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∗DTIS, ONERA & UMA, ENSTA Paris (e-mail:
clara.leparoux@ensta-paris.fr).
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Abstract: The motion planning of powered descent problems has often been treated in the de-
terministic optimal control framework, which provides efficient theoretical and numerical tools.
However, future applications require robustness, usually obtained by introducing stochastic
components in the dynamics to model uncertainties. After stating the robust motion planning
problem, this paper proposes a deterministic approximation which avoids the computational
difficulties of stochastic optimal control. The approach consists of guiding the mean while
reducing the covariance, whose dynamics are approximated thanks to statistical linearization.
Moreover, since feedback control is necessary to control covariance, two manners to cope with
actuator saturations with a stochastic control are provided.
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1. INTRODUCTION

By the renewed interest these last years for Mars and Moon
exploration, with new missions requiring high landing
precision, and the growing use of reusable launchers, it
has become necessary to devise efficient vertical landing
strategies, as argued in Blackmore (2016). A challenge in
vertical landing is its last phase, the powered descent,
beginning a few kilometers above the landing site with
a limited amount a fuel remaining. It is usually achieved
through feedback control, that allows to reach the target
precisely using the available measurements by tracking a
reference trajectory computed thanks to motion planning.

The motion planning has frequently been treated in an
optimal control framework, seeking for the control suc-
ceeding to steer the vehicle to a target while minimizing a
cost function. The control structure of the optimal control
during powered descent has been studied numerous times
in the litterature, from Meditch (1964) and its study of
the fuel-saving one dimensional lunar landing problem.
Recently, Leparoux et al. (2022b) found that the general
structure of optimal solutions of powered descent problems
considering control and state constraints is the Max-Min-
Max form, which corresponds to a control of the engine
throttle that switches twice between its maximum and
minimum levels. This form of solution is well suited for
rocket engines because it does not require thrust modula-
tion, which is hard to achieve. However, since the control is
always saturated, it leaves no room to adapt to perturba-
tions or in case of errors on the initial conditions, possibly
high when landing on planets other than Earth according
to Braun and Manning (2007).

Those uncertainties may be considered by introducing a
white noise in the dynamics and modeling the vehicle
state as a random variable. Then, the robustness of the
motion planning is ensured if the solution allows to limit
the dispersions around the mean trajectory. This leads to
a stochastic formulation of the motion planning problem,
which is not desirable since few theoretical results exist
and numerical methods in the stochastic optimal control
framework are computationally heavy. In the literature,
several references propose covariance control approaches
through feedback control for linear dynamics. For instance,
Chen et al. (2015) uses a LQG regulator to steer the state
of a linear system to a specified terminal Gaussian distri-
bution. Moreover, Ridderhof and Tsiotras (2019) presents
an algorithm for powered descent that considers separately
the mean steering which has the role to bring the vehicle to
the target optimally, and the covariance steering to attain
prescribed final dispersions. When considering non linear
dynamics, Berret and Jean (2020) proposes to use statisti-
cal linearization to approximate the first two moments of
the stochastic state, and then to approximate the motion
planning solution by the one of an open-loop stochastic
optimal control problem.

Thus, it appears that leveraging feedback control to
achieve robust motion planning through covariance control
is promising. However, this requires to take into account
actuator saturations. For powered descent problem, sev-
eral ideas have been proposed to this end. For instance,
in Shen et al. (2010), which treats the robust powered
descent problem by reducing the solution sensitivity rather
than covariance, the feedback gain is multiplied by a
factor that vanishes when the reference control is close



to the saturation. In Ridderhof and Tsiotras (2019), the
control saturations are handled by convexifying control
constraints formulated as chance constraints to apply them
on the mean control. Moreover, Ridderhof and Tsiotras
(2021) extends this approach by calculating conservative
margins that allow to respect control bounds above a given
probability threshold.

This paper proposes a robust motion planning approach
for powered descent problems. This approach considers a
realistic space vehicle model, with non linear dynamics,
actuator saturations and state constraints. Uncertainties
are modeled by the introduction of stochastic components
in the dynamics and the initial conditions. The problem
consists of steering the mean positions and velocities to
a target, while minimizing a cost depending on the mean
state, the control and the covariance. The dynamics of
the mean and the covariance are approximated thanks
to statistical linearization. In addition, saturation of the
actuators is modeled and managed in two different ways.
Specifically, one of the proposed solutions consists of in-
cluding a smooth approximation of the saturation function
directly in the dynamics.

This paper is organized as follows. First, we present the
dynamics and the constraints of the landing problem
considered. Then, we detail how we formulate a robust
motion planning problem thanks to statistical lineariza-
tion. In Section 4 we present how to include the actuator
saturations and the state constraints into the problem
formulation, and finally Section 5 provides some numerical
results.

2. FRAMEWORK

Let us study the motion planning of a space vehicle
during the powered descent phase. It is treated here as
an optimal control problem, and in two dimensions for
the sake of simplicity. The aim is to compute a reference
trajectory and a reference control that allow the space
vehicle to reach a predefined target Sf while minimizing
fuel consumption.

2.1 Deterministic landing problem

First, let us describe the unperturbed dynamics of the
space vehicle, when assuming that all parameters are
known and that the vehicle is only affected by its weight
and by the engine thrust. The state is denoted x =
(r, v,m) ∈ R2 × R2 × R where r is the position, v the
velocity, m the mass of the vehicle and u the control. Its
unperturbed dynamics are expressed by ẋ = f(x, u) in an
inertial frame (ex, ez), such that

ṙ = v,

v̇ =
T

m
u− g0,

ṁ = −q‖u‖,
(1)

where u is the control, q the maximal mass flow rate of the
engine, T > 0 the maximal thrust and g0 = (0, ga) with
ga the gravitational acceleration. The initial mass of the
vehicle is denoted m0 and its empty mass me. Technical
limitations and security requirements are modeled by state

and control constraints, as explained in further details in
Leparoux et al. (2022a). They should be satisfied for all
t ∈ [0, tf ) and are expressed by:


m(t) > me ; (2)

0 ≤ umin ≤ ‖u(t)‖ ≤ umax; (3)

〈ez, u〉 ≥ ‖u‖ sin(θmin), with θmin ∈ [0,
π

2
); (4)

h(r) = rz − tan(γ)|rx| ≥ 0, with γ ∈ [0,
π

2
). (5)

According to Leparoux et al. (2022a)[Theorem 1.1 and
Proposition 4.3], for generic initial conditions, the optimal
control u that steers (r, v) following (1) to zero under the
constraints (2), (3), (4), (5) while maximizing the final
mass has a Max-Min-Max form, i.e. there exist t1 and t2
with 0 ≤ t1 ≤ t2 ≤ tf such that

‖u(t)‖ =

{
umax if t ∈ [0, t1) ∪ (t2, tf ],

umin if t ∈ [t1, t2].
(6)

2.2 Modeling of uncertainties

The motion planning problem stated above allows to com-
pute the less expensive way to attain a target. However,
in the presence of perturbations and uncertainties, con-
straints might be violated, which could cause the failure
of the mission. In order to take into account the uncer-
tainties when computing the solution, we model them by
introducing stochastic components in the problem. In the
case of the powered descent problem, several uncertainties
might act on the dynamics:

• uncertainties on the initial state, due to measurement
errors, and drifts on position and velocity estimates.

• perturbations of the dynamics, such as aerodynamic
forces not modeled in (1). This is modeled by a white
noise on the dynamics, such that

dxt = f(xt, u(t))dt+ g(xt)dWt, (7)

where xt is a stochastic state variable, g(xt) = σ(t)
mt

is a diffusion term and dWt a monovariate Wiener
process. However, we neglect the perturbations on
the mass equation, by defining the standard deviation
vector σ ∈ R5 with the last component equal to zero.

2.3 Robust motion planning

For now, we do not consider the state constraints (2)
and (5). When considering a stochastic system, motion
planning consists of imposing terminal constraints on the
trajectory, typically imposing the mean to reach the tar-
get. Moreover, for the mean to be representative of the
global behavior of the system, the dispersion of the sample
trajectories must be small along the trajectories and at the
final time. To this end, we add in the cost function penal-
izations on the integral of the covariance Px along the tra-
jectory and on the final covariance Px(tf ). Let us denote by
U = {u|umin ≤ ‖u‖ ≤ umax and 〈ez, u〉 ≥ ‖u‖ sin(θmin)}
the admissible control set. Then a first robust motion
planning problem can be stated in a stochastic framework
as follows



Problem 1. (Stochastic robust motion planning).

min
u,tf

E[−mtf ] + tr(QfPx(tf )) +

∫ tf

0

tr(QPx(t))dt

under the constraints
xt follows (7),

u(t) ∈ U ∀t ∈ [0, tf ),

E[xtf ] ∈ Sf .

3. DETERMINISTIC PROBLEM APPROXIMATION

A stochastic optimal control problem such as Problem 1
is difficult to solve because few theoretical and numeri-
cal methods are available and they are computationally
expensive. In this section, we propose a deterministic ap-
proximation of Problem 1.

3.1 Statistical linearization

As explained in Section 2.3, the quantities of major interest
for motion planning are the first two moments of xt. Thus
we prefer working on an approximation of Problem 1 using
as state variables the mean and the covariance, denoted
respectively by mx and Px. We approximate mx and Px
using a statistical linearization method, as solutions (x̂, P )
of the following differential system{

˙̂x = f(x̂, u),

Ṗ = Dxf(x̂, u)P + PDxf(x̂, u)> + g(x̂)g(x̂)>.
(8)

Statistical linearization methods are used for a long time,
especially in the fields of mechanics, and are well known.
See for instance Berret and Jean (2020) for justifications
of their use in motion planning. Thus, the control solution
of Problem 1 is approximated by the control solution of
the following problem

Problem 2. (Deterministic robust motion planning).

min
u,tf

−m̂(tf ) + tr(QfP (tf )) +

∫ tf

0

tr(QP (t))dt (9)

under the constraints
(x̂, P )(·) follows (8),

u(t) ∈ U ∀t ∈ [0, tf ),

x̂(tf ) ∈ Sf .

However, the viewpoint of Problems 1 and 2, and of any
optimal control problem, is consistent only if there is
accessibility. Indeed, if the covariance is not accessible,
then there exists no solution substantially reducing it
or even preventing it from increasing. Accessibility of
statistically linearized systems has been studied in Bonalli
et al. (2022), where a sufficient accessibility condition is
clarified. We checked this condition for the launcher model
described in this paper and it appears that it is not verified
when considering (1) as dynamics. The calculation of the
accessibility condition for the launcher example is too long
to be presented in this paper, but it will appear in future
work.

Remark 3. Since the condition given in the reference is
only sufficient, its calculation on the launcher dynamics
does not prove that the linearized launcher is not accessible
in open loop. However, in light of numerical results such as

simulations presented in the last section of this paper, it
seems clear that it is difficult to keep the covariance small
when considering controls only function of time.

3.2 Feedback for covariance control

Considering the open-loop dynamics (8) is not satisfying to
solve Problems 1 and 2, as explained in Section 3.1. Since
position and velocity measurements are available during
powered descent, we modify the launcher dynamics by the
one obtained when considering u as a function of position
and velocity. However, the mass is not considered in the
feedback, because it is not observable and we assume that
it is not measured. Let us note first that u represents the
normalized thrust of an engine, whose force and direction
are controlled by different actuators. Therefore, we adopt
a notation of u, which separates its norm uρ, and its
direction uθ, such that

u = uρ

(
cos(uθ)
sin(uθ)

)
(10)

where uρ = ‖u‖ and uθ ∈ [−π, π). Then, we assume that
there are linear feedbacks on the norm and the direction,
such that

uFB(x, t) = (ρ(t) +Kn(t)ξ(t))

(
cos(θ(t) +Kd(t)ξ(t))
sin(θ(t) +Kd(t)ξ(t))

)
(11)

where ρ and θ are deterministic references, Kn and Kd ∈
R4 feedback gains, and ξ = (r, v) is a reduced state vector.
Finally, we will seek to solve Problem 2 where the dynam-
ics (7) that we approximate by statistical linearization (8)
has for unperturbed dynamics

fFB(x, u(t)) = f(x, uFB(x, t)). (12)

Remark 4. There are other advantages in considering feed-
back controls in motion planning, particularly when seek-
ing robustness. Indeed, motion planning is used for provid-
ing a reference to a tracking controller, generally achieved
using feedback control. By taking into account the feed-
back in motion planning, we obtain reference feedback
gains which can be used to initialize the calculations of
real feedback gains. Moreover, saturations of the actuators
can be planned or avoided, as detailed further in the next
section. The main drawback of considering feedback con-
trols is their cost, since they require sensors or observers
to acquire measurements, and processing to be operable.

However, a difficulty arises when assuming a control as
(11) in Problem 2, because we cannot consider a stochastic
control constraint such as uBF (x) ∈ U . The next Section
will present how to deal with that control constraint.

4. CONSIDERATION OF ACTUATOR
SATURATIONS AND STATE CONSTRAINTS

In this section, we detail how to include in Problem 2 the
control and state constraints presented in Section 2.1 when
assuming (12) as unperturbed dynamics. First, we present
actuator saturations as the actual modeling of control
constraints. Then we detail two approaches to handle these
saturations in the motion planning problem and finally we
include state constraints.



4.1 Saturated dynamics modeling

The launcher model given in Section 2.1 is suited in a
motion planning purpose. Actually, control constraints
(3) and (4) represent actuator saturations which are part
of the dynamics. Let us define the following saturation
function

satba(x) =


a if x < a,

b if x > b,

x otherwise.

(13)

Then, using the notation of the control introduced by (10),
a more accurate description of the vehicle unperturbed
dynamics is

fsat(x, u) = f

(
x, satumax

umin
(uρ)

(
cos(satπ−θmin

θmin
(uθ))

sin(satπ−θmin

θmin
(uθ))

))
.

(14)

This amounts to a system of controlled dynamics when
controls are unsaturated and uncontrolled dynamics oth-
erwise. In motion planning, we only consider the controlled
dynamics, and control constraints have the role of avoiding
the saturated state. Therefore, in the presence of uncer-
tainties, the control constraints should force the solution
to stay away from saturations with a confidence margin.
The next two subsections propose two ways of doing it
when considering the feedback dynamics (12).

4.2 Control saturations as chance constraints

A common method to consider control saturations in the
presence of feedback is to formulate chance constraints.
Using them, the control solution should stay away from the
saturations with a margin depending on the estimation of
the level of uncertainties and a success probability thresh-
old to be fixed. Let us formulate the norm and direction
constraints considered in Section 2.1. First, consider the
norm constraint (3) such that for all t ∈ [0, tf )

Pr(umin ≤ uρ and uρ ≤ umax) > pn . (15)

Then, considering the direction constraint (4), we impose
with a threshold pd that for all t ∈ [0, tf )

Pr (sin(uθ) ≥ sin(θmin)) > pd . (16)

Chance constraints are well suited for statistically lin-
earized system, since, under a Gaussian distribution hy-
pothesis, they can be reformulated into deterministic con-
straints on the mean and the covariance, thanks to the
following common result that we recall.

Let us consider a chance constraint such as

Pr[a>x ≤ c] ≥ p, (17)

where x ∈ Rn is a stochastic variable Gaussian distributed
of mean mx and covariance Px, a ∈ Rn, c a constant and
p a probability threshold. Then, (17) is equivalent to

a>mx + Ψ−1(p)
√
a>Pxa ≤ c, (18)

where Ψ−1 is the inverse cumulative distribution function
of the normal distribution. Therefore, (15) is equivalent to

umax − (ρ(t) +Kn(t)ξ̂(t)) ≥

Ψ−1(pn)
√

(Kn(t)Prv(t)Kn(t)>) ,

and

(ρ(t) +Kn(t)ξ̂(t))−umin ≥

Ψ−1(pn)
√

(Kn(t)Prv(t)Kn(t)>) ;

(19)

and (16) is equivalent to

(π − θmin)− (θ(t) +Kd(t)ξ̂(t)) ≥

Ψ−1(pd)
√

(Kd(t)Prv(t)Kd(t)>) ,

and

(θ(t) +Kd(t)ξ̂(t))− θmin ≥

Ψ−1(pd)
√

(Kd(t)Prv(t)Kd(t)>) ;

(20)

where Prv ∈M4(R) is a matrix composed of the first four
lines and columns of P . The drawback of this model is
that the constraints may be numerically heavy to handle,
because (19) and (20) constrain both the mean and the
covariance.

4.3 Smooth approximation of the saturations

We propose an other approach that amounts to consider
(14) as dynamics with (11) as control. This requires to
approximate the saturated dynamics by smooth functions
in order to make them tractable. Let us recall first that
(13) can be explicited as

satba(x) =
b+ a

2
+
|x− a| − |x− b|

2
. (21)

Therefore (13) can be approximated smoothly by replacing
absolute values in (21) following

|x| ∼
√
x2 + ε2, (22)

the approximation being all the more accurate as the
parameter ε > 0 is close to zero.

4.4 State constraints

The accurate way to include (2) and (5) would be to
consider an hybrid dynamics. Indeed, if (2) is not satisfied,
this amounts to have (1) as dynamics with a null control
since there is no fuel remaining. Assuming that the role
of (5) is to avoid a crash of the vehicle, including it in
the dynamics amounts to take zero as dynamics when it
is not satisfied. As for control constraints, we formulate
the motion planning problem in order to avoid these
unlikable dynamics by constraining the state to verify (2)
and (5) with a chosen level of confidence. To do so when
considering hazards, we impose constraints on the mean
with conservative deterministic margin. Considering the
mass constraint (2), this leads to

m̂(t) > (1 + η)me ∀t ∈ [0, tf ), (23)

where η is a margin greater than the order of magnitude
of the uncertainties on mass measurements. Considering
the glide-slope constraint (5), this leads to

r̂z − tan(γ)|r̂x| ≥ 0. (24)

The robustness of the satisfaction of the glide-slope-
constraint is ensured by taking γ sufficiently high.



Remark 5. Chance constraint formulations could be used
to include state constraints too. However, it would require
to change the definition of the glide-slope constraint, by
taking a constraint cone of vertex at lower altitude than
the target, so that it does not conflict with the terminal
constraint. Concerning the mass constraint, a probability
formulation is also possible, but we prefer to avoid adding
a constraint on the mass variance since there is no feedback
on the mass.

5. NUMERICAL RESULTS

Now, let us present some examples of motion planning
of the powered descent problem, illustrating several for-
mulations presented in this paper. Calculations, based
on a direct method, are performed using CasADi (An-
dersson et al. (2019)) with python language and the
IPOPT solver. For time discretization of the considered
optimal control problems, a grid of 150 nodes is used.
The vehicle parameters are T = 16573N , umin = 0.3,
umax = 0.8, q = 8.4294kg/s and me = 1350kg. The
parameter ga = 3.71m/s2 corresponds to the Earth
gravitational constant. The aim is to steer the vehicle
to null final position and velocity, and the final time
tf is free. The initial mean state is given by x0 =
(2000m, 1500m, 100m/s,−75m/s, 1905kg). The initial co-
variance matrix is set in order to model measurement
uncertainties of the initial state, assumed to be Gaussian,
such that P 0 = diag(200m2, 200m2, 10(m/s)2, 10(m/s)2,
361kg2). Along the trajectory, the dynamics is subject
to perturbations of dispersion σ(0) = (0, 0, 100N, 10N, 0).
The pointing constraint angle is θmin = 25◦ and the glide
slope angle γ = 5◦. The dynamics of the launcher is such
that the mass covariance changes little along the trajec-
tory. Therefore, we fix the mass margin to a conservative
value η = 3.7% such that ηme is superior to two times
the initial mass dispersion. To generate the results, the
following approach was applied: first the solution of Prob-
lem 2 was calculated with Q = diag(200, 200, 100, 100) and
Qf = diag(1000, 2000, 100, 100). Then the dynamics (8)
was simulated using the computed reference control and
feedback gains and the resulted trajectories and controls
are plotted. The deterministic fuel-saving optimal solution
for Q = Qf = 0 is plotted in red on the first set of plots,
in order to serve as a comparison.

The first set of simulations (Fig. 1) shows the solution
of Problem 2 in blue with a deterministic control u,
i.e. without feedback. The above plot shows examples
of random trajectories and their mean, and the below
plots the optimal control found as solution. The control
norm obtained is almost always saturated, and the final
time tf = 68.2s is smaller than in the deterministic case
(tf = 78.9s). This seems to be a consequence of the
lack of accessibility of the covariance, which forces the
solution to choose another way to limit its growth, by
reducing the duration of the trajectory. Therefore, it is a
not surprising that covariance stays high, with a final state
standard deviation of (233.9m, 259.5m, 3.2m/s, 5.0m/s).
The second sets of plots (Fig. 2) shows the solution with a
stochastic control following (11) and actuator saturations
modeled as chance constraints (pn = pd = 0.99). The cost
function is now the sum of (9) and a penalization of the
feedback gains and their derivative:
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Fig. 1. Simulations of random trajectories with an open
loop control

min
ρ,θ,Kn,Kd,tf

−m̂(tf ) + tr(QfP (tf )) +

∫ tf

0

tr(QP )

+0.5(‖Kn‖2 + ‖Kd‖2 + ‖K̇n‖2 + ‖K̇d‖2)dt.

(25)

The dispersion is controlled all along the trajectory, and
the final state standard deviation is (12.2m, 9.7m, 1.4m/s,
1.0m/s), and tf = 78.7s. Finally, the third set of plots
(Fig. 3) shows the solution of the problem with con-
trol expressed by (11) and a smooth modeling of actu-
ator saturations, with ε = 0.02 for the norm saturation
and ε = 0.0002 for the direction. The cost is still ex-
pressed by (25). The final state standard deviation is
(12.8m, 9.9m, 1.2m/s, 0.9m/s) and the final time tf =
80.4s.

Remark that the two stochastic controls are alike the de-
terministic solution, regarding the shape and the duration,
except that there are margins between the extreme values
of the control and the norm and direction bounds. By
setting to greater values the probability parameters pn and
pd in the second approach and the ε parameters in the third
approach, we would obtain solutions with greater margins
that would ensure better robustness with respect to control
saturations. However, this might cause convergence issues,
in particular for the second approach. Here, the third
solution takes bigger margins from the saturations, while
attaining similar final dispersions. Moreover, since the ε
parameter in the third approach influences the smoothness
of the solution, it can be adjusted so that the reference con-
trol fits realistic engine dynamics. Finally, the saturation
dynamics approximation approach is adaptable outside
the context of statistical linearization since it only requies
mean estimations for the margins calculations, while in the
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Fig. 2. Simulations of random trajectories minimizing the
covariance, with control chance constraints
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Fig. 3. Simulations of random trajectories minimizing the
covariance, when actuator saturations are included in
the dynamics

chance constraints approach the margins depend on both
mean and covariance estimations.

6. CONCLUSION

In this paper, we have presented a robust deterministic
approximation of the motion planning problem of powered
descent under uncertainties. It is based on an approxima-
tion of the mean and the covariance of the stochastic state
using statistical linearization. The vehicle dynamics are
expressed when considering a feedback form of control,
following the observations that the covariance should be
limited in order to ensure the robustness of the solution,
and that it requires that the control depends on the state.
Then, two ways are proposed to handle actuator satura-
tions, the first using chance constraints, and the second
modeling the saturations with smooth approximations.
State constraints are also considered as constraints on the
mean with conservative margins. Finally, numerical results
obtained by Monte-Carlo simulations show the consistency
of the solutions obtained by the proposed approach.
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(2022). On the accessibility and controllability of sta-
tistical linearization for stochastic control: Algebraic
rank conditions and their genericity. ArXiv preprint
arXiv:2207.10944.

Braun, R.D. and Manning, R.M. (2007). Mars exploration
entry, descent, and landing challenges. Journal of
Spacecraft and Rockets, 44(2), 310–323.

Chen, Y., Georgiou, T., and Pavon, M. (2015). Optimal
control of the state statistics for a linear stochastic
system. 54th IEEE Conference on Decision and Control.
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