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ON THE ACCESSIBILITY AND CONTROLLABILITY OF

STATISTICAL LINEARIZATION FOR STOCHASTIC CONTROL:

ALGEBRAIC RANK CONDITIONS AND THEIR GENERICITY

R. BONALLI∗, C. LEPAROUX† , B. HÉRISSÉ‡ , AND F. JEAN§

Abstract. Statistical linearization has recently seen a particular surge of interest as a numer-
ically cheap method for robust control of stochastic differential equations. Although it has already
been successfully applied to control complex stochastic systems, accessibility and controllability prop-
erties of statistical linearization, which are key to make the robust control problem well-posed, have
not been investigated yet. In this paper, we bridge this gap by providing sufficient conditions for
the accessibility and controllability of statistical linearization. Specifically, we establish simple suf-
ficient algebraic conditions for the accessibility and controllability of statistical linearization, which
involve the rank of the Lie algebra generated by the drift only. In addition, we show these latter
algebraic conditions are essentially sharp, by means of a counterexample, and that they are generic
with respect to the drift and the initial condition.

Key words. Robust stochastic control, statistical linearization, accessibility and controllability,
algebraic rank conditions, generic results.

AMS subject classifications. 93B03, 93B27, 93E03.

1. Introduction. Let (Ω,F , (Ft)t≥0,P) be a filtered probability space, with
complete filtration (Ft)t≥0, and let (Wt)t≥0 be a d-dimensional Wiener process which
is adapted to (Ft)t≥0. In this work, we focus on stochastic control systems which are
modeled by Itô-type stochastic differential equations of the form

(1.1) dx(t) = f(x(t), u(t)) dt+ g(x(t)) dWt.

where f and g denote drift and diffusion, respectively, whereas x and u denote the
finite-dimensional state of the system and the control applied to it, respectively.

Equations such as (1.1) are frequently leveraged to accurately model control sys-
tems which are subject to exogenous random perturbations, finding beneficial use
in many applications which include aerospace [19], biology [2], and finance [6], to
name a few. In particular, one may often mitigate harmful random outcomes which
perturb control systems by appropriately controlling (1.1) with the objective of min-
imizing (or, at least constraining) the variance of the state x throughout the control
time interval: we call this latter minimal variance control. Successful application
of this technique has been originally obtained in the context of linear systems, en-
abling numerical approaches ranging from exact covariance control [12] and variance
minimization through linear-quadratic regulators [21, 7], to multi-objective variance
minimization via sensitive robustness [18]. For what concerns non-linear systems,
we find extension of this latter paradigm [20], followed by open-loop-based sensitive
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robustness [9], and more recently, by improved perturbation-based methods which
penalize an appropriate sensitivity matrix within the cost [22].

Unfortunately, the aforementioned procedures suffer from expensive numerical
computations, which has recently fostered the investigation of methods for minimal
variance control which rely on numerically cheaper approximations of the original for-
mulation. Among such methods we find statistical linearization [1, 2], which basically
hinges upon the linearization of both the dynamics of the mean and the dynamics
of the covariance of the state x around its expected value. More specifically, if only
deterministic open-loop controls are leveraged, (1.1) may be replaced by the following
system of deterministic differential equations

(1.2)

{
ṁ(t) = f(m(t), u(t)),

Ṗ (t) = Dxf(m(t), u(t))P (t) + P (t)Dxf(m(t), u(t))⊤ + g(m(t))g(m(t))⊤,

where m ∈ R
n and P ∈ Mn(R) denote first-order approximations of the mean and

the covariance matrix of the state x, respectively. If one is capable of controlling (1.2)
such that additionally ‖P‖ takes small enough values throughout the control time
interval, the quantities m and P will closely resemble the exact mean and covariance
matrix of the state x, respectively, thus endowing statistical linearization with the-
oretical guarantees of accurate approximation (indeed, a work in which we carefully
analyze the accuracy of this method should appear soon, see [14]). The main benefit
which statistical linearization offers is to reduce minimal variance control, which is a
stochastic problem, into an essentially easier problem, which consists of controlling
a deterministic system subject to state constraints (on the variable P ), yielding a
numerically cheaper and theoretically guaranteed alternative.

Although this method has already been successfully applied to complex systems,
e.g., [22, 19], statistical linearization might suffer from controllability issues. Indeed,
since the variance can be minimized only if the variable P can be controlled directly, at
the very least the system (1.2) must be accessible, i.e., the reachable set of (1.2) must
have non-empty interior. It is worth noting that this latter property is fundamental
when leveraging statistical linearization for robust optimal control, in that it allows
one to locally steer (1.2) along every directions, a key requirement without which
one might not be capable to reduce the value of the cost [24, 4]. Unfortunately,
accessibility might not hold even when considering very simple settings. Indeed, in
the case where (1.1) is linear, i.e., the mapping f is linear in (x, u), and the mapping
g is constant, the dynamics of P in (1.2) is independent from m and u, which makes
it not accessible: in turn, it is impossible to control the values of P in linear settings.

Although accessibility is difficult to verify and no general exact characterizations
exist, one may often establish accessibility through sufficient conditions on the rank of
a certain Lie algebra (which, in special cases, may additionally yield complete control-
lability). This remark leads us to investigating the following first crucial question for
the well-posedness of statistical linearization: are there conditions on the mappings f ,
g which yield accessibility of (1.2) by means of Lie algebra-based sufficient conditions?
Note that in practice, uncertainty is often difficult to model. Therefore, the afore-
mentioned sought conditions must depend on the values of the variable m only (that
is, they must not depend on the values of P ), and in addition, they should be prefer-
ably stated in terms of the mapping f uniquely, (that is, they should yield the same
properties for different mappings g). Once such sufficient conditions are obtained, it
is then paramount to understand how restrictive they are. This remark leads us to
investigating the following second crucial question for the well-posedness of statistical
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linearization: do generic systems (1.1) satisfy the aforementioned conditions? The
aim of this paper is to answer these two questions.

Before answering the aforementioned questions, let us briefly discuss connections
between controllability properties of the original stochastic system and of its statisti-
cal linearization, although rigorously establishing such connections is out of the scope
of the present work. A priori, the controllability properties of the original stochastic
system are not directly related to the controllability properties of its statistical lin-
earization. That said, perhaps under additional conditions one may prove a stochastic
control system is “approximately controllable” in expectation and in covariance in the
case its statistical linearization is controllable. Note that such result would necessarily
require to derive estimates of the error between the evolution of the mean and the
covariance of the original stochastic system (1.1) and the evolution of the variables
(m,P ) of its statistical linearization (1.2). Importantly, we derive some of such esti-
mates in our upcoming work [14], partially addressing such matter for some classes
of stochastic control systems. In particular, [14, Corollary 3] and [14, Proposition
4] yield approximate controllability of the mean of the original stochastic system,
although controllability of its covariance still remains an open question.

The paper is organized as follows. In Section 2, we first summarize existing
Lie algebra-based sufficient conditions for accessibility and controllability. Then, we
express the Lie brackets generated by the system (1.2) as functions of the Lie brackets
generated by the mapping f , thus obtaining sufficient conditions for the accessibility
of (1.2) in terms of the mapping f uniquely. In the particular case of control-affine
systems, we additionally obtain conditions for complete controllability. We also study
the class of biaffine systems to show that the sufficient conditions we obtain are not
necessary in general. Finally, in Section 3 we show that the aforementioned sufficient
conditions for accessibility and controllability are generic for stochastic differential
equations (1.1) which are control-affine. Specifically, we show that, for some given
diffusion g, system (1.2) is accessible, generically with respect to the drift f and the
initial condition (m0, P0).

2. Conditions for accessibility and controllability. As we mentioned in the
introduction, we consider stochastic control systems of the form (1.1), that is

dx(t) = f(x(t), u(t)) dt+ g(x(t)) dWt,

where the state x takes values in R
n, the control u takes values in a subset U of Rnu ,

and the mappings f : Rn×R
nu → R

n and g : Rn → R
n×d are assumed to be smooth.

The statistical linearization of (1.1) is the deterministic control system

{
ṁ(t) = f(m(t), u(t)),

Ṗ (t) = Dxf(m(t), u(t))P (t) + P (t)Dxf(m(t), u(t))⊤ + g(m(t))g(m(t))⊤,

where Dxf denotes the Jacobian matrix of f with respect to x. Here, m(t) ∈ R
n,

u(t) ∈ U , and P (t) ∈ Sym(n), the vector space of (n× n) symmetric matrices.
Actually, one can show more specific properties of P (t). Indeed, the latter satisfies

the differential Lyapunov equation

Ṗ = Dxf(m,u)P + PDxf(m,u)
⊤ + g(m)g(m)⊤,

for which it holds

(2.1) P (t) = Φ(t, 0)P (0)Φ(t, 0)⊤ +

∫ t

0

Φ(t, s)g(m(s))g(m(s))⊤Φ(t, s)⊤ ds, t ≥ 0,
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where the fundamental matrix Φ(t, s) ∈ R
n×n is defined as the unique solution to





∂

∂t
Φ(t, s) = Dxf (m(t), u(t))Φ(t, s),

Φ(s, s) = I.

From (2.1), we infer that P (t) is positive definite for every t ≥ 0 for which P (t) is
well-defined, as soon as P (0) is itself positive definite. Motivated by this remark and
the fact that the initial value of the covariance of the state x of (1.1) is selected as
initial condition P (0), from now on we assume P (t) is positive definite.

Denote by Sym+(n) the set of positive definite (n × n) symmetric matrices, and
consider an open subset V of Rn (specifically, in some settings it can be convenient
to work with m in V instead of m ∈ R

n). We introduce statistical linearization as
the control system on V × Sym+(n) which is given by

(2.2) Ẋ = F (X,u), X =

(
m
P

)
∈ V × Sym+(n), u ∈ U ,

where the smooth mapping F : V × Sym+(n)× R
nu → R

n × Sym(n) is defined by

(2.3) F (X,u) =

(
f(m,u)

Dxf(m,u)P + PDxf(m,u)
⊤ + g(m)g(m)⊤

)
.

Our main goal is to study accessibility and controllability properties for this system.

Remark 2.1. As a consequence of (2.1), the trajectories of F (X,u) are defined on
the same time-intervals in which the trajectories of f(m,u) are. In particular, if for
a given u ∈ U the vector field f(·, u) is complete on R

n, then the vector field F (·, u)
is complete on V × Sym+(n).

2.1. General conditions for accessibility and controllability. Let us first
recall the main existing accessibility and controllability conditions. We refer to [13,
Chapter 3] for further details. Let

(2.4) ẋ = f(x, u), x ∈ V, u ∈ U ⊂ R
nu ,

be any (smooth) control system on an open subset V of Rn. Specifically, this control
system is characterized by the family of (smooth) vector fields

f = {fu = f(·, u) : u ∈ U}.

Two Lie algebras of vector fields are naturally associated with f:
• the Lie algebra generated by f,

Lie(f) = span {[f1, ..., [fk−1, fk]] : k ≥ 1, fi ∈ f} ;

• the so called zero-time ideal1, defined as

I(f) = span {f1 − f2, f3 : f1, f2 ∈ f, f3 ∈ D(f)} ⊂ Lie(f),

where D(f) = {[f1, ..., [fk−1, fk]] : k ≥ 2, fi ∈ f}.

1The terminology zero-time ideal comes from the fact that I(f) is associated with the set of
chained flows of the form et1f1 ◦ · · · ◦ etkfk , k ∈ N, fi ∈ f, where the total time t1 + · · ·+ tk equals
zero. On the contrary, Lie(f) is associated with the set of such elements but for which the total time
t1 + · · ·+ tk is let free.
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From now on, for every x ∈ V , we denote by Liex(f) (resp. Ix(f)) the set of vectors
f(x) ∈ R

n such that f ∈ Lie(f) (resp. f ∈ I(f)).

Definition 2.2. We say that f (or the control system (2.4)) satisfies the accessi-
bility rank condition at x ∈ V if dimLiex(f) = n, and that it satisfies the accessibility
rank condition in fixed time at x ∈ V if dim Ix(f) = n.

Remark 2.3. Note that the accessibility rank condition in fixed time implies the
accessibility rank condition since I(f) is contained in Lie(f).

For every x ∈ V , let us denote by A(x, T ) the reachable set from x in time T ≥ 0
of (2.4), and by A(x) =

⋃
T≥0 A(x, T ) the reachable set from x. The accessibility rank

conditions give sufficient conditions such that reachable sets have nonempty interiors
(see also [23, Sect. 4.5] for the necessity of these conditions).

Lemma 2.4 (Accessibility properties, Th. 2 p. 68, and Th. 3 p. 71 of [13]).
1. If f satisfies the accessibility rank condition at every point of V , then ∀x ∈ V ,

A(x) has nonempty interior and the set of interior points is dense in A(x).
2. If f satisfies the accessibility rank condition in fixed time at every point in V ,

then ∀x ∈ V , A(x, T ) has nonempty interior for T > 0 small enough and the
set of interior points is dense in A(x, T ). If moreover f contains at least one
complete vector field on V , then the preceding properties of A(x, T ) hold for
every T > 0.

The property for a control system of having reachable sets with nonempty interi-
ors is often called accessibility, which is a crucial property especially in the context of
optimal control. Indeed, it guarantees that one can generate infinitesimal perturba-
tions in any direction around the endpoint of a trajectory by varying its generating
control (either in fixed time if intA(x, T ) is nonempty, or in free time if intA(x) is
nonempty), opening up the possibility of performing calculus of variations.

Consider now the particular case of control-affine systems, i.e.,

(2.5) f(x, u) = f0(x) +

nu∑

i=1

uifi(x), u ∈ U = R
nu .

The Lie algebras associated with such a system respectively take the forms

Lie(f) = Lie{fi : i = 0, . . . , nu} and I(f) = Lie{adsf0 · fi : s ≥ 0, i = 1, . . . , nu},

where we denote ad1f0 · fi = [f0, fi] and adsf0 · fi = ad1f0 · (ad
s−1f0 · fi) for s ≥ 2.

The main benefit offered by these relations is that they allow for expressing the acces-
sibility rank conditions in terms of iterated brackets of the fi’s uniquely. Moreover, a
somewhat stronger version of Lemma 2.4 may be established, enabling the following
ease-of-use sufficient conditions for the controllability of control-affine systems.

Lemma 2.5. Assume V is connected. If for every x ∈ V it holds that

(2.6) dimLiex (f1, . . . , fnu
) = n,

then the control-affine system (2.5) is controllable on V in free and fixed time, i.e.,
for every x ∈ V , A(x) = V and A(x, T ) = V for T > 0 small enough.

Remark 2.6. Note that the Lie algebra Lie (f1, . . . , fnu
) is included in I(f), there-

fore (2.6) implies that the accessibility rank condition in fixed time at x holds.
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2.2. Form of the Lie brackets for statistical linearization. The accessi-
bility rank conditions require the computation of Lie brackets. We establish here a
general expression of the Lie brackets between the vector fields which define the sta-
tistical linearization. For this, given a controlled drift f and a diffusion g defining the
statistical linearization (2.2), we denote by f = {f(·, u) : u ∈ U} the family of vector
fields on V which is defined by the drift, and by Fg = {F (·, u) : u ∈ U} the family
of vector fields (2.3) on V × Sym+(n) which is defined by the statistical linearization.
Clearly by definition, for every F ∈ Fg there exists f ∈ f such that

F (X) =

(
f(m)

Df(m)P + PDf(m)⊤ + g(m)g(m)⊤

)
, X =

(
m
P

)
∈ V × Sym+(n).

Lemma 2.7. Consider two vector fields F1, F2 on V × Sym+(n) of the form

Fi(X) =

(
fi(m)

Dfi(m)P + PDfi(m)⊤ +Bi(m)

)
, i = 1, 2,

where f1, f2 are vector fields on V and B1, B2 : V → Sym(n) are smooth mappings.
Then,

[F1, F2](X) =

(
[f1, f2](m)

D[f1, f2](m)P + PD[f1, f2](m)⊤ +B12(m)

)
,

where, for every m ∈ V ,

B12(m) = dB2(m) · f1(m)− dB1(m) · f2(m) +Df2(m)B1(m)−Df1(m)B2(m)

+B1(m)Df2(m)⊤ −B2(m)Df1(m)⊤

is a symmetric matrix (note that we denote by Df(m) the Jacobian matrix of a vector
field f , whereas we denote by dB(m) the differential of a map B at m).

Proof. By definition, the Lie brackets of F1 and F2 is given by

[F1, F2](X) = dF2(X) · F1(X)− dF1(X) · F2(X).

Let us denote Y = (Ym, YP ) any element Y ∈ R
n × Sym(n). On the one hand, the

first n components of dF2(X) · F1(X) satisfy

(dF2(X) · F1(X))m = d(F2)m(X) · F1(X)

=
∂f2
∂m

(m) · (F1(X))m +
∂f2
∂P

(m) · (F1(X))P = Df2(m)f1(m),

and therefore we readily obtain that

[F1, F2](X)m = [f1, f2](m).

On the other hand, the remaining n2 components of dF2(X) · F1(X) satisfy

(dF2(X) · F1(X))P =
∂
(
Df2(m)P + PDf2(m)⊤ +B2(m)

)

∂m
· f1(m)

+
∂
(
Df2(m)P + PDf2(m)⊤ +B2(m)

)

∂P
·
(
Df1(m)P + PDf1(m)⊤ +B1(m)

)
.
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Let us develop these two terms separately. For the first term, we may compute

∂
(
Df2(m)P + PDf2(m)⊤ +B2(m)

)

∂m
· f1(m) =

D2f2(m) · (f1(m), .)P + P [D2f2(m) · (f1(m), .)]⊤ + dB2(m) · f1(m),

where, with an abuse of notation, we implicitly identify the linear mapping

D2f2(m) · (f1(m), .) : h ∈ R
n 7→ D2f2(m) · (f1(m), h) ∈ R

n

to an (n× n) matrix. For the second term, we may compute

∂
(
Df2(m)P + PDf2(m)⊤ +B2(m)

)

∂P
·
(
Df1(m)P + PDf1(m)⊤ +B1(m)

)
=

Df2(m)Df1(m)P +Df2(m)PDf1(m)⊤ +Df1(m)PDf2(m)⊤ + P [Df2(m)Df1(m)]⊤

+Df2(m)B1(m) +B1(m)Df2(m)⊤.

Similar formulas hold for (dF1(X) · F2(X))P , which can be readily checked by index
exchange. At this step, by leveraging the relation

D[f1, f2](m) = D2f2(m) · (f1(m), .)−D2f1(m) · (f2(m), .)

+Df2(m)Df1(m)−Df1(m)Df2(m),

we finally obtain that

[F1, F2]P (X) = D[f1, f2](m)P + PD[f1, f2](m)⊤ +B12(m),

where B12 is as stated in the lemma, and the conclusion follows.

An elementary induction argument on this lemma yields a simple closed form for
every element in Lie(Fg) and I(Fg), respectively.

Corollary 2.8. Every vector field F in Lie(Fg) (resp. in I(Fg)) writes as

(2.7) F (X) =

(
f(m)

Df(m)P + PDf(m)⊤ +B(m)

)
,

where f belongs to Lie(f) (resp. to I(f)) and B : V → Sym(n) is a smooth mapping.
Reciprocally, if f belongs to Lie(f) (resp. to I(f)), then there exists F in Lie(Fg) (resp.
in I(Fg)) and a smooth mapping B : V → Sym(n) such that (2.7) holds.

Finally, if F ∈ Lie(F0) (i.e. if g = 0), then B = 0.

Remark 2.9. The family F0 plays an important role in the forthcoming algebraic
conditions. It is important to note that this family is not directly associated with the
statistical linearization of a stochastic differential equation (1.1), in that the latter is
not defined for g = 0. Nevertheless, this family F0 can be interpreted as the statistical
linearization of a deterministic control system subject to imperfect information on the
initial condition, which is modelled through a Borel measure (see for instance [16]).

2.3. Algebraic conditions for accessibility. To simplify the expression of the
accessibility rank conditions, we first provide an algebraic result which allows us to
express these sought conditions independently from g and P . In what follows, we

denote E = R
n × Sym(n), a vector space of dimension N = n + n(n+1)

2 . Recall that
F0 denotes the family of the vector fields (2.3) associated with g = 0. Also, we denote
by Mn(R) the space of (n× n) matrices and by I ∈ Sym+(n) the identity matrix.
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Lemma 2.10. For every m ∈ V , the following properties hold:
1. dim I(m,I)(F0) = N if and only if dim I(m,P )(F0) = N ∀P ∈ Sym+(n);

2. dimLie(m,I)(F0) = N if and only if dimLie(m,P )(F0) = N ∀P ∈ Sym+(n).

Proof. For any given P ∈ Sym+(n), we introduce the map φP : Rn×Mn(R) → E,
which is defined by

φP (v,A) =

(
v

AP + PA⊤

)
.

We claim that

(2.8) R
n ×Mn(R) = E ⊕ kerφP .

For this, note first that kerφP = {0} × Skew(n)P−1, where Skew(n) denotes the set
of (n× n) skew-symmetric matrices. Hence, we are left to prove that

Mn(R) = Sym(n)⊕ Skew(n)P−1,

or equivalently that
Sym(n) ∩ Skew(n)P−1 = {0}.

For this, if we assume S is an element of this intersection, that is S is symmetric and
S = ΛP−1 with Λ ∈ Skew(n), it must hold that

ΛP−1 = S = S⊤ = (ΛP−1)⊤ = −P−1Λ,

implying that PΛ+ΛP = 0. This latter Lyapunov equation has no trivial solutions if
and only if Sp {P} ∩ Sp {−P} 6= ∅, which is not the case since P is positive definite.
Therefore, Λ = 0 and thus S = 0. We conclude that (2.8) holds true.

At this point, we proceed by first showing the first point of the lemma. For this,
fix m ∈ V and denote

Ẽ =

{(
f(m)
Df(m)

)
: f ∈ I(f)

}
.

Since I(f) is a Lie algebra, Ẽ is a linear subspace of Rn×Mn(R). Moreover, for every
P ∈ Sym+(n), thanks to Corollary 2.8 it holds that

I(m,P )(F0) = φP (Ẽ) ⊂ E,

and hence, thanks to (2.8) we have that dim I(m,P )(F0) = N if and only if E ⊂ Ẽ.
Since this last condition holds true independently from P , Point 1. of the lemma
follows. Point 2. can be proved along the same line.

Let us now study the dimensions of the subspaces IX(Fg) and LieX(Fg), for g 6= 0.
Specifically, the following key density result holds true.

Lemma 2.11.
1. If dim I(m,I)(F0) = N for every m ∈ V , then there exists an open and dense

subset Ω of V × Sym+(n), such that dim IX(Fg) = N for every X ∈ Ω.
2. If dimLie(m,I)(F0) = N for every m ∈ V , then there exists an open and dense

subset Ω̃ of V × Sym+(n), such that dimLieX(Fg) = N for every X ∈ Ω̃.

Proof. We only prove Point 1., the proof of Point 2. being identical. Fix m0 ∈ V .
By assumption, there exist N vector fields f1, . . . , fN in I(f) such that

detE

((
f1(m0)

Df1(m0) +Df1(m0)
⊤

)
, ...,

(
fN (m0)

DfN (m0) +DfN (m0)
⊤

))
6= 0,
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where detE denotes the determinant in the vector space E. By continuity, for every
m in a neighbourhood Vm0

⊂ V of m0 it holds that

(2.9) detE

((
f1(m)

Df1(m) +Df1(m)⊤

)
, ...,

(
fN(m)

DfN(m) +DfN (m)⊤

))
6= 0.

At this step, from Corollary 2.8, there exist F1, . . . , FN in I(Fg) such that

Fi(X) =

(
fi(m)

Dfi(m)P + PDfi(m)⊤ +Bi(m)

)
, i = 1, . . . , N.

Let us introduce the scalar function on V × Sym+(n), which is defined by

p(X) = detE (F1(X), ..., FN (X)) .

Clearly, dim IX(Fg) = N as soon as p(X) 6= 0. But for any fixed m ∈ Vm0
, the

mapping p(X) is a polynomial function of P , whose homogeneous term of highest
degree is

p0(X) = detE

((
f1(m)

Df1(m)P + PDf1(m)⊤

)
, ...,

(
fN (m)

DfN (m)P + PDfN(m)⊤

))
.

Therefore, (2.9) yields p0(m, I) 6= 0, and thus both p0 and p are not the zero P–
polynomial. As a consequence, the subset

Ωm0
=
{
X ∈ Vm0

× Sym+(n) : p(X) 6= 0
}

is open and dense in Vm0
×Sym+(n). By taking the union of the sets Ωm0

for allm0 ∈
V , we obtain a dense and open subset Ω of V ×Sym+(n), on which dim IX(Fg) = N .

2.4. Accessibility criterion for statistical linearization. We are now in po-
sition to establish sufficient conditions for the accessibility of the statistical lineariza-
tion. Specifically, the following result comes from a direct application of Lemma 2.11.

Proposition 2.12. Consider drift f and diffusion g mappings, and denote by f

and Fg the families of vector fields associated with f and the corresponding statistical
linearization (2.2), respectively. The following conditions hold true:

1. if for every m ∈ V there holds

(2.10) dim

{(
f(m)

Df(m) +Df(m)⊤

)
: f ∈ Lie(f)

}
= N,

then Fg satisfies the accessibility rank condition on an open and dense subset
of V × Sym(n)+;

2. if for every m ∈ V there holds

(2.11) dim

{(
f(m)

Df(m) +Df(m)⊤

)
: f ∈ I(f)

}
= N,

then Fg satisfies the accessibility rank condition in fixed time on an open and
dense subset of V × Sym+(n).

Remark 2.13. In the case g = 0, by Lemma 2.10 the open and dense subsets which
result from Proposition 2.12 are the whole space V × Sym+(n), and the requirements
of Point 1. and 2. of the proposition are equivalent to the accessibility rank conditions
in free and fixed time, respectively. This equivalence does not hold in general for
nonzero g, see Section 2.5 for a counterexample.
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Importantly, these conditions involve properties of the family of controlled drift
mappings f uniquely, and in particular neither the diffusion g nor the covariance vari-
able P explicitly affect them. Through these accessibility conditions, one can deduce
the structure of the reachable sets in free and fixed time, and thus generic accessibil-
ity properties for (1.2) by means of Lemma 2.4. Note that, thanks to Remark 2.1,
the assumption concerning the completeness of the vector fields which is required in
Lemma 2.4 can be merely tested on the family f.

Proposition 2.12 may be refined in the case of control-affine drift, that is, mappings
f of the form

f(x, u) = f0(x) +

nu∑

i=1

uifi(x), u ∈ U = R
nu .

In such case, the statistical linearization takes a control-affine form as well, specifically

(2.12) Ẋ = Ff0,g(X) +

nu∑

i=1

uiFfi(X), u ∈ R
nu ,

where we introduced the following vector fields on V × Sym+(n):

Ff0,g(X) =

(
f0(m)

Df0(m)P + PDf0(m)⊤ + g(m)⊤g(m)

)
,

Ffi (X) =

(
fi(m)

Dfi(m)P + PDfi(m)⊤

)
, X =

(
m
P

)
, i = 1, . . . , nu.

In addition to the accessibility stated through Proposition 2.12, from a direct appli-
cation of Lemma 2.5 we obtain stronger controllability conditions for (2.12).

Proposition 2.14. Assume V is connected. If for every m ∈ V there holds

dim

{(
f(m)

Df(m) +Df(m)⊤

)
: f ∈ Lie(f1, . . . , fnu

)

}
= N,

then system (2.12) is controllable on V × Sym+(n) in free and fixed time.

Proof. It suffices to notice that, by applying Lemma 2.10-Point 2. to the family
F0 = {Ff1 , . . . , Ffnu

}, the assumption above implies that (2.12) satisfies the assump-
tion of Lemma 2.5.

2.5. Counterexample: the biaffine case. The aforementioned results give
sufficient but not necessary conditions for accessibility. To illustrate that, below we
provide an example of a particular class of systems which is generally accessible even
though it does not verify the latter sufficient accessibility conditions.

The class we consider is the one associated with constant diffusions g and control-
affine drifts f which depend linearly on x, i.e., fi(x) = Aix with Ai ∈ Mn(R) for
i = 0, ...,mu. We say that such an f is a biaffine system, the simplest class of
nonlinear systems. The statistical linearization takes the control-affine form (2.12),
where

Ff0,g(X) =

(
A0m

A0P + PA⊤
0 + gg⊤

)
, Ffi(X) =

(
Aim

AiP + PA⊤
i

)
, i = 1, . . . , nu.
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For simplicity we set F0 = Ff0,g and Fi = Ffi . Lemma 2.7 yields the following forms
of the Lie brackets,

(2.13) [Fi, Fj ](X) =

(
[Ai, Aj ]m

[Ai, Aj ]P + P [Ai, Aj ]
⊤
+Bij

)
, i, j = 0, . . . , nu,

where the symmetric matrices Bij ∈ Sym(n) are given by

(2.14) B0j = Ajgg
⊤ + gg⊤A⊤

j and Bij = 0 for i, j = 1, . . . , nu.

We first show that, in such specific case, the accessibility conditions given by
Proposition 2.12 do no longer hold true.

Proposition 2.15. Assume that the drift f is a biaffine system. Then, at every
m ∈ R

n, the sufficient conditions (2.10) and (2.11) in Proposition 2.12 are not satis-
fied. In particular, if in addition g = 0, then the statistical linearization satisfy none
of the accessibility rank conditions.

Proof. As a consequence of (2.13), condition (2.10) at m ∈ R
n writes as

dim

{(
Am

A+A⊤

)
: A ∈ Lie(A0, A1, . . . , Anu

)

}
= N.

Fix m ∈ R
n, P ∈ Sym+(n), and introduce the linear map ψ(m,P ) : Mn(R) → R

n ×
Sym(n) defined by

ψ(m,P )(A) =

(
Am

AP + PA⊤

)
.

If condition (2.10) holds at m, then necessarily rankψ(m,I) = N . Let us prove that
this latter condition is not actually true.

For this, obviously we have that

kerψ(m,I) = {A ∈ Skew(n) : Am = 0} .

If m = 0, then kerψ(m,I) = Skew(n) is of dimension n(n − 1)/2, and thus, by the
rank-nullity theorem, rankψ(m,I) = n2 − n(n− 1)/2 = n(n+ 1)/2 is smaller than N .
If m 6= 0, then we can find an orthogonal basis {e1, . . . , en} of Rn where e1 = m. In
that basis, the element Ai,j in the ith row and the jth column of A satisfies

Ai,j = e⊤i Aej = −e⊤j Aei = −Aj,i,

yielding A1,j = Ai,1 = 0. As a consequence, in these coordinates, we have

kerψ(m,I) =

{
A =

(
0 0
0 Ā

)
∈Mn(R) : Ā ∈ Skew(n− 1)

}
.

Thus kerψ(m,I) has the same dimension as Skew(n − 1). Hence rankψ(m,I) = n2 −
(n − 2)(n − 1)/2 is equal to N − 1 and we deduce that the condition (2.10) is never
satisfied. This proof can be easily replicated to show condition (2.11).

Proposition 2.15 shows that our sufficient conditions for accessibility can not be
leveraged to prove that biaffine systems are generally accessible. Nevertheless, it is
still possible to formulate other sufficient general conditions for the accessibility of
biaffine systems. In particular, the following result holds true.
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Proposition 2.16. Assume that the biaffine system satisfies the followings:
(i) dimLie(A1, . . . , Anu

) = n2;
(ii) there exists i ∈ {1, . . . , nu} such that B0i = Aigg

⊤ + gg⊤A⊤
i is nonzero.

Then Fg satisfies the accessibility rank condition in fixed time on an open and dense
subset of Rn × Sym+(n).

Remark 2.17. Conditions (i) and (ii) are satisfied by generic matricesA1, . . . , Anu

when nu > 1 and g 6= 0, respectively. Hence the statistical linearizations of a “very
large” class of biaffine systems satisfy the accessibility rank conditions, though they
do not satisfy the sufficient conditions which are provided in Proposition 2.12.

Proof. Note first that, as a consequence of (2.13), every vector field in I(Fg)
writes as

F (X) =

(
Am

AP + PA⊤ +B

)
, A ∈Mn(R), B ∈ Sym(n),

and thus F (X) depends affinely on X = (m,P ). As a result, the accessibility rank
condition in fixed time dim IX(Fg) = N holds either nowhere, or for points X which
belong to an open and dense subset of Rn × Sym+(n) (to see this, use the argument
we provide at the end of the proof of Lemma 2.11). Therefore, it is enough to prove
that dim IX(Fg) = N holds for any specific point X .

For this, by Hypothesis (ii) the symmetric matrix B0i is nonzero, thus we can
choose m̄ ∈ R

n and P̄ ∈ Sym+(n) such that m̄⊤P̄−1B0iP̄
−1m̄ 6= 0. Set X̄ = (m̄, P̄ ).

Now, note that, on the one hand the set IX̄(Fg) contains the vector

[F0, Fi](X̄) =

(
A0im̄

A0iP̄ + P̄A⊤
0i +B0i

)
, where A0i = [A0, Ai] ,

whereas, on the other hand, it contains the linear subset

W =
{
F (X̄) : F ∈ Lie(F1, . . . , Fnu

)
}
.

Thanks to (2.13) and (2.14), every F (X̄) ∈W writes as

F (X̄) =

(
Am̄

AP̄ + P̄A⊤

)
, with A ∈ Lie(A1, . . . , Anu

).

It then results from Hypothesis (i) that W is the image of the map ψX̄ which is
defined in the proof of Proposition 2.15. Moreover, a straightforward adaptation of
the latter proof implies that rankψX̄ = N − 1, and therefore that dimW = N − 1.

Let us prove that [F0, Fi](X̄) does not belong toW . Indeed, if an element (v,Q) ∈
R
n×Sym(n) belongs to W , then there exists a matrix A ∈Mn(R) such that v = Am̄

and Q = AP̄ + P̄A⊤. Equivalently, there exists Ω ∈ Skew(n) such that v = (12Q +
Ω)P̄−1m̄. By multiplying the latter expression by m̄⊤P̄−1, we obtain that

α(v,Q) := m̄⊤P̄−1(v −
1

2
QP̄−1m̄) = 0.

Let us compute this expression in the case (v,Q) = [F0, Fi](X̄). We have that

α([F0, Fi](X̄)) = m̄⊤P̄−1

(
A0im̄−

1

2
(A0iP̄ + P̄A⊤

0i +B0i)P̄
−1m̄

)

=
1

2
m̄⊤P̄−1

(
(A0iP̄ − P̄A⊤

0i)−B0i

)
P̄−1m̄ = −

1

2
m̄⊤P̄−1B0iP̄

−1m̄.
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But the choice of X̄ guarantees α([F0, Fi](X̄)) 6= 0, which implies [F0, Fi](X̄) 6∈ W .
In summary, we have shown that W ⊕R[F0, Fi](X̄) is a vector space of dimension

N included in IX̄(Fg). We deduce that dim IX̄(Fg) = N , concluding the proof.

3. Generic accessibility and controllability. In this section, we conclude
our study by establishing generic accessibility and controllability properties for (1.2).
Specifically, we show that the various sufficient rank conditions which we established
in Section 2.4 hold generically (in the sense of Thom’s transversality) with respect to
the drift f , and eventually with respect to the initial conditions m(0) and P (0).

From now on, we consider control-affine drift mappings uniquely, i.e.,

f(x, u) = f0(x) +

nu∑

i=1

uifi(x), u ∈ U = R
nu ,

and we thus adopt the notation we introduced through (2.12). For an open subset V
of Rn and ℓ, r ∈ N, we introduce the following quantities (see, e.g., [11]):

• πℓr : J
ℓ(V,Rr) → V is the vector bundle of ℓ-jets of maps in C∞(V,Rr);

• for every h ∈ C∞(V,Rr), jℓr(h) : V → Jℓ(V,Rr) is the jet map associated with πℓr;
in particular, when clear from the context, for the sake of conciseness we denote
jℓ(h)y = jℓ(h)(y) ∈ Jℓ(V,Rr), for every h ∈ C∞(V,Rr) and every y ∈ V .

We recall that the family of sets

{
h ∈ C∞(V,Rr) : jℓ(h)(V ) ⊂ V

}
, V open subset of Jℓ(V,Rr),

generates the (weak) Whitney topology of C∞(V,Rr). Our main results are as follows.

Theorem 3.1 (Accessibility with Respect to Generic Drift). There exists an
open and dense (w.r.t. the Whitney topology) subset OAcc ⊂ C∞(V,Rn×(nu+1)), such
that for every (f0, f1, . . . , fnu

) ∈ OAcc, the family of vector fields

f =

{
f0 +

nu∑

i=1

uifi : u ∈ U

}

satisfies condition (2.10) for every m ∈ V . In addition, there exists an open and
dense (w.r.t. the Whitney topology) subset OAcc+ ⊂ C∞(V,Rn×(nu+1)), such that
for every (f0, f1, . . . , fnu

) ∈ OAcc+ , the aforedefined family of vector fields f satisfies
condition (2.11) for every m ∈ V .

Together with Proposition 2.12, Theorem 3.1 readily yields the following corollary.

Corollary 3.2 (Accessibility with Respect to Generic Drift and Initial Datum).
There exists an open and dense (w.r.t. the Whitney topology) subset OAcc+ ⊂

C∞(V,Rn×(nu+1)), such that for every (f0, f1, . . . , fnu
) ∈ OAcc+ and every diffusion

g ∈ C∞(V,Rn×d), the family of vector fields

F =

{
Ff0,g +

nu∑

i=1

uiFfi : u ∈ U

}

satisfies the accessibility rank condition in fixed time on an open and dense subset
Ωg ⊂ V × Sym+(n) which depends on g uniquely.
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Theorem 3.3 (Controllability with Respect to Generic Drift).
Let nu ≥ 2. There exists an open and dense (w.r.t. the Whitney topology) subset

OContr ⊂ C∞(V,Rn×nu), such that for every (f1, . . . , fnu
) ∈ OContr, every vector field

f0 ∈ C∞(V,Rn), and every diffusion g ∈ C∞(V,Rn×d), the family of vector fields

F =

{
Ff0,g +

nu∑

i=1

uiFfi : u ∈ U

}

is controllable on V × Sym+(n) in free and fixed time.

Through the rank conditions provided above, one can deduce the structure of the
reachable sets in free and fixed time of the statistical linearization, and thus generic
accessibility and controllability properties for (1.2), by means of Lemma 2.4–2.5.

The rest of the section is devoted to proving these results. In particular, we prove
the first part of Theorem 3.1 for nu = 1 (the cases nu ≥ 2 trivially result from the
latter), given that the proofs of Theorem 3.3 and of the second part of Theorem 3.1
follow the same line, though they are less pedagogical. Moreover, since all our proofs
develop along local analysis, without loss of generality we implicitly assume V = R

n

in what follows.

3.1. Fundamental concepts from transversality theory. Before jumping
into the proof of Theorem 3.1, we recall some useful concepts from algebraic geometry
and transversality theory which are key to achieve the aforementioned proof, for which
we mainly refer to [25, 3, 17, 10]. In particular, for the sake of clarity in the exposition,
we gathered the classical concepts of algebraic geometry we make use of in our proofs
in Appendix A, so that in this subsection we may focus on transversality theory.

Since we set up nu = 1 and V = R
n, throughout the following sections, for

any given ℓ ∈ N we consider the vector bundle of ℓ-jets Jℓ(Rn,R2n), for which we
implicitly adopt the following identification

(3.1) Jℓ(Rn,R2n) ∼= R
3n+2n

∑

ℓ
i=1

(

n+ i− 1
i

)

,

which is achieved through some (global) trivialization mapping. In addition, if (U,ϕ)
is any local chart of Rn at m ∈ R

n, for every f0, f1 ∈ C∞(Rn,Rn) the coordinates
jℓϕ(f0, f1)m of the jet jℓ(f0, f1)m ∈ Jℓ(Rn,R2n) with respect to (U,ϕ) are denoted by

jℓϕ(f0, f1)m =

(
ϕ(m), ϕf00 , ϕ

f1
0 ,

(ϕf01;{i1})0≤i1≤n, (ϕ
f1
1;{i1}

)0≤i1≤n,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(ϕf0ℓ;{i1,...,iℓ})0≤i1≤···≤iℓ≤n, (ϕ
f1
ℓ;{i1,...,iℓ}

)0≤i1≤···≤iℓ≤n

)
,

where (ϕf0j )0≤i1≤···≤ij≤n, (ϕ
f1
j )0≤i1≤···≤ij≤n ∈ R

n

(

n+ j − 1
j

)

, for every 1 ≤ j ≤ ℓ.

Through the identification (3.1), we may introduce semi-algebraic sets SA ⊂
Jℓ(Rn,R2n) (see Appendix A), and thus we can make use of the following key transver-
sality result to prove Theorem 3.1.
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Theorem 3.4 (Transversality Theorem, Proposition p. 38 of [10]). Let SA ⊂
Jℓ(Rn,R2n) be a closed semi-algebraic set which satisfies

codimSA ≥ n+ 1.

Then, the subset

OSA =
{
(f0, f1) ∈ C∞(Rn,R2n) : jℓ(f0, f1) ∩ SA = ∅

}

is open and dense (w.r.t. the Whitney topology) in C∞(Rn,R2n).

Theorem 3.4 results from combining TheoremA.1 with Thom’s stratified transver-
sality theorem (for details, see [17, “Théorème 6.1” and “Remarque” at page 175]).

3.2. Proof of Theorem 3.1. Our proof of Theorem 3.1 is inspired by the proofs
in [15, 5, 8], which consist of showing that specific bad sets have arbitrarily large
codimension. We introduce appropriate, non-trivial modifications to these proofs to
address submersion singularities which are due to possibly non-transverse components.
In particular, we introduce four bad sets B1

ℓ , B
2
ℓ , B

3
ℓ , and B4

ℓ (see below). Although
we could prove our result without explicitly considering B1

ℓ , we introduced this latter
on purpose to show how the classical transversality cunning in [15, 5, 8], which can
be leveraged to handle B1

ℓ , must be revisited to manipulate B2
ℓ , B

3
ℓ , and B4

ℓ .

3.2.1. Definition of the bad sets. Through a slight abuse of notation which
is possible thanks to the identification (3.1) , for r ∈ N ∩ [0, ℓ− 2] the mappings

jℓ(f0, f1)m ∈ Jℓ(Rn,R2n) 7→ adrFf0,0 · Ff1(m, I) ∈ R
N ,

jℓ(f0, f1)m ∈ Jℓ(Rn,R2n) 7→ adr
[
Ff0,0, Ff1

]
· Ff1 (m, I) ∈ R

N ,

where adr is the r-iterated Lie bracket, are well-defined vector-valued polynomials.
This remark, together with the identification (3.1) , allows us to define the following
bad sets, which are semi-algebraic sets of Jℓ(Rn,R2n) (for any ℓ ∈ N large enough):

B1
ℓ =

{
jℓ(f0, f1)m ∈ Jℓ(Rn,R2n) : f0(m) 6= 0,

rank
[
ad1Ff0,0 · Ff1 (m, I)

∣∣∣ ad3Ff0,0 · Ff1(m, I)
∣∣∣ . . .

. . .
∣∣∣ ad2⌊ℓ/2⌋−1Ff0,0 · Ff1 (m, I)

]
< N

}
,

B2
ℓ =

{
jℓ(f0, f1)m ∈ Jℓ(Rn,R2n) : f0(m) = 0, ad1f0 · f1(m) 6= 0,

rank
[
ad1
[
Ff0,0, Ff1

]
· Ff1(m, I)

∣∣∣ ad3
[
Ff0,0, Ff1

]
· Ff1(m, I)

∣∣∣ . . .

. . .
∣∣∣ ad2⌊(ℓ−1)/2⌋−1

[
Ff0,0, Ff1

]
· Ff1 (m, I)

]
< N

}
,

B3
ℓ =

{
jℓ(f0, f1)m ∈ Jℓ(Rn,R2n) : f0(m) = ad1f0 · f1(m) = 0, f1(m) 6= 0

}
,
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B4
ℓ =

{
jℓ(f0, f1)m ∈ Jℓ(Rn,R2n) : f0(m) = f1(m) = 0

}
,

Thanks to (A.2), we finally have that the bad set

Bℓ = B1
ℓ ∪ B2

ℓ ∪ B3
ℓ ∪ B4

ℓ ⊂ Jℓ(Rn,R2n)

is a semi-algebraic set whose codimension satisfies

(3.2) codimBℓ ≥ min
i=1,2,3,4

codimBiℓ.

3.2.2. Existence of an open and dense subset. Assume that

(3.3) min
i=1,2,3,4

codimBiℓ ≥ n+ 1, for some ℓ ∈ N.

Therefore, (3.2) yields codimBℓ ≥ n + 1 and we can apply Theorem 3.4 to infer the
existence of an open and dense (w.r.t. the Whitney topology) subset

OAcc =
{
(f0, f1) ∈ C∞(Rn,R2n) : jℓ(f0, f1) ∩ Bℓ = ∅

}
⊂ C∞(Rn,R2n).

In particular, straightforward computations by contradiction show that

(f0, f1) ∈ OAcc =⇒ dimLiem

((
f

Df +Df⊤

)
: f ∈ {f0, f1}

)
= N.

Therefore, the proof of Theorem 3.1 is achieved once (3.3) is proved.

Remark 3.5. Theorem 3.1 may be proved similarly by replacing B1
ℓ with

{
jℓ(f0, f1)m ∈ Jℓ(Rn,R2n) : f0(m) 6= 0, ad1f0 · f1(m) 6= 0,

rank
[
ad1
[
Ff0,0, Ff1

]
· Ff1(m, I)

∣∣∣ ad3
[
Ff0,0, Ff1

]
· Ff1 (m, I)

∣∣∣ . . .

. . .
∣∣∣ ad2⌊(ℓ−1)/2⌋−1

[
Ff0,0, Ff1

]
· Ff1(m, I)

]
< N

}
,

The required modifications are straightforward, and thus we avoid to report them.

3.2.3. Codimension computations. The rest of the manuscript is devoted
to prove (3.3). We provide computations for B1

ℓ and B2
ℓ uniquely, given that the

computations for B3
ℓ and B4

ℓ essentially follow the same line, though they are easier.
We fix ℓ ∈ N large enough (to be selected later). For r ∈ N, m ∈ R

n, and
h0, . . . , hr ∈ C∞(Rn,Rn), we denote by

(
Drh0

)
i1,...,ir

(m) =
∂rh0

∂xi1 . . . ∂xir
(m) ∈ R

n

the tensor-valued mapping given by the rth derivative of h0 with respect to the multi-
index (i1, . . . , ir), as well as the matrix-valued mapping

(
(Dr+1h0)h1 . . . hr

)
ij
(m) =

n∑

i1,...,ir=1

(
Dr+1h0

)i
j,i1,...,ir

(m)hi11 (m) . . . hirr (m) ∈ R
n×n.
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Also, we denote the symmetric tensorization of any element θr ∈ R
n

(

n+ r − 1
r

)

by

S(θr) : R
n × · · · × R

n

︸ ︷︷ ︸
r−times

→ R
n,

whereas we denote the symmetrization of a matrix A ∈ R
n by Sym(A) = A+A⊤. For

every r ∈ N and ρ ∈ [0, r], we denote by Lρr the Stiefel manifold of linear mappings

L : Rr → R
N

such that rankL = ρ, for which it holds that

(3.4) codimLρr = (N − ρ) (r − ρ).

Finally, for every r ∈ N, we introduce the notation 1r = (1, . . . , 1) ∈ R
r.

Computations for B
1

ℓ
.

We introduce appropriate coordinates, i.e., the mapping χ defined below, under
which it is easy to check that appropriate mappings are submersions, yielding the
desired result. Note that the mapping χ has been first introduced in [5, Section 5].
Unfortunately, due to some Lie bracket singularities, the technique developed in [5]
does not work for B2

ℓ , and we will need to introduce new singularity-free coordinates.

Straightforward computations by induction yield the following key result.

Proposition 3.6. For m ∈ R
n and f0 ∈ C∞(Rn,Rn) such that f0(m) 6= 0, the

following equivalence holds true for f1 ∈ C∞(Rn,Rn) and r ∈ N:

adrFf0,0 · Ff1(m, I) =




Ar
(
Di+1f0, D

if1, 0 ≤ i ≤ r − 1
)

Br
(
Di+1f0, D

if1, 0 ≤ i ≤ r
)





+




(Drf1) f0 . . . f0︸ ︷︷ ︸
r−times

Sym
(
(Dr+1f1) f0 . . . f0︸ ︷︷ ︸

r−times

)


 ,

where Ar and Br are polynomial expressions of the derivatives of f0 and f1.

Consider the canonical global chart (Rn, Id) of Rn, given by the identity map

Id. Since every jℓ(f0, f1)m ∈ B1
ℓ satisfies Idf00 6= 0, we may select constant vectors

v2, . . . , vn ∈ R
n such that the tuple of vectors

{v1(p), v2(p), . . . , vn(p)} = {Idf00 , v2, . . . , vn}, for p = jℓ(f0, f1)m ∈ V1
ℓ ,
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spans Rn in some open subset V1
ℓ ⊂ Jℓ(Rn,R2n). In particular, the mapping

χ
(
jℓ(f0, f1)m

)
=

(
χm0 = m,

χf00 = Idf00 , χf10 = Idf10 ,(
χf01;{i1}

)

1≤i1≤n
=
(
S(Idf01 )vi1

)

1≤i1≤n
,

(
χf11;{i1}

)

1≤i1≤n
=
(
S(Idf11 )vi1

)

1≤i1≤n
,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(
χf0ℓ;{i1,...,iℓ}

)

1≤i1≤···≤iℓ≤n
=
(
S(Idf0ℓ )vi1 . . . viℓ

)

1≤i1≤···≤iℓ≤n
,

(
χf1ℓ;{i1,...,iℓ}

)

1≤i1≤···≤iℓ≤n
=
(
S(Idf1ℓ )vi1 . . . viℓ

)

1≤i1≤···≤iℓ≤n

)
,

which is smoothly well-defined in V1
ℓ , is a local chart for J

ℓ(Rn,R2n). For jℓ(f0, f1)m ∈
V1
ℓ , let M denote the matrix which corresponds to the smooth change of coordinates

ej =
n∑

i=1

Mij(θ
f0
0 )vi, M(θf00 ) =

(
Mij(θ

f0
0 )
)
1≤i,j≤n

∈ GL(n),

where ej denotes the jth column of I ∈ Sym+(n). Therefore, for r ∈ N we compute

(Dr+1 f1) f0 . . . f0︸ ︷︷ ︸
r−times

=


S(Idf1r+1) Id

f0
0 . . . Idf00︸ ︷︷ ︸
r−times

e1
∣∣∣ . . .

∣∣∣S(Idf1r+1) Id
f0
0 . . . Idf00︸ ︷︷ ︸
r−times

en




=


S(Idf1r+1) v1 . . . v1︸ ︷︷ ︸

r−times

v1

∣∣∣S(Idf1r+1) v1 . . . v1︸ ︷︷ ︸
r−times

v2

∣∣∣ . . .
∣∣∣S(Idf0r+1) v1 . . . v1︸ ︷︷ ︸

r−times

vn


M

=
(
χf1r+1;1r+1

∣∣∣χf1r+1;{1r,2}

∣∣∣ . . .
∣∣∣χf1r+1;{1r,n}

)
M,

which together with the equivalence of Proposition 3.6 finally yields

adrFf0,0· Ff1(m, I) =




Ar
(
χf0i+1, χ

f1
i , 0 ≤ i ≤ r − 1

)

Br
(
χf0i+1, χ

f1
i , 0 ≤ i ≤ r

)



(3.5)

+




χf1r

Sym

((
χf1r+1;1r+1

∣∣∣χf1r+1;{1r,2}

∣∣∣ . . .
∣∣∣χf1r+1;{1r,n}

)
M(χf00 )

)

 ,

for every jℓ(f0, f1)m ∈ V1
ℓ and every r ∈ N ∩ [1, ℓ− 1].

At this step, up to appropriate identifications, the triangular form of (3.5) allows
us to infer that, for every ℓ ∈ N such that 2⌊ℓ/2⌋ − 1 ≥ N , the mappings

L1
ℓ =

[
ad1Ff0,0 · Ff1(m, I)

∣∣∣ ad3Ff0,0 · Ff1 (m, I)
∣∣∣ . . .

. . .
∣∣∣ ad2⌊ℓ/2⌋−1Ff0,0 · Ff1(m, I)

]
: V1

ℓ → R
N×(2⌊ℓ/2⌋−1)
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are submersions. In particular, we infer that (L1
ℓ )

−1(Lρ2⌊ℓ/2⌋−1) ⊂ V1
ℓ are submanifolds

for every ρ ∈ [0, N ], which due to (3.4) satisfy

codim (L1
ℓ )

−1(Lρ2⌊ℓ/2⌋−1) = codimLρ2⌊ℓ/2⌋−1(3.6)

= (N − ρ)
(
2⌊ℓ/2⌋ − 1− ρ

)
.

Since

B1
ℓ ∩ V1

ℓ ⊂
N−1⋃

ρ=1

(L1
ℓ )

−1(Lρ2⌊ℓ/2⌋−1),

thanks to (3.6) we finally obtain that

codimB1
ℓ ∩ V1

ℓ ≥ codim (L1
ℓ )

−1
(
LN−1
2⌊ℓ/2⌋−1

)

= 2⌊ℓ/2⌋ − n−
n(n+ 1)

2
≥ n+ 1,

as soon as we select ℓ ∈ N large enough. We conclude that (3.3) holds true for B1
ℓ .

Computations for B
2

ℓ
.

Unfortunately, the technique developed in the previous section does not work for
B2
ℓ , in that the vector field f0 is identically zero. Thus, we introduce new singularity-

free coordinates, i.e., the mapping ψ defined below, which allow us to easily show
surjectivity of some differentials, yielding the desired result also in this singular case.

We start proving the existence of new singularity-free coordinates enabling the
following key equivalence between high-order Lie brackets.

Proposition 3.7. For every m ∈ R
n and every f0, f1 ∈ C∞(Rn,Rn) satisfying

ad1f0 ·f1(m) 6= 0, there exists a local chart (U,ϕ) of Rn at m which smoothly depends
on the coefficients of both f0 and f1, and such that for every r ∈ N, the following
equivalence holds true:

adr
[
Ff0,0, Ff1

]
· Ff1(m, I) =




0

Sym

(
(D2ϕ−1)

∂rf1
∂rxϕ1

Dϕ

)




+




Dϕ−1 ∂
rf1

∂rxϕ1

Sym

(
Dϕ−1

(
∂r+1f1
∂r+1xϕ1

∣∣∣∣
∂r+1f1
∂rxϕ1 x

ϕ
2

∣∣∣∣ . . .
∣∣∣∣
∂r+1f1
∂rxϕ1 x

ϕ
n

)
Dϕ

)


 .

Proof of Proposition 3.7. We first start by recalling a classic representation result,
in a general abstract framework. Let M be a n-dimensional manifold, and V ∈
C∞(M ;TM) be a smooth vector field, i.e., a section of the tangent bundle πM :
TM →M . Fix p ∈M , and let (U1, ϕ) and (U2, ψ) be local charts of M at p, so that

ϕ̃

(
p,

n∑

i=1

vi∂
ϕ
i (p)

)
= (ϕ(p), v), ψ̃

(
p,

n∑

i=1

wi∂
ψ
i (p)

)
= (ϕ(p), w)
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are local charts for TM with domains π−1
M (U1) and π

−1
M (U2), respectively. If

n∑

i=1

V ϕi (p)∂ϕi (p) = V (p) =

n∑

i=1

V ψi (p)∂ψi (p),

the following rules for the change of coordinates of V and its differential, hold:

(3.7) V ψ(p) = D
(
ψ ◦ ϕ−1

)
(p)V ϕ(p),

D
(
ψ̃ ◦ V ◦ ψ−1

)
(p) =(3.8)

= D
(
ψ̃ ◦ ϕ̃−1

)
(p, V (p))D

(
ϕ̃ ◦ V ◦ ϕ−1

)
(p)D

(
ϕ ◦ ψ−1

)
(p),

with

D
(
ψ̃ ◦ ϕ̃−1

)
(p, V (p)) =




D
(
ψ ◦ ϕ−1

)
(p) 0

D2
(
ψ ◦ ϕ−1

)
V ϕ(p) D

(
ψ ◦ ϕ−1

)
(p)


 ∈ GL(2n).

At this step, since ad1f0 · f1(m) 6= 0 we may find a local chart (U,ϕ) of Rn at
m, which smoothly depends on the coefficients of both f0 and f1 (indeed, this chart
is a smooth mapping of the flow of the vector field ad1f0 · f1, which is smooth with
respect to the coefficients of both f0 and f1), and such that

[f0, f1] = ∂ϕ1 , locally in U.

In these coordinates, through straightforward computations, we obtain

(adr[f0, f1] · f1)
ϕ =

∂rf1
∂rxϕ1

, locally in U,

and therefore, by selecting M = R
n, V = adr[f0, f1] · f1, (U1, ϕ) = (U,ϕ), and

(U2, ψ) = (Rn, Id), the relations (3.7) and (3.8) respectively yield

adr[f0, f1] · f1 = Dϕ−1 ∂
rf1

∂rxϕ1
, locally in U,

D
(
adr[f0, f1] · f1

)
= (D2ϕ−1)

∂rf1
∂rxϕ1

Dϕ

+Dϕ−1

(
∂r+1f1
∂r+1xϕ1

∣∣∣∣
∂r+1f1
∂rxϕ1 x

ϕ
2

∣∣∣∣ . . .
∣∣∣∣
∂r+1f1
∂rxϕ1 x

ϕ
n

)
Dϕ, locally in U,

and the conclusion readily follows from Lemma 2.7.

Let us introduce the subset

S2
ℓ =

{
jℓ(f0, f1)m ∈ Jℓ(Rn,R2n) : f0(m) = 0, ad1f0 · f1(m) 6= 0

}
.

Since the mapping

F2
ℓ : Jℓ(Rn,R2n) → R

n : jℓ(f0, f1)m 7→ f0(m)
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is a submersion, we infer that

S2
ℓ = (F2

ℓ )
−1(0) \

{
jℓ(f0, f1)m ∈ Jℓ(Rn,R2n) : ad1f0 · f1(m) = 0

}

is an embedded submanifold of Jℓ(Rn,R2n) with dimS2
ℓ = dim Jℓ(Rn,R2n)−n, which

contains B2
ℓ . By fixing m ∈ R

n and letting (U,ϕ) be the local chart of Rn at m given
by Proposition 3.7, which smoothly depends on the coefficients of both f0 and f1, we
define the open set V2

ℓ = Π−1
ℓ (U) ⊂ Jℓ(Rn,R2n). Therefore, the mapping

ψ
(
jℓ(f0, f1)m

)
=

(
ψm0 = ϕ(m),

ψf00 = Dϕ−1(m)ϕf00 , ψf10 = Dϕ−1(m)ϕf10 ,(
ψf01;{i1}

)

1≤i1≤n
=
(
Dϕ−1(m)ϕf01;{i1}

)

1≤i1≤n
,

(
ψf11;{i1}

)

1≤i1≤n
=
(
Dϕ−1(m)ϕf11;{i1}

)

1≤i1≤n
,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(
ψf0ℓ;{i1,...,iℓ}

)

1≤i1≤···≤iℓ≤n
=
(
Dϕ−1(m)ϕf0ℓ;{i1,...,iℓ}

)

1≤i1≤···≤iℓ≤n
,

(
ψf1ℓ;{i1,...,iℓ}

)

1≤i1≤···≤iℓ≤n
=
(
Dϕ−1(m)ϕf1ℓ;{i1,...,iℓ}

)

1≤i1≤···≤iℓ≤n

)
,

that is smoothly well-defined in V2
ℓ , is a local chart for Jℓ(Rn,R2n) which is adapted

to S2
ℓ . Finally, evaluating the equivalence of Proposition 3.7 through this chart yields

adr
[
Ff0,0, Ff1

]
· Ff1(m, I) =

=




0

Sym
(
(D2ϕ−1)(ψm0 )Dϕ

(
ϕ−1(ψm0 )

)
ψf1r;1r

Dϕ
(
ϕ−1(ψm0 )

))


(3.9)

+




ψf1r;1r

Sym

((
ψf1r+1;1r+1

∣∣∣ ψf1r+1;{1r,2}

∣∣∣ . . .
∣∣∣ ψf1r+1;{1r,n}

)
Dϕ
(
ϕ−1(ψm0 )

))


 ,

for every jℓ(f0, f1)m ∈ S2
ℓ ∩ V2

ℓ and every r ∈ N ∩ [0, ℓ− 2].
At this step, up to appropriate identifications, the triangular form of (3.9) allows

us to infer that, for every ℓ ∈ N such that 2⌊(ℓ− 1)/2⌋ − 1 ≥ N , the mappings

L2
ℓ =

[
ad1
[
Ff0,0, Ff1

]
· Ff1(X)

∣∣∣ ad3
[
Ff0,0, Ff1

]
· Ff1(X)

∣∣∣ . . .

. . .
∣∣∣ ad2⌊(ℓ−1)/2⌋−1

[
Ff0,0, Ff1

]
· Ff1(X)

]
: S2

ℓ ∩ V2
ℓ → R

N×(2⌊(ℓ−1)/2⌋−1)

are submersions. In particular, we infer that (L2
ℓ)

−1(Lρ2⌊(ℓ−1)/2⌋−1) ⊂ S2
ℓ ∩ V2

ℓ are

submanifolds for every ρ ∈ [0, N ], which due to (3.4) satisfy

codim (L2
ℓ )

−1(Lρ2⌊(ℓ−1)/2⌋−1) = codimLρ2⌊(ℓ−1)/2⌋−1(3.10)

= (N − ρ)
(
2⌊(ℓ− 1)/2⌋ − 1− ρ

)
.



22 R. BONALLI, C. LEPAROUX, B. HÉRISSÉ, AND F. JEAN

Since

B2
ℓ ∩ V2

ℓ ⊂
N−1⋃

ρ=1

(L2
ℓ )

−1(Lρ2⌊(ℓ−1)/2⌋−1),

thanks to (3.10) we finally obtain that

codimB2
ℓ ∩ V2

ℓ ≥ codim (L2
ℓ )

−1
(
LN−1
2⌊(ℓ−1)/2⌋−1

)

= 2⌊(ℓ− 1)/2⌋ − n−
n(n+ 1)

2
≥ n+ 1,

as soon as we select ℓ ∈ N large enough. We conclude that (3.3) holds true for B2
ℓ .

This latter argument concludes the proof of Theorem 3.1.

Appendix A. Useful concepts from algebraic geometry. Let ℓ, r ∈ N. A
semi-algebraic set SA ⊆ R

r is a subset of the form

(A.1) SA =

ℓ⋃

i=1

{
y ∈ R

r : pi1(y) = · · · = piai(y) = 0, qi1(y) < 0, . . . , qibi(y) < 0
}
,

for polynomials pij , q
i
j : R

r → R. Semi-algebraic sets enjoy the following properties:

• finite unions of semi-algebraic sets are semi-algebraic sets;

• closures (w.r.t. the natural topology) of semi-algebraic sets are semi-algebraic sets.

A simple induction argument on (A.1) shows that semi-algebraic sets are disjoint
unions of open subsets of algebraic sets. Thus, Whitney’s stratification theorem read-
ily yields the following representation result for semi-algebraic sets.

Theorem A.1 (Whitney’s stratification for semi-algebraic sets [25, Th. 2, p. 546]).
Let r ∈ N and SA ⊆ R

r be a semi-algebraic set. There exist ℓ ∈ N and embedded
submanifolds M1, . . . ,Mℓ ⊆ R

r, which are mutually disjoint and such that

SA =
ℓ⋃

i=1

Mi and dimMi+1 < dimMi, i = 1, . . . , ℓ− 1.

Thanks to Theorem A.1, given r ∈ N and a semi-algebraic set SA ⊆ R
r, we may

define the dimension and the codimension of SA as

dimSA = max
i=1,...,ℓ

dimMi and codimSA = r − dimSA.

Importantly, the topological closure does not modify the dimension, nor the codimen-
sion of a semi-algebraic set. Indeed, as a matter of example let r ∈ N and

SA =
{
y ∈ R

r : p(y) = 0, q(y) < 0
}
,

for polynomials p, q : Rr → R. By definition, we must have

dimSA ≤ max
{
dimSA , dim

{
y ∈ R

r : p(y) = q(y) = 0
}}

≤ max
{
dimSA , dim

{
y ∈ R

r : p(y) = 0
}}

= dimSA,

where we infer the last equality from the fact that SA is open in p−1(0), and thus

(A.2) dimSA = dimSA and codimSA = codimSA.

The extension of this property to general semi-algebraic sets follows by iterating the
previous argument through classical induction.
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