the tangent cones in (Y, dY ) and (Z, dZ) are defined at every point, then the tangent cone
in (Y ×Z, dY×Z) is defined in a natural way and is equal to the product of tangent cones of (Y, dY )
and (Z, dZ).

We mention that the tangent cone of [0, T ) at 0 is isometric to R+ and is isometric to R at the
other points. Furthermore, notice that, by means of Proposition 4.2, the tangent cone of the product
[0, T )× P2(M) at every point is well defined and is equal to the product of tangent cones of [0, T )
and P2(M). Obviously, the product space [0, T ) × P2(M) is equipped with the distance defined
in Lemma 4.2. Hence, ∂tv and Dµv denote the partial differentials of v with respect to the time
variable and measure variable respectively. The partial derivatives at some (s, µ) ∈ [0, T )×P2(M)
are calculated using geodesics of the form t → (c(1)

t , µ) for the time variable and using geodesics
of the form t → (s, c(2)

t ) for the measure variable. Moreover, Notice that the partial derivative
with respect to time is the usual right derivative in [0, T ). Hence, we will take test functions that
are continuously differentiable with respect to the time variable and in the class of DC functions
with respect to the measure variable, in order to define the notions of viscosity supersolution and
viscosity subsolution.

Definition 4.3. (Test functions).
Let T EST 1 be the set defined as:

T EST 1 := {(t, µ)→ a+bt+c( (dW (µ, σ))2+|t−s|2 ) : a, b ∈ R, c ∈ R+ and (s, σ) ∈ R+×P2(M)}.

We set T EST 2 = −T EST 1 := {−φ : φ ∈ T EST 1}.

Definition 4.4. (Viscosity solutions).

• We say that a function v : [0, T )× P2(M)→ R satisfies the inequality

∂tv +H(µ,Dµv) ≥ 0,

at (t, µ) ∈ [0, T )×P2(M) in the viscosity sense if v is upper semicontinuous and for all T EST 1
functions φ : [0, T )× P2(M)→ R such that v − φ attains a maximum at (t, µ), we have

∂tφ+H(µ,Dµφ) ≥ 0.

A function v satisfying ∂tv+H(µ,Dµv) ≥ 0 on [0, T )×P2(M) in the viscosity sense is called
a viscosity subsolution of (14).

• Similarly, we say that a function v : [0, T )× P2(M)→ R satisfies the inequality

∂tv +H(µ,Dµv) ≤ 0,

at (t, µ) ∈ [0, T )×P2(M) in the viscosity sense if v is lower semicontinuous and for all T EST 2
functions φ : [0, T )× P2(M)→ R such that v − φ attains a minimum at (t, µ), then

∂tφ+H(µ,Dµφ) ≤ 0.

A function v satisfying ∂tv+H(µ,Dµv) ≤ 0 on [0, T )×P2(M) in the viscosity sense is called
a viscosity supersolution of (14).
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• We say that a continuous function v : [0, T ]×P2(M)→ R is a viscosity solution of (14) if it
is both a supersolution and a subsolution on [0, T )× P2(M) and verifies

v(T, µ) = L(µ).

In [13, 20], the notion of viscosity solution is defined by introducing sub/super gradients in the
Wasserstein space. In here, we define test functions that can be considered as “classical solutions” in
Wasserstein space. Furthermore, the comparison result obtained in [13, 20] holds only for uniformly
conitnuous subsolutions and supersolutions. Here, using the approach of test functions, we prove
the comparison principle for equation (14) for any bounded upper semicontinuous subsolution and
bounded lower semicontinuous supersolution. First, we need two key results.

Proposition 4.5. For all σ, µ ∈ P2(M) and c > 0, we have:

H(µ, cDµ(dW (σ, .))2)−H(σ,−cDσ(dW (µ, .))2) ≤ 2cLip(f) (dW (µ, σ))2.

Proof. For any (x, v) ∈ TM , let τx,expx(v) be the parallel transport from x to expx(v) along the
curve [0, 1] 3 t→ expx(tv) (see Appendix B). First, since the parallel transport τx,expx(v) preserves
the Riemannian metric, we have

∀ (x, v) ∈ TM, 〈f(x, u), v〉 = 〈τx,expx(v)(f(x, u)), τx,expx(v)(v)〉 and |τx,expx(v)(v)| =|v|.

Furthermore, since f(., u) is Lipschitz, then by Remark 2.1 we have

∀x ∈M, ∀v ∈ TxM, |τx,expx(v)(f(x, u))− f(expx(v), u)|≤ Lip(f) |v|.

Thus we get for every (x, v) ∈ TM

〈τx,expx(v)(f(x, u)),−τx,expx(v)(v)〉 ≤ 〈f(expx(v), u),−τx,expx(v)(v)〉+ Lip(f)|v||τx,expx(v)(v)|
= 〈f(expx(v), u),−τx,expx(v)(v)〉+ Lip(f)|v|2

Let σ, µ ∈ P2(M), c > 0, ζ ∈ exp−1
µ (σ). Then we have

−
ˆ
〈f(x, u), v〉dζ(x, v) = −

ˆ
〈τx,expx(v)(f(x, u)), τx,expx(v)(v)〉dζ(x, v)

≤
ˆ
〈f(expx(v), u),−τx,expx(v)(v)〉dζ(x, v) + Lip(f)

ˆ
|v|2dζ(x, v)

=
ˆ
〈f(expx(v), u),−τx,expx(v)(v)〉dζ(x, v) + Lip(f)(dW (σ, µ))2,

where the last equality holds since ζ ∈ exp−1
µ (σ). Let Γ : TM → TM defined for every (x, v) ∈ TM

by
Γ(x, v) = (expx(v),−τx,expx(v)(v)).

Then it comes

−
ˆ
〈f(x, u), v〉dζ(x, v) ≤

ˆ
〈f(expx(v), u),−τx,expx(v)(v)〉dζ(x, v) + Lip(f)(dW (σ, µ))2

=
ˆ
〈f(x, u), v〉dΓ]ζ(x, v) + Lip(f)(dW (σ, µ))2.
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Set ζ̃ = Γ]ζ. Notice that we have

πM ]ζ̃ = exp ]ζ = σ, exp ]ζ̃ = πM ]ζ = µ,

ˆ
|v|2dζ̃(x, v) = (dW (µ, σ))2,

since
∀ (x, v) ∈ TM, πM ◦ Γ(x, v) = expx(v), exp ◦Γ(x, v) = x,

and ˆ
|v|2dζ̃(x, v) =

ˆ
| − τx,expx(v)(v)|2dζ(x, v) =

ˆ
|v|2dζ(x, v) = (dW (µ, σ))2.

Thus ζ̃ ∈ exp−1
σ (µ), and therefore it follows from Theorem 3.18 and Remark 3.21 that

Dµ(dW (σ, .))2 � (πµ ◦ f(., u)]µ) ≤ −2
ˆ
〈f(x, u), v〉dζ(x, v)

≤ 2
ˆ
〈f(x, u), v〉dζ̃(x, v) + 2Lip(f)(dW (σ, µ))2

≤ −Dσ(dW (µ, .))2) � (πµ ◦ f(., u)]σ) + 2Lip(f)(dW (σ, µ))2.

By multiplying by c and taking the infinimum over u ∈ U , we get the desired result.

Remark 4.6. The above result is of fundamental importance to prove the comparison principle.
Indeed, it allows us to use the variable doubling technique without requiring any additional regu-
larity assumptions on the Hamiltonian. Furthermore, this result does not need any compactness
assumptions on the Wasserstein space. The proof can also be adapted if for example the base space
is the Euclidean space RN , rather than the compact manifold M . The reason is that the squared
Wasserstein distance in P2(RN ) is a semiconvave function and its directional derivatives have an
expression similar to (11) (see [4, Theorem 7.3.2 and Proposition 7.3.6]).

Proposition 4.7. Let O be a subset of a metric space (X, dX), Φ : O → R be an upper semicon-
tinuous and Ψ : O → R be a lower semicontinuous, Ψ ≥ 0, and

Ma = sup
O
{Φ(x)− aΨ(x) },

with a > 0. Suppose −∞ < lim
a→∞

Ma < +∞ and let xa ∈ O be chosen such that

lim
a→∞

(Ma − (Φ(xa)− aΨ(xa))) = 0.

Then the following holds:
(i) lim

a→+∞
aΨ(xa) = 0,

(ii) Ψ(x̂) = 0 and lim
a→+∞

Ma = Φ(x̂) = sup
{Ψ(x)=0}

Φ(x), whenever x̂ ∈ O is a limit of the sequence (xa)a.

Proof. The proof is exactly the same as in [15, Proposition 3.7], even though it was asserted only
for the Euclidean case. We give here below the proof for the sake of completeness. Let

δa = Ma − (Φ(xa)− aΨ(xa)),
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so that lim
a→∞

δa = 0. Since Ψ ≥ 0, Ma decreases as a increases and lim
a→+∞

Ma exists and is finite by
assumption. Furthermore, we have:

Ma
2
≥ Φ(xa)−

a

2 Ψ(xa) ≥ Φ(xa)− aΨ(xa) + a

2 Ψ(xa) = Ma − δa + a

2 Ψ(xa),

which implies that aΨ(xa) ≤ 2 (δa +Ma
2
−Ma), hence lim

a→+∞
aΨ(xa) = 0.

Suppose now an → +∞ and xan → x̂ ∈ O. Then lim
an→+∞

Ψ(xan) = 0 and by lower semicontinuity
Ψ(x̂) = 0. Moreover, since

Φ(xan)− an Ψ(xan) = Man − δan ≥ sup
{Ψ(x)=0}

Φ(x)− δan ,

and Φ is upper semicontinuous, the result holds.

Remark 4.8. Proposition 4.7 is a very general statement. It only requires assumptions on the
topology of the considered space. Furthermore, this result holds for non locally compact metric
spaces.

Theorem 4.9 (Comparison principle). Assume (H) and (Hl). Let u, v : [0, T ] × P2(M) → R
be respectively a bounded upper semicontinuous subsolution and a bounded lower semicontinuous
supersolution on [0, T ]× P2(M). Then it holds:

sup
[0,T ]×P2(M)

(v − w)+ ≤ sup
{T}×P2(M)

(v − w)+,

where (a)+ = max(a, 0).

Proof. Let M := sup
[0,T ]×P2(M)

(v−w)+. First, by replacing v by v− sup
{T}×P2(M)

(v−w)+, which is still a

subsolution, it suffices to prove that M ≤ 0. Suppose by contradiction that M > 0. Let 0 < α ≤M
and let vα(t, µ) = v(t, µ) + αt. For α small enough, vα is still a subsolution of (14). We construct
test functions the following way:

ψa(t, s, µ, σ) = vα(t, µ)− w(s, σ)− a

2((dW (µ, σ))2+|t− s|2).

Since v, w are bounded, v − w is upper semicontinuous, and [0, T ] × P2(M) is compact, then
Ma = supψa is reached.

Let (ta, sa, µa, σa) be such that Ma is reached. We have

lim
a→+∞

(Ma − ψa(ta, sa, µa, σa)) = 0, and −∞ < lim
a→+∞

Ma < +∞.

Without loss of generality, we can suppose that (ta, sa, µa, σa) converges as a → +∞ (take a
subsequence if necessary). Therefore, we can apply Proposition 4.7 and we get

(i) lim
a→+∞

a

2((dW (µa, σa))2+|ta − sa|2)) = 0,

(ii) lim
a→+∞

Ma = M.

Hence, when a is big enough, we have ta, sa /∈ {T}. Then we get

−α+ a(ta − sa) +H(µa,
a

2Dµa(dW (., σa))2) ≥ 0 ≥ a(ta − sa) +H(σa,−
a

2Dσa(dW (., µa))2).
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Thus we get from Proposition 4.5

0 ≤ −α+H(µa,
a

2DµadW (., σa)2)−H(σa,−
a

2DσadW (., µa)2) ≤ −α+ aLip(f)(dW (µa, σa))2.

By letting a tend to infinity, we get α ≤ 0, a contradiction.

Before proving existence of the viscosity solution, we need the following proposition.

Proposition 4.10. Let t→ Y t0,x0,u
t be a trajectory of (1). Let µ, σ ∈ P2(M). Then, there exists a

subsequence, (tn)n ↓ t0 and a vector field b ∈ L2
µ, such that

∀x0 ∈M, b(x0) ∈ co {f(x0, u) : u ∈ U},

where co stands for the closed convex hull of the set, and verifies

lim
tn↓t0

(
dW (Y t0,x0,u

tn ]µ, σ)
)2
−
(
dW (µ, σ)

)2

tn − t0
= lim

tn↓t0

(
dW
(
expµ

(
(tn − t0) � b]µ

)
, σ
)2
−
(
dW (µ, σ)

)2

tn − t0

Proof. First, notice that if such a vector field b(.) ∈ L2
µ exists, then we have

∣∣∣
(
dW (Y t0,x0,u

tn ]µ, σ)
)2
−
(
dW
(
expµ

(
(tn − t0) � b]µ

)
, σ
)2

tn − t0

∣∣∣ ≤
dW
(
Y t0,.,u0
tn ]µ, expµ((tn − t0) � b)]µ

)
tn − t0

(
dW
(
expµ

(
(tn − t0) � b]µ

)
, σ
)

+ dW
(
Y t0,x0,u
tn ]µ, σ

))
.

Hence it suffices to prove that

lim
tn↓t0

dW
(
Y t0,.,u0
tn ]µ, expµ((tn − t0) � b]µ)

)
tn − t0

= 0.

By Nash embedding theorem, we can assume thatM is isometrically embdedded into a Euclidean

space (RN , ||.||) with N > 0 big enough. we have Y t0,x0,u
t = x0 +

ˆ t

t0

f(Y t0,x0,u
s , u(s))ds, and the

quantity
1

t− t0

ˆ t

t0

f(Y t0,x0,u
s , u(s))ds

is bounded independently of t. Hence there exists a subsequence (tn)n ↓ t0 and a sequence εn ↓ 0
such that

bn(x0) := 1
tn − t0

ˆ tn

t0

f(Y t0,x0,u
s , u(s))ds→ b(x0), and bn(x0) ∈ co

( ⋃
d(z,x0)≤εn

{f(z, u) : u ∈ U}
)
,

where co stands for the closed convex hull of the set. Hence b(x0) ∈ co {f(x0, u) : u ∈ U} and b(.)
is measurable and bounded. Consider the curve t 7→ expx0((t− t0)b(x0)). We have

|| expx0((t− t0)b(x0))− (x0 + (t− t0)b(x0))|| = o(|t− t0|),
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since the two curves are smooth and have the same position and velocity at t0. Then, we get

lim
tn↓t0

1
tn − t0

∣∣∣∣∣∣Y t0,x0,u
tn − expx0((tn − t0)b(x0))

∣∣∣∣∣∣ = lim
tn↓t0

∣∣∣∣∣∣ 1
tn − t0

ˆ tn

t0

f(Y t0,x0,u
s , u(s))ds− b(x0)

∣∣∣∣∣∣ = 0.

On the other hand, since Nash embedding is biLipschitz, we get

lim
tn↓t0

1
tn − t0

d
(
Y t0,x0,u
tn , expx0((tn − t0)b(x0))

)
= lim

tn↓t0

1
tn − t0

∣∣∣∣∣∣Y t0,x0,u
tn − expx0((tn − t0)b(x0))

∣∣∣∣∣∣ = 0.

Thus we get

lim
tn↓t0

1
(tn − t0)2

(
dW
(
Y t0,.,u0
tn ]µ, expµ((tn − t0) � b]µ)

))2
≤

lim
tn↓t0

1
(tn − t0)2

ˆ
d2
(
Y t0,x0,u0
tn , expx0((tn − t0)b(x0))

)
dµ(x0) = 0,

by dominated convergence, which implies the result.

Theorem 4.11. Assume (H), (Hl) and (Hco). Then the value function ϑ is the unique continuous
viscosity solution to (14).

Proof. Let φ ∈ T EST 2, such that ϑ− φ attains a minimum at (t0, µ0) ∈ [0, T )× P2(M).
So there exists, a1, a2 ∈ R, c ∈ R−, (s, σ) ∈ R+ × P2(M) such that

φ(t, µ) = a1 + a2t+ c(|t− s|2 + (dW (µ, σ))2),

and
∀(t, µ) ∈ [0, T )× P2(M), φ(t, µ)− φ(t0, µ0) ≤ ϑ(t, µ)− ϑ(t0, µ0).

Let t 7→ Y t0,x,u
t be a trajectory of (1) such that ϑ(t0, µ0) = ϑ(t0 + h, Y t0,.,u

t0+h ]µ) . So we get for all
h ∈ [t0, T − t0),

φ(t0 + h, Y t0,.,u
t0+h ]µ0)− φ(t0, µ0) ≤ ϑ(t0 + h, Y t0,.,u

t0+h ]µ0)− ϑ(t0, µ0) ≤ 0.

Thus along a subsequence (hn)n → 0, by dividing by hn and letting hn tend to 0, we get by
Proposition 4.10 and Theorem 3.18,

∂tφ+ inf
u∈U

Dµφ � (πµ ◦ f(., u))]µ0 = ∂tφ+ inf
v(.)∈co{f(.,u)}

Dµφ � (πµ ◦ v)]µ0 ≤ ∂tφ+Dµφ � (πµ ◦ b)]µ0 ≤ 0,

where the first equality is obtained by Hypothesis (H)co.

To prove that ϑ is a supersolution, let φ ∈ T EST 1, such that ϑ − φ attains a maximum at
(t0, µ0) ∈ [0, T )× P2(M). So there exists, a1, a2 ∈ R, c ∈ R+, (s, σ) ∈ R+ × P2(M) such that

φ(t, µ) = a1 + a2t+ c(|t− s|2 + (dW (µ, σ))2),

and
∀(t, µ) ∈ [0, T )× P2(M), φ(t, µ)− φ(t0, µ0) ≥ ϑ(t, µ)− ϑ(t0, µ0).
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Let t 7→ Y t0,x,u
t be a trajectory that verifies the dynamics (4) with constant control u ∈ U . So

we get for all h ∈ [t0, T − t0),

φ(t0 + h, Y t0,.,u
t0+h ]µ0)− φ(t0, µ0) ≥ ϑ(t0 + h, Y t0,.,u

t0+h ]µ0)− ϑ(t0, µ0) ≥ 0.

On the other hand, by the same reasoning as in Proposition 4.10, we get

lim
h↓0

(
dW (Y t0,x0,u

t0+h ]µ, σ)
)2
−
(
dW (µ, σ)

)2

h
= lim

h↓0

(
dW
(
exp

(
h � (f(., u)]µ)

)
, σ
)2
−
(
dW (µ, σ)

)2

h
.

Therefore, by dividing by h and letting h tend to 0, we get by Theorem 3.18

∂tφ+Dµφ � (πµ ◦ f(., u))]µ0 ≥ 0.

By taking the infinimum over u ∈ U , we get the result.

Finally, the final condition of (14) is trivially verified by ϑ. Hence, the value function ϑ is a
solution to (14) and it is unique by Theorem 4.9.

Appendices
A. Disintegration theorem

We recall here the disintegration theorem. For more details, we refer to [4, theorem 5.3.1].

Theorem A.1. Let X,Y be two Polish spaces (i.e. complete and separable metric spaces), µ ∈
P(X), let r : X → Y be a Borel map and let ν = r]µ ∈ P(Y ). Then, there exists a ν−a.e. uniquely
determined Borel family of probability measures {µy}y∈Y ⊂ P(X) such that:

µy(X \ r−1(y)) = 0, for ν−a.e. y ∈ Y,

and
ˆ
X
f(x) dµ(x) =

ˆ
Y

(ˆ
r−1(y)

f(x) dµy(x)
)
dν(y), for every Borel map f : X → [0,+∞].

B. Riemannian manifolds

We recall some standard notions of Riemannian geometry. Some classical references are for
example [26, 16]. We consider a connected differentiable manifold M with empty boundary endowed
with a Riemannian metric 〈., .〉 and we assume that (M, 〈 . 〉) is a complete Riemaniann manifold.
Let d(., .) be the Riemannian distance on (M, 〈 . 〉). The metric space (M,d) is a complete space and
its topology is equivalent to the topology of the manifold M . For any x ∈M , we denote by TxM the
tangent space of M at x, by TM := ∪x∈M {x} × TxM the tangent bundle and by πM : TM → M
the canonical projection. Let ∇ be the Levi-Civita connection associated to (M, 〈., .〉). A vector
field V : M → TM is a mapping such that

πM ◦ V (x) = x, ∀x ∈M.
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Let α : [a, b]→M be a smooth curve. The connection ∇ induces a linear isometry between Tα(a)M
and Tα(t)M , for all t ∈ [a, b]. More precisely, for all v ∈ Tα(a), there exists a unique vector field V
along α, satisfying

∇α̇(t)V (α(t)) = 0, ∀t ∈ [a, b], and V (α(a)) = v.

The resulting isometry, called the parallel transport along α from α(a) to α(b), and denoted by
ταα(a),α(b) is defined by

ταα(a),α(b)(v) = V (α(b)), ∀ v ∈ Tα(a)M.

There holds that ταα(b1),α(b2) ◦ τ
α
α(a),α(b1) = ταα(a),α(b2) and (ταα(a),α(b))−1 = ταα(b),α(a). For convenience,

we will drop the superscript α, whenever it is clear from the context which curve α is used.
Let exp : TM → M be the exponential map. For every x ∈ M , the function exp maps

straight lines of TxM , x ∈ M , passing through 0x ∈ TxM to geodesics of M passing through x.
Since (M, 〈., .〉) is supposed to be complete, it is a consequence of Hopf-Rinow theorem, that the
exponential map is defined on all the tangent bundle. However it may not be a diffeomorphism.

The tangent bundle TM is itself a complete Riemannian manifold when endowed with the Sasaki
metric [30]. The Riemannian distance dTM on TM associated with the Sasaki metric is defined by

∀(u, v) ∈ TM × TM, d2
TM (u, v) := inf { (length(α))2+|ταπM (u),πM (v)(u)− v|2 },

where the infinimum is taken over all smooth curves α : [0, 1] → M connecting πM (u) and πM (v)
and its length is defined by

length(α) :=
ˆ 1

0

√
〈α̇(t), α̇(t)〉 dt =

ˆ 1

0
|α̇(t)| dt,

where |.| is the norm associated to the Riemannian metric 〈., .〉 on the tangent bundle TM .
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