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ABSTRACT 

In this paper, we present and discuss simultaneous records of current and wideband 

electric field waveforms at 380 km distance from the strike point associated with an 

upward bipolar flash initiated from the Säntis Tower. The flash contains 23 negative 

strokes and one positive stroke. The intervals between the groundwave and skywave 

arrival times are used to estimate ionospheric reflection heights for the negative return 

strokes using the so-called zero-to-zero and peak-to-peak methods. A full-wave, finite-

difference time-domain (FDTD) analysis of the electric field propagation including the 

effect of the ionospheric reflections is also presented. FDTD simulation results are 

compared with the measured radiated electric field associated with the studied flash to 

evaluate the reference reflection height of the conductivity profile. It is also found that 

the ratio of the peak field to the current peak is about two times smaller for the positive 

pulse compared to negative pulses. This difference in the amplitudes can be attributed to 

a lower return stroke speed for the positive stroke compared to that for negative strokes, 

and also to the fact that the enhancement of the electric field due to the presence of the 

tower and the mountain might be more significant for negative pulses, which are 

characterized by faster risetimes compared to the positive one. 

Keywords—Bipolar lightning flash; simultaneous current and field measurements; 

ionospheric reflection; field-to-current conversion factor; numerical FDTD simulation 

I.  INTRODUCTION 

In a bipolar flash, the current waveform exhibits a polarity reversal, corresponding to 

a charge transfer to ground of both negative and positive polarities [1], [2]. Bipolar 
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flashes are usually initiated by upward leaders from tall structures, but they can also be 

downward flashes [3]. 

About 3% of the flashes recorded at the Säntis Tower are bipolar [4]. Fig. 1 shows the 

monthly distribution of negative, positive and bipolar lightning flashes accumulated over 

the period ranging from June 2010 to July 2016. It can be seen that positive and bipolar 

flashes occurred mostly during the warmer seasons (May to October). 

Current waveforms associated with bipolar flashes were first reported by McEachron 

from his studies at the Empire State Building [5]. Further studies on bipolar lightning are 

based either on lightning current observations (e.g., [4], [6], [7]), or electromagnetic 

fields, sometimes with high-speed video observations (e.g., [8]–[11]). Only rare 

observations have been reported that include simultaneous records of currents and fields 

(e.g., [12]–[14]). 

Extremely Low Frequency (ELF) and Very Low Frequency (VLF) electromagnetic 

field observations, including  the radiated electromagnetic fields from distant lightning 

flashes, have been widely used to examine ionospheric reflection characteristics (e.g., 

[15]).  

     Various theoretical and numerical approaches have been proposed to model lightning-

ionosphere interactions, which can be divided into four main types [16]:  

(i) The first approach, proposed in [17] and [18], is based on solving Maxwell’s 

equations for slabs of a horizontally stratified ionosphere.  

(ii) The second approach considers the ionosphere and the earth as boundaries of a 

waveguide, the so-called Earth-Ionosphere waveguide. This method is based on finding 

eigenvalues and possible modes of propagation in the assumed waveguide [19], [20].  
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(iii) In the third method, the ionosphere is modeled as a stack of discrete layers, and 

the wave propagation is solved using Fresnel equations [21]–[23].  

(iv) Finally, the Finite Difference Time Domain (FDTD) method has been used to 

solve Maxwell’s equations in spherical coordinates in order to compute the 

electromagnetic field interaction with ionospheric layers [24]–[27]. This method is 

capable of considering a time-varying ionosphere layer and nonlinearities. 

In this paper, which is an extended version of [28], we present and discuss 

simultaneous records of current and wideband electric field waveforms at a 380 km 

distance from the strike point associated with an upward bipolar flash initiated from the 

Säntis Tower. The flash was recorded on September 21, 2014 and it contained 23 

negative strokes and one positive pulse superimposed on the initial-stage current. The 

flash belongs to Category I of bipolar flashes according to the classification proposed by 

Rakov [29]. In this paper, we will treat the positive pulse as a return stroke in the FDTD 

modelling. 

 

Fig. 1. Monthly distribution of negative, positive and bipolar lightning flashes recorded 

at Säntis Tower over the period ranging from June 2010 to July 2016. 



 

 5 

Further, an FDTD analysis of the field propagation including the effect of the 

ionospheric reflections is presented and the results are compared with the experimental 

data for both positive and negative pulses of the studied flash.  

The rest of this paper is organized as follows. Section II briefly reviews the 

instrumentation installed at the Säntis Tower, Switzerland, and the electric field 

measurement station in Neudorf, Austria. A brief description of the obtained data is 

presented in Section III. Numerical simulations of the electromagnetic fields obtained 

using a full-wave FDTD approach and a comparison with the experimental data are 

presented in Section IV. The analysis and discussion of the results are given in Section 

V. Finally, conclusions are presented in Section VI. 

II. EXPERIMENTAL SETUP AND INSTRUMENTATION 

A. Current Measurement  System at the Säntis Tower 

The 124-m tall Säntis Tower is  located on top of the Säntis mountain (2502 m ASL) 

in Northeastern Switzerland. The tower has been instrumented since May in 2010 using 

advanced equipment including remote monitoring and control capabilities for accurate 

measurement of lightning current parameters enabling a high-resolution sampling of 

lightning currents over long observation windows [30], [3]. The analog outputs of the 

sensors are relayed to a digitizing system by means of optical fiber links. The system 

allows over-the-Internet remote maintenance, monitoring, and control. 

A PXI platform with a sampling rate of 50 MS/s is used to digitize and record the 

measured current waveforms. The lightning current is recorded over a 2.4-s time with a 

pretrigger delay of 960 ms. 
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In 2013–2014, updates were made to the overall measuring system. More details on 

the measurement sensors and the instrumentation system can be found in [3], [30]–[33]. 

B. Electric Field Measurement System 

Vertical electric fields were measured at a distance of 380 km from the tower (in 

Neudorf, Northern Austria) by means of a flat-plate antenna. The waveforms were 

digitized with a sampling rate of 5 MS/s [34]. The antenna was installed on the metal roof 

of a building with an estimated enhancement factor of about 2.6 [34]. The calibration 

procedure used by Pichler et al. [34] to determine the field enhancement factor of the 

antenna was performed using a second identical antenna at ground level, where no field 

enhancement should be present. Time-correlated measurements of a number of lightning 

field pulses with both antennas allowed us to determine the field enhancement factor. 

The measured field values were corrected to account for this enhancement. The 

integrator decay time constant was 0.5 ms, corresponding to a lower cutoff frequency of 

about 300 Hz. The triggering signal was relayed from the Säntis Tower to the field 

measurement station over the Internet using TCP/IP. The locations of the Säntis Tower 

and the field measuring station in Neudorf are shown in Fig. 2. More information on the 

electric field measurement system in Neudorf can be found in [34]. 

III. OBTAINED DATA 

A. Measurement Data 

We present here an upward bipolar lightning flash recorded on September 21, 2014 

at 15:14:09 (local time) along with its associated vertical electric fields in Neudorf, 380 

km from the Säntis Tower. 
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Fig. 3a shows the overall current waveform which contained an Initial Continuous 

Current (ICC) of negative polarity that lasted for about 320 ms (from 880 to 1200 ms) 

and included more than 20 superimposed pulses with peak values of about 0.6 to 

6.1 kA. The superimposed ICC pulses can be of different types, either M-component-

type ICC pulses or mixed mode pulses [34]. A discussion on the characteristics of 

various types of ICC pulses can be found in [35], [36].  The flash exhibited a polarity 

reversal during its initial stage, therefore belonging to Category I of bipolar flashes 

according to the classification proposed by Rakov [29]. It is worth noting that this 

bipolar flash can also be classified as being of Category III which involves return strokes 

of opposite polarities. The positive stroke was characterized by a peak current of 39.6 kA 

and a risetime of 31 µs, which is not far from typical values expected for positive strokes 

[37].  An expanded view of the initial stage of the current in which the ICC is resolved is 

shown in the inset of the figure. The vertical electric field associated with this flash is 

shown in Fig. 3b. 
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Fig. 2. The location of the Säntis Tower (Switzerland) and the electric field 

measurement station at Neudorf, Austria. The distance between Neudorf and the Säntis 

is 380 km. 

 

(a) 

 

(b) 

Fig. 3. Simultaneous current (a) and E-field (b) waveforms associated with a bipolar 

flash of Category I that occurred on 21 September 2014, at 15:14:09 (local time). The 

initial stage interval and two of the return strokes (RS10 and RS18) are shown in red. 

The positive pulse is also shown in red with the label “Positive Pulse”.  

RS10 RS18 
Initial Stage 

Positive Pulse 

RS10 
RS18 

Initial Stage 

Positive Pulse 
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Fig. 4 presents the plots of the individual waveforms of the current and the electric 

field associated with the positive pulse of the bipolar flash (labeled as Positive RS in 

Fig. 3). Fig. 5 and Fig. 6 present similar plots for two of the negative return strokes of 

the same flash, labeled as RS10 and RS18 in Fig. 3.  

As discussed in [38], 60-kHz ringing can be seen in all the measured E-field 

waveforms. The origin of this effect is unknown and currently under investigation. It 

might be due to a malfunction of the integrator at the Neudorf measuring station.  

It should be noted that our field measuring system exhibited a high noise level at 

frequencies of 200, 300, 400 and 500 kHz. In order to reduce the noise, 20-kHz 

bandwidth notch filters centered at each of the above-mentioned frequencies were 

applied to all recorded field signals. 

 

(a) 

 

(b) 
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Fig. 4. Simultaneous current (a) and E-field (b) waveforms associated with the positive 

pulse of the bipolar flash of 21 September 2014, 15:14:09 (local time). 

 

(a) 

 

(b) 

Fig. 5. Simultaneous current (a) and E-field (b) waveforms associated with a negative 

return stroke (labeled RS10 in Fig. 3a) of the bipolar flash of 21 September 2014, 

15:14:09 (local time). 

 

(a) 
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(b) 

Fig. 6. Simultaneous current (a) and E-field (b) waveforms associated with a negative 

return stroke (labeled RS18 in Fig. 3a) of the bipolar flash of 21 September 2014, 

15:14:09 (local time). 

IV. ANALYSIS AND DISCUSSION 

In this section, we will use the obtained data to infer the height of ionospheric 

reflection for both negative and positive pulses. Furthermore, we will analyze the 

relation between the electric-field peak and current peak for the groundwave and the 

first skywave associated with detected events. In our analysis, we will consider only 

pulses for which both current and field waveforms were obtained. These include 5 M-

component-type ICC pulses, 1 positive stroke, and 18 negative return strokes. Table I 

presents a summary of the peak values and risetimes associated with each of the pulses.  

Table II presents the median values and ranges of the measured risetimes for negative 

return strokes and M-component-type ICC pulses.  

 

 

 

 

 



 

 12 

Table I. Summary of the peak values and risetimes associated with the considered 
current pulses belonging to the bipolar flash of 21 September 2014, 15:14:09 (local time). 

 
Pulse number Type Peak current (kA) Risetime (μs) 

1 ICC pulse (M-component type) 4.5 21.4 
2 ICC pulse (M-component type) 2.9 28.0 
3 ICC pulse (M-component type) 6.0 21.4 
4 ICC pulse (M-component type) 6.1 8.5 
5 ICC pulse (M-component type) 5.0 42.2 
6 Positive pulse 39.5 31.0 
7 Negative return stroke 6.0 2.6 
8 Negative return stroke 5.5 1.8 
9 Negative return stroke 8.3 1.1 
10 Negative return stroke 7.8 1.3 
11 Negative return stroke 6.2 1.4 
12 Negative return stroke 9.8 1.5 
13 Negative return stroke 7.2 0.5 
14 Negative return stroke 10.0 0.6 
15 Negative return stroke 5.2 0.9 
16 Negative return stroke 6.9 1.0 
17 Negative return stroke 6.3 0.7 
18 Negative return stroke 5.6 1.1 
19 Negative return stroke 7.5 1.0 
20 Negative return stroke 6.8 0.7 
21 Negative return stroke 9.1 0.9 
22 Negative return stroke 6.9 0.7 
23 Negative return stroke 13.2 0.3 
24 Negative return stroke 12.6 1.3 

 
Table II. Median values and ranges of the risetimes associated with the considered current pulses 
(except for the positive pulse) belonging to the bipolar flash of 21 September 2014, 15:14:09. 

 
Type Median risetime (μs) Minimum risetime (μs) Maximum risetime (μs) 

ICC pulses 21.4 8.5 42.2 
Negative return strokes 1.0 0.3 2.6 

 

A. Ionospheric Reflections  

Three approaches have been used to estimate the effective ionospheric reflection 

height using measured distant electromagnetic fields from lightning and estimating the 

arrival time of the first skywave compared to the groundwave [39], [40]. 

In this paper, we have used the so-called zero-to-zero and the peak-to-peak 

approaches [40] to infer the height of the reflection. Fig. 7a and Fig. 7b show 

sequentially the evaluated reflection heights for all the pulses of the flash that exhibited 

ionospheric reflections, using the zero-to-zero (Fig. 7a) and the peak-to-peak (Fig. 7b) 
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approaches. It can be seen that according to the zero-to-zero approach, the evaluated 

reflection height of the negative ICC pulses and return strokes in this flash range from 

73 to 81 km, with an arithmetic mean value of 77.5 km. On the other hand, the inferred 

heights using the peak-to-peak approach are slightly higher and they range from 74 to 

87 km, with an arithmetic mean value of 80.5 km. 

The evaluated reflection heights of the positive stroke using the zero-to-zero and the 

peak-to-peak approaches are respectively equal to 94.9 and 95.1 km, significantly 

higher than the reflection heights for the negative pulses. It is worth noting that the 

evaluated reflection heights for the positive stroke might be affected by significant 

errors due to the concurrent effects of slow risetime and the ringing in the field 

waveforms.  

Changes of ionospheric reflection height for first and subsequent return strokes in 

downward flashes were reported in [40], [41]. The authors of those studies observed 

that the reflection height tends to increase with increasing return-stroke peak current. 

Azadifar et al. [38], in their analysis of negative upward flashes initiated from the Säntis 

Tower, did not observe any significant variation of the reflection height as a function of 

stroke order within a flash. As discussed in [38], this might be due to the fact that the 

peak currents in their recorded upward flashes were much smaller than the downward 

flashes studied by Somu et al. [23]. 

In our dataset (see Fig. 7), the reflection heights inferred for negative ICC pulses 

before the positive pulse and for negative return strokes after it are very similar. This is 

to some extent consistent with the analysis of [40], [41], given that the return-stroke 

current peaks for negative pulses range from 2.9 to 13.2 kA, while the positive pulse 

peak is about 40 kA. More data and further analyses are needed to understand the 
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dependence of the reflection height on the source characteristics (return-stroke current 

peak, frequency content, polarity, channel geometry, etc.). 

B. Current-to-Field Conversion Factor 

Fig. 8 shows the scatterplots of electric-field peak versus current peak for the 

groundwave and the first skywave associated with all the detected events. Negative 

return strokes are shown in blue and the measured positive pulse is shown in red in 

these figures. The best fit linear regression (forced to go through the origin of 

coordinates) is also presented. 

It can be seen that the ratio of the peak field to the current peak is much smaller (a 

factor of about 2.3 for the groundwave and 1.6 for the first skywave) for the positive 

pulse compared to negative pulses. Among the reasons that could explain this difference 

are: 

- The return stroke speed for positive strokes is, in general, smaller than that for 

negative strokes [42]–[44]; 

- The enhancement of the electric field due to the presence of the tower and the 

mountain [45]–[49] might be more significant for negative pulses, which are 

characterized by faster risetimes, than for positive pulses. In the case of the studied flash 

in this paper, the average risetime of the negative strokes was 6.6 µs, whereas this value 

was 31 µs for the positive stroke. 
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Fig. 7. Sequence of evaluated reflection heights for 23 negative and one positive pulses 

of the flash of 21 September 2014, 15:14:09 (local time) using a) zero-to-zero approach 

and b) peak-to-peak approach. 
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Fig. 8. Electric-field peak of a) the groundwave and b) the first skywave at 380 km 

versus current peak for all the pulses of the flash of 21 September 2014, 15:14:09 

(local time). The positive pulse is shown in red and the 18 negative pulses are shown 

in blue. The best fit linear regression for negative return strokes is also shown in the 

figure. 
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V. FDTD MODELING AND COMPARISON WITH EXPERIMENTAL DATA 

A. FDTD Modeling 

A full-wave FDTD model was developed and the simulation results were compared 

with the experimental data for both positive and negative pulses of the studied flash. As 

shown in Fig. 9, the FDTD calculation domain includes the Earth-Ionosphere Waveguide 

(EIWG) with a curved ground. The FDTD model uses a two-dimensional spherical 

coordinate system, as previously done by Bérenger [50]. The lightning channel was set in 

the symmetry axis of the model and the observation point is at a distance d from the 

lightning source. The entire calculation domain is 500 km × 100 km with a space step of 

100 m. Ten layers of the convolutional perfectly matched layer (CPML) absorbing 

boundary [51] are adopted to avoid reflections from the walls of the computational 

domain. The ground is assumed to be perfectly conducting. The conductivity of the 

ionospheric region is given by Wait and Spies [52], 

	𝝈(𝒛) = '𝟐. 𝟓 × 𝟏𝟎𝟓.𝒆𝜷(𝒛%𝒉)																																																											(1) 

where 𝜷 is the typical slope value of the D-region conductivity profile for daytime 

conditions and h is the reference reflection height (note that h is a parameter and not the 

reflection height) of the conductivity profile. The height of the lightning channel (H) was 

assumed to be 8 km and the return stroke speed was assumed to be 𝝂 = 𝟏. 𝟓 ×	𝟏𝟎𝟖 m/s 

for the negative strokes, and two values of speed,  𝝂 = 𝟏. 𝟓 ×	𝟏𝟎𝟖 m/s or  𝟎. 𝟕𝟓 ×	𝟏𝟎𝟖 

m/s were employed for the positive pulse. For both negative and positive strokes, we 

used the modified transmission line model with exponential current decay with height 

(MTLE) [53], [54] with current decay constant 𝝀 = 𝟐	𝐤𝐦	 [53]. Equation (1) has two 

adjustable parameters, 𝒉 and 𝜷. The values of these parameters were selected to obtain 
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the best match between the measurements and the FDTD simulations based on the 

method proposed in [55]. Note that the estimated field enhancement factor of about 2.6 

due to the effect of the building at the Neudorf station [56] is considered in all the 

modeling results. In the simulation, the measured currents obtained at the Säntis Tower 

were used as input, and the electric field waveforms at 380 km were calculated. 

 

Fig. 9. The geometry of the FDTD model. 

Fig. 10, Fig. 11, and Fig. 12 show the comparison results between the FDTD 

simulation and the experimental data for the positive and negative pulses of the studied 

bipolar flash. Because of the difficulties associated with the use of the zero-to-zero and 

peak-to-peak approaches to infer the reflection height, especially when the waveforms 

are affected by noise, we have determined the reference reflection height in (1) for each 
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case by trial and error to obtain the best match with the observed experimental 

waveforms.  

It can be seen that the FDTD simulation results are in good agreement with the 

measured data by assuming a reference height of 77 km for the positive return stroke 

(Positive RS), and a reference height of 70 km for two negative strokes (RS10 and 

RS18). Note that these values are smaller than the values inferred in the previous section 

using the zero-to-zero and the peak-to-peak methods. 

The effect of the return-stroke speed for the positive pulse is also shown in Fig. 10, 

where it can be seen that the return stroke speed can significantly affect the field, 

especially in its early-time response. 

 

Fig. 10. Comparison between the FDTD simulation and experimental data for the positive 

pulse (Positive RS in Fig. 3a) of the bipolar flash of 21 September 2014, 15:14:09 (local 

time) considering the return-stroke speed 1.5×108 m/s (red line) and 0.75×108 m/s (green 

line). 𝒉 = 𝟕𝟕  km and 𝜷 = 𝟎. 𝟑  km-1 were adjustable parameters that were varied to 

achieve the best match to the measured waveform. 
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Fig. 11. Comparison between the FDTD simulation and experimental data for the 

negative return stroke labeled RS10 (in Fig. 3a) of the bipolar flash of 21 September 

2014, 15:14:09 (local time). 
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Fig. 12. Comparison between the FDTD simulation and experimental data for the 

negative return stroke labeled RS18 (in Fig. 3a) of the bipolar flash of 21 September 

2014, 15:14:09 (local time). 

Note that, in this analysis, we assumed a vertically inhomogeneous, highly collisional 

and isotropic ionosphere environment as presented by Said [57]. However, during day 

time, the electron density in the D region of the ionosphere might change with the solar 

zenith angle and solar flare X-ray fluxes [58], [59]. 

VI. CONCLUSION 

We presented and discussed simultaneous records of current and wideband electric-

field waveforms at 380 km distance from the strike point associated with a bipolar 

upward flash initiated from the Säntis Tower. The recorded flash contained 23 negative 

and one positive strokes.  

It was found that the ratio of the peak field to the current peak is about two times 

smaller for the positive pulse compared to negative pulses. 

Good agreement in the time delay from the groundwave to the first skywave was 

observed between the measured electric-field waveforms and FDTD simulations using a 

return-stroke speed of 1.5 x 108 m/s both for negative strokes and for the positive pulse.   

The reflection heights for negative pulses inferred using the zero-to-zero and the 

peak-to-peak approaches were found to be in good agreement with the values inferred 

by the FDTD simulations. On the other hand, for the positive pulse, both the zero-to-

zero and the peak-to-peak approaches were found to overestimate the reflection height 

compared to the FDTD simulations. 
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