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∗∗ DTIS, ONERA, Université Paris-Saclay, F-91123 Palaiseau, France
(e-mail: bruno.herisse@onera.fr)

∗∗∗ UMA, ENSTA Paris, Institut Polytechnique de Paris, 91120
Palaiseau, France (e-mail: frederic.jean@ensta-paris.fr)

Abstract: The motion planning of powered descent problems has often been treated in the de-
terministic optimal control framework, which provides efficient theoretical and numerical tools.
However, future applications require robustness, usually obtained by introducing stochastic
components in the dynamics to model uncertainties. After stating the robust motion planning
problem, this paper proposes a deterministic approximation which avoids the computational
difficulties of stochastic optimal control. The approach consists of guiding the mean while
reducing the covariance, the dynamics of these two quantities being approximated thanks to
statistical linearization. In addition, since feedback control is necessary to control covariance,
two techniques are provided to deal with actuator limits when the control is stochastic.
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1. INTRODUCTION

By the renewed interest these last years for Mars and Moon
exploration, with new missions requiring high landing
precision, and the growing use of reusable launchers, it
has become necessary to devise efficient vertical landing
strategies (Blackmore (2016)). A challenge in vertical
landing is the final phase, the powered descent, which
begins a few kilometers above the landing site with a
limited amount of fuel remaining. Thus, feedback control
is used to achieve the required landing accuracy using the
available measurements. Its role is to track a reference
trajectory computed by motion planning (Ganet-Schoeller
and Brunel (2019)).

The motion planning has frequently been treated in an
optimal control framework, seeking for the control suc-
ceeding to steer the vehicle to a target while minimizing a
cost function. The existing litterature on powered descent
problems (Meditch (1964), Lu (2018), Leparoux et al.
(2022b)) found that optimal solutions have generally a
Max-Min-Max form, which corresponds to a control of the
engine throttle that switches twice between its maximum
and minimum levels. This form of solution is well suited
for rocket engines because it does not require thrust modu-
lation. However, it is sensitive to perturbations and errors
on the initial conditions, which may be significant when
landing on planets other than Earth (Braun and Manning
(2007)).

We account for these uncertainties with robust motion
planning. In this paper, we focus on the modeling of
perturbations and measurement errors. Therefore, we do
not consider methods for robust motion planning that

are suited for parameter uncertainties, such as robust set
methods (Cheng et al. (2019)) or methods reducing the
sensitivity of a performance criteria (Shen et al. (2010)).
We prefer the stochastic approach, in which uncertainties
are modeled by introducing a white noise into the dynam-
ics and modeling the vehicle state as a random variable.
Then, the robustness of the motion planning is ensured
provided that dispersions around the mean trajectory are
limited. This leads to a stochastic formulation of the mo-
tion planning problem, which is not desirable since few
theoretical results exist and numerical methods in the
stochastic optimal control framework are computationally
heavy. In the literature, several references propose covari-
ance control approaches through feedback control for lin-
ear dynamics. For instance, Chen et al. (2015) use a LQG
regulator to steer the state of a linear system to a specified
terminal Gaussian distribution. Moreover, Ridderhof and
Tsiotras (2019) present an algorithm for powered descent
that considers separately the mean steering which has the
role to bring the vehicle to the target optimally, and the
covariance steering to attain prescribed final dispersions.
When considering non linear dynamics, Berret and Jean
(2020) propose to approximate the motion planning solu-
tion by the one of an open-loop stochastic optimal control
problem, by estimating the first two moments of the state
thanks to statistical linearization.

Thus, it appears that leveraging feedback control to
achieve robust motion planning through covariance control
is promising. However, this requires to take into account
actuator limits, usually modelled by control bounds. For
the powered descent problem, several ideas have been pro-
posed to handle them. For instance, in Shen et al. (2010),
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∗ DTIS, ONERA & UMA, ENSTA Paris
(e-mail: clara.leparoux@ensta-paris.fr)
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is promising. However, this requires to take into account
actuator limits, usually modelled by control bounds. For
the powered descent problem, several ideas have been pro-
posed to handle them. For instance, in Shen et al. (2010),
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1. INTRODUCTION

By the renewed interest these last years for Mars and Moon
exploration, with new missions requiring high landing
precision, and the growing use of reusable launchers, it
has become necessary to devise efficient vertical landing
strategies (Blackmore (2016)). A challenge in vertical
landing is the final phase, the powered descent, which
begins a few kilometers above the landing site with a
limited amount of fuel remaining. Thus, feedback control
is used to achieve the required landing accuracy using the
available measurements. Its role is to track a reference
trajectory computed by motion planning (Ganet-Schoeller
and Brunel (2019)).

The motion planning has frequently been treated in an
optimal control framework, seeking for the control suc-
ceeding to steer the vehicle to a target while minimizing a
cost function. The existing litterature on powered descent
problems (Meditch (1964), Lu (2018), Leparoux et al.
(2022b)) found that optimal solutions have generally a
Max-Min-Max form, which corresponds to a control of the
engine throttle that switches twice between its maximum
and minimum levels. This form of solution is well suited
for rocket engines because it does not require thrust modu-
lation. However, it is sensitive to perturbations and errors
on the initial conditions, which may be significant when
landing on planets other than Earth (Braun and Manning
(2007)).

We account for these uncertainties with robust motion
planning. In this paper, we focus on the modeling of
perturbations and measurement errors. Therefore, we do
not consider methods for robust motion planning that

are suited for parameter uncertainties, such as robust set
methods (Cheng et al. (2019)) or methods reducing the
sensitivity of a performance criteria (Shen et al. (2010)).
We prefer the stochastic approach, in which uncertainties
are modeled by introducing a white noise into the dynam-
ics and modeling the vehicle state as a random variable.
Then, the robustness of the motion planning is ensured
provided that dispersions around the mean trajectory are
limited. This leads to a stochastic formulation of the mo-
tion planning problem, which is not desirable since few
theoretical results exist and numerical methods in the
stochastic optimal control framework are computationally
heavy. In the literature, several references propose covari-
ance control approaches through feedback control for lin-
ear dynamics. For instance, Chen et al. (2015) use a LQG
regulator to steer the state of a linear system to a specified
terminal Gaussian distribution. Moreover, Ridderhof and
Tsiotras (2019) present an algorithm for powered descent
that considers separately the mean steering which has the
role to bring the vehicle to the target optimally, and the
covariance steering to attain prescribed final dispersions.
When considering non linear dynamics, Berret and Jean
(2020) propose to approximate the motion planning solu-
tion by the one of an open-loop stochastic optimal control
problem, by estimating the first two moments of the state
thanks to statistical linearization.

Thus, it appears that leveraging feedback control to
achieve robust motion planning through covariance control
is promising. However, this requires to take into account
actuator limits, usually modelled by control bounds. For
the powered descent problem, several ideas have been pro-
posed to handle them. For instance, in Shen et al. (2010),
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3. DETERMINISTIC PROBLEM APPROXIMATION

A stochastic optimal control problem such as Problem 1
is difficult to solve because few theoretical and numeri-
cal methods are available and they are computationally
expensive. In this section, we propose a deterministic ap-
proximation of Problem 1.

3.1 Statistical linearization

As explained in Section 2.3, the quantities of major interest
for motion planning are the first two moments of xt. Thus
we prefer working on an approximation of Problem 1 using
as state variables the mean and the covariance, denoted
respectively by mx and Px. We approximate mx and Px

using a statistical linearization method, as solutions (x̂, P )
of the following differential system

˙̂x = f(x̂, u),

Ṗ = Dxf(x̂, u)P + PDxf(x̂, u)
⊤ + g(x̂)g(x̂)⊤.

(8)

Statistical linearization methods have been used for a
long time, especially in the fields of mechanics, and are
well known. See for instance Berret and Jean (2020) for
justifications of their use in motion planning. Thus, the
control solution of Problem 1 is approximated by the
control solution of the following problem

Problem 2. (Deterministic robust motion planning).

min
u,tf

−m̂(tf ) + tr(QfP (tf )) +

 tf

0

tr(QP (t))dt (9)

under the constraints


(x̂, P )(·) follows (8),
u(t) ∈ U ∀t ∈ [0, tf ),

x̂(tf ) ∈ Sf .

However, the viewpoint of Problems 1 and 2, and of any
optimal control problem, is consistent only if there is ac-
cessibility. Indeed, if the covariance is not accessible, then
there exists no solution substantially reducing it or even
preventing it from increasing. Accessibility of statistically
linearized systems has been studied in Bonalli et al. (2022),
where a sufficient accessibility condition is clarified. We
checked this condition for the launcher modeling described
in this paper and it appears that it is not verified when
considering (1) as dynamics. The calculation of the ac-
cessibility condition for the launcher example is too long
to be presented in this paper. The details as well as
theoretical justifications of the well-posedness of statistical
linearization are provided in Leparoux et al. (2023).

Remark 3. Since the condition given in the reference is
only sufficient, its calculation on the open-loop launcher
dynamics does not prove that the linearized dynamics are
not accessible. However, in light of numerical results such
as simulations presented in the last section of this paper, it
seems clear that it is difficult to keep the covariance small
when considering controls only function of time.

3.2 Feedback for covariance control

Considering the open-loop dynamics (8) is not satisfying to
solve Problems 1 and 2, as explained in Section 3.1. Since

position and velocity measurements are available during
the powered descent, we modify the launcher dynamics
by the one obtained when considering u as a function of
position and velocity. However, the mass is not considered
in the feedback, because it is not observable in general and
we assume that it is not measured. Let us note first that
u represents the normalized thrust of an engine, whose
force and direction are controlled by different actuators.
Therefore, we adopt a notation of u, which separates its
norm uρ and its direction uθ, such that

u = uρ


cos(uθ)
sin(uθ)


(10)

where uρ = ∥u∥ and uθ ∈ [−π, π). Then, we assume that
there are linear feedbacks on the norm and the direction,
such that

uFB(x, t) = (ρ(t) +Kn(t)ξ(t))


cos(θ(t) +Kd(t)ξ(t))
sin(θ(t) +Kd(t)ξ(t))



(11)
where ρ and θ are deterministic references, Kn and Kd ∈
R4 feedback gains, and ξ = (r, v) is a reduced state vector.
Finally, we will seek to solve Problem 2 where the dynam-
ics (7) that we approximate by statistical linearization (8)
have the following unperturbed dynamics

fFB(x, u(t)) = f(x, uFB(x, t)). (12)

Remark 4. There are other advantages in considering feed-
back controls in motion planning, particularly when seek-
ing robustness. Indeed, motion planning is used for provid-
ing a reference to a tracking controller, generally achieved
using feedback control. By incorporating the feedback
into motion planning, we obtain reference feedback gains
which can be used to initialize the computations of real
feedback gains. Moreover, actuator limits can be planned
or avoided, as detailed further in the next section. The
main drawback of considering feedback controls is their
cost, since they require sensors or observers to acquire
measurements, and processing to be operable.

However, a difficulty arises when assuming a control as
(11) in Problem 2, because we cannot consider a stochastic
control constraint such as uBF (x) ∈ U . The next Section
will present how to deal with control constraints.

4. CONSIDERATION OF ACTUATOR LIMITS AND
STATE CONSTRAINTS

In this section, we detail how to include in Problem 2 the
control and state constraints presented in Section 2.1 when
assuming (12) as unperturbed dynamics. First, we present
saturations as the actual modeling of actuator limits. Then
we detail two approaches to handle these saturations in the
motion planning problem and finally we deal with state
constraints.

4.1 Saturated dynamics modeling

The launcher modeling, which is described in Section 2.1,
is well-suited for the purpose of motion planning. In fact,
the control constraints presented in equations (3) and
(4) are a representation of actuator limits, which are an
integral part of the system dynamics. Define the following
saturation function

the feedback gain is multiplied by a factor that vanishes
when the nominal control is close to the control bounds.
In Ridderhof and Tsiotras (2019), the control bounds are
formulated as chance constraints and convexified. More-
over, Ridderhof and Tsiotras (2021) extend this approach
by computing conservative margins that ensure control
bounds are respected.

This paper proposes a robust motion planning approach
for the powered descent problem, which considers a re-
alistic space vehicle modeling with non linear dynamics,
actuator limits and state constraints. It consists of approx-
imating the solution by the one of a deterministic optimal
control problem reducing the state covariance for robust-
ness. Uncertainties are modeled following the stochastic
approach. The dynamics of the mean and the covariance
are approximated thanks to statistical linearization. In ad-
dition, we propose two different ways to manage actuator
limits. Specifically, one of the proposed solutions consists
of including a smooth approximation of the saturation
function directly in the dynamics. Theoretical justifica-
tions of the approach are provided in a complementary
work (Leparoux et al. (2023)).

This paper is organized as follows. First, we present the
modeling of the landing problem considered. Then, we
detail how we formulate a robust motion planning problem
thanks to statistical linearization. In Section 4, we present
how to incorporate actuator limits and state constraints,
and finally Section 5 provides some numerical results.

2. FRAMEWORK

Let us study the motion planning of a space vehicle
during the powered descent phase. It is treated here as
an optimal control problem. Only the two dimensional
case is considered. The aim is to compute a reference
trajectory and a reference control that allow the space
vehicle to reach a predefined target Sf while minimizing
fuel consumption.

2.1 Deterministic landing problem

First, let us describe the unperturbed dynamics of the
space vehicle, when assuming that all parameters are
known and that the vehicle is only affected by its weight
and by the engine thrust. The state is denoted x =
(r, v,m) ∈ R2 × R2 × R where r is the position, v
the velocity, m the mass of the vehicle. Its unperturbed
dynamics are expressed by ẋ = f(x, u) in an inertial frame
(ex, ez), such that 



ṙ = v,

v̇ =
T

m
u− g0,

ṁ = −q∥u∥,
(1)

where u ∈ R2 is the control, q the maximal mass flow rate
of the engine, T > 0 the maximal thrust and g0 = (0, ga)
with ga the gravitational acceleration. The initial mass
of the vehicle is denoted m0 and its empty mass me.
Technical limits and security requirements are modeled
by state and control constraints, as explained in further
details in Leparoux et al. (2022a). They should be satisfied
for all t ∈ [0, tf ) and are expressed by:





m(t) > me , (2)

0 ≤ umin ≤ ∥u(t)∥ ≤ umax, (3)

⟨ez, u(t)⟩ ≥ ∥u(t)∥ sin(θmin), with θmin ∈ [0,
π

2
), (4)

rz(t)− tan(γ)|rx(t)| ≥ 0, with γ ∈ [0,
π

2
). (5)

According to Leparoux et al. (2022a)[Theorem 1.1 and
Proposition 4.3], for generic initial conditions, the optimal
control u that steers (r, v) following (1) to zero under the
constraints (2), (3), (4), (5) while maximizing the final
mass has a Max-Min-Max form, i.e. there exist t1 and t2
with 0 ≤ t1 ≤ t2 ≤ tf such that

∥u(t)∥ =


umax if t ∈ [0, t1) ∪ (t2, tf ],

umin if t ∈ [t1, t2].
(6)

2.2 Modeling of uncertainties

The above motion planning formulation expresses the
problem of computing the cheapest way to attain a target.
However, in the presence of perturbations and uncertain-
ties, constraints might be violated, which could cause the
failure of the mission. In order to take into account the
uncertainties when computing the solution, we model them
by introducing stochastic components in the problem. In
the case of the powered descent problem, several uncer-
tainties may act on the dynamics:

• uncertainties on the initial state, due to measurement
errors and drifts on position and velocity estimates.

• perturbations of the dynamics, such as aerodynamic
forces not modeled in (1). This is modeled by a white
noise on the dynamics, such that

dxt = f(xt, u(t))dt+ g(xt)dWt, (7)

where xt is a stochastic state variable, g(xt) = σ
mt

is a diffusion term and dWt a monovariate Wiener
process. However, we neglect the perturbations on
the mass equation, by defining the standard deviation
vector σ ∈ R5 with the last component equal to zero.

2.3 Robust motion planning

For now, we do not consider the state constraints (2)
and (5). When considering a stochastic system, motion
planning consists of imposing terminal constraints on the
trajectory, typically imposing the mean to reach the tar-
get. Moreover, for the mean to be representative of the
global behavior of the system, the dispersion of the sample
trajectories must be small along the trajectories and at the
final time. To this end, we add penalizations in the cost
function on the integral of the covariance Px along the tra-
jectory and on the final covariance Px(tf ). Let us denote by
U = {u|umin ≤ ∥u∥ ≤ umax and ⟨ez, u⟩ ≥ ∥u∥ sin(θmin)}
the admissible control set. Then a first robust motion
planning problem can be stated in a stochastic framework
as follows

Problem 1. (Stochastic robust motion planning).

min
u,tf

E[−mtf ] + tr(QfPx(tf )) +

 tf

0

tr(QPx(t))dt

under the constraints



xt follows (7),

u(t) ∈ U ∀t ∈ [0, tf ),

E[xtf ] ∈ Sf .
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3. DETERMINISTIC PROBLEM APPROXIMATION

A stochastic optimal control problem such as Problem 1
is difficult to solve because few theoretical and numeri-
cal methods are available and they are computationally
expensive. In this section, we propose a deterministic ap-
proximation of Problem 1.

3.1 Statistical linearization

As explained in Section 2.3, the quantities of major interest
for motion planning are the first two moments of xt. Thus
we prefer working on an approximation of Problem 1 using
as state variables the mean and the covariance, denoted
respectively by mx and Px. We approximate mx and Px

using a statistical linearization method, as solutions (x̂, P )
of the following differential system

˙̂x = f(x̂, u),

Ṗ = Dxf(x̂, u)P + PDxf(x̂, u)
⊤ + g(x̂)g(x̂)⊤.

(8)

Statistical linearization methods have been used for a
long time, especially in the fields of mechanics, and are
well known. See for instance Berret and Jean (2020) for
justifications of their use in motion planning. Thus, the
control solution of Problem 1 is approximated by the
control solution of the following problem

Problem 2. (Deterministic robust motion planning).

min
u,tf

−m̂(tf ) + tr(QfP (tf )) +

 tf

0

tr(QP (t))dt (9)

under the constraints


(x̂, P )(·) follows (8),
u(t) ∈ U ∀t ∈ [0, tf ),

x̂(tf ) ∈ Sf .

However, the viewpoint of Problems 1 and 2, and of any
optimal control problem, is consistent only if there is ac-
cessibility. Indeed, if the covariance is not accessible, then
there exists no solution substantially reducing it or even
preventing it from increasing. Accessibility of statistically
linearized systems has been studied in Bonalli et al. (2022),
where a sufficient accessibility condition is clarified. We
checked this condition for the launcher modeling described
in this paper and it appears that it is not verified when
considering (1) as dynamics. The calculation of the ac-
cessibility condition for the launcher example is too long
to be presented in this paper. The details as well as
theoretical justifications of the well-posedness of statistical
linearization are provided in Leparoux et al. (2023).

Remark 3. Since the condition given in the reference is
only sufficient, its calculation on the open-loop launcher
dynamics does not prove that the linearized dynamics are
not accessible. However, in light of numerical results such
as simulations presented in the last section of this paper, it
seems clear that it is difficult to keep the covariance small
when considering controls only function of time.

3.2 Feedback for covariance control

Considering the open-loop dynamics (8) is not satisfying to
solve Problems 1 and 2, as explained in Section 3.1. Since

position and velocity measurements are available during
the powered descent, we modify the launcher dynamics
by the one obtained when considering u as a function of
position and velocity. However, the mass is not considered
in the feedback, because it is not observable in general and
we assume that it is not measured. Let us note first that
u represents the normalized thrust of an engine, whose
force and direction are controlled by different actuators.
Therefore, we adopt a notation of u, which separates its
norm uρ and its direction uθ, such that

u = uρ


cos(uθ)
sin(uθ)


(10)

where uρ = ∥u∥ and uθ ∈ [−π, π). Then, we assume that
there are linear feedbacks on the norm and the direction,
such that

uFB(x, t) = (ρ(t) +Kn(t)ξ(t))


cos(θ(t) +Kd(t)ξ(t))
sin(θ(t) +Kd(t)ξ(t))



(11)
where ρ and θ are deterministic references, Kn and Kd ∈
R4 feedback gains, and ξ = (r, v) is a reduced state vector.
Finally, we will seek to solve Problem 2 where the dynam-
ics (7) that we approximate by statistical linearization (8)
have the following unperturbed dynamics

fFB(x, u(t)) = f(x, uFB(x, t)). (12)

Remark 4. There are other advantages in considering feed-
back controls in motion planning, particularly when seek-
ing robustness. Indeed, motion planning is used for provid-
ing a reference to a tracking controller, generally achieved
using feedback control. By incorporating the feedback
into motion planning, we obtain reference feedback gains
which can be used to initialize the computations of real
feedback gains. Moreover, actuator limits can be planned
or avoided, as detailed further in the next section. The
main drawback of considering feedback controls is their
cost, since they require sensors or observers to acquire
measurements, and processing to be operable.

However, a difficulty arises when assuming a control as
(11) in Problem 2, because we cannot consider a stochastic
control constraint such as uBF (x) ∈ U . The next Section
will present how to deal with control constraints.

4. CONSIDERATION OF ACTUATOR LIMITS AND
STATE CONSTRAINTS

In this section, we detail how to include in Problem 2 the
control and state constraints presented in Section 2.1 when
assuming (12) as unperturbed dynamics. First, we present
saturations as the actual modeling of actuator limits. Then
we detail two approaches to handle these saturations in the
motion planning problem and finally we deal with state
constraints.

4.1 Saturated dynamics modeling

The launcher modeling, which is described in Section 2.1,
is well-suited for the purpose of motion planning. In fact,
the control constraints presented in equations (3) and
(4) are a representation of actuator limits, which are an
integral part of the system dynamics. Define the following
saturation function
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Fig. 1. Simulations of random trajectories with an open
loop control

optimal control problems, a grid of 150 nodes is used.
The vehicle parameters are T = 16573N , umin = 0.3,
umax = 0.8, q = 8.4294kg/s and me = 1350kg. The
parameter ga = 3.71m/s2 corresponds to the Earth
gravitational constant. The goal is to steer the vehicle
to zero final position and velocity, and the final time
tf is free. The initial mean state is given by x0 =
(2000m, 1500m, 100m/s,−75m/s, 1905kg). The initial co-
variance matrix is set in order to model measurement
uncertainties of the initial state, assumed to be Gaussian,
such that P 0 = diag(200m2, 200m2, 10(m/s)2, 10(m/s)2,
361kg2). Along the trajectory, the dynamics are subject to
perturbations of dispersion σ = (0, 0, 100N, 10N, 0). The
pointing constraint angle is θmin = 25◦ and the glide slope
angle γ = 5◦. The dynamics of the launcher are such that
the mass covariance changes little along the trajectory.
Therefore, we fix the mass margin to a conservative value
η = 3.7% such that ηme is superior to two times the
initial mass dispersion. To generate the results, the fol-
lowing approach was applied: first the solution of Problem
2 was calculated with Q = diag(200, 200, 100, 100) and
Qf = diag(1000, 2000, 100, 100). We do not penalize the
mass variance since there is no feedback on the mass.
Then the dynamics (8) were simulated using the computed
reference controls and feedback gains, and the resulted
trajectories and controls are plotted. The deterministic
fuel saving optimal solution for Q = Qf = 0 is shown
in red on the first set of plots for comparison.

Fig. 1 shows in blue trajectories generated by the solution
of Problem 2, which is depicted below, when considering
an open-loop control. The norm of the control solution is
almost always saturated, and the final time tf = 68.2s
is smaller than in the deterministic case (tf = 78.9s).
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Fig. 2. Simulations of random trajectories minimizing the
covariance, with actuator limits as chance constraints

This seems to be a consequence of the lack of accessibility
of the covariance, which forces the solution to choose
another way to limit its growth by reducing the duration
of the trajectory. Therefore, it is not surprising that
covariance stays high, with a final position and velocity
standard deviation of (233.9m, 259.5m, 3.2m/s, 5.0m/s).
Fig. 2 shows trajectories generated by the control solution
when considering feedback dynamics and using chance
constraints (pn = pd = 0.99) to handle actuator limits.
Then, the cost function is now the sum of (9) and a
penalization of the feedback gains and their derivatives:

min
ρ,θ,Kn,Kd,tf

−m̂(tf ) + tr(QfP (tf )) +

∫ tf

0

tr(QP )

+0.5(∥Kn∥2 + ∥Kd∥2 + ∥K̇n∥2 + ∥K̇d∥2)dt.
(25)

The dispersion is controlled all along the trajectory, and
the final state standard deviation is (12.2m, 9.7m, 1.4m/s,
1.0m/s), and tf = 78.7s. Finally, Fig. 3 shows trajec-
toires generated by the solution when considering feedback
controls and a smooth modeling of actuator limits, with
ϵ = 0.02 for the norm saturation and ϵ = 0.0002 for the
direction. The cost is still expressed by (25). The final
state standard deviation is (12.8m, 9.9m, 1.2m/s, 0.9m/s)
and the final time tf = 80.4s.

Remark that the two stochastic controls are alike the de-
terministic solution, regarding the shape and the duration,
except that there are margins between the extreme values
of the control and the real values of actuator bounds
umin and umax. By setting the probability parameters
pn and pd to larger values in the second approach and
the ϵ parameters in the third approach, we would obtain
solutions with larger margins, which would ensure better

satba(x) =





a if x < a,

b if x > b,

x otherwise.

(13)

Then, using the notation of the control introduced by (10),
a more accurate description of the vehicle unperturbed
dynamics can be expressed as

fsat(x, u) = f


x, satumax

umin
(uρ)


cos(satπ−θmin

θmin
(uθ))

sin(satπ−θmin

θmin
(uθ))


.

(14)
However, this description leads to non-smooth dynamics,
which makes it unsuitable for statistical analysis. In the
subsequent two subsections, we propose alternative ap-
proaches to incorporate actuator limits which are well-
suited for statistical linearization.

4.2 Actuator limits as chance constraints

A common way to deal with actuator limits in the presence
of a feedback is to formulate them as chance constraints.
Thus, the control solution should stay away from the
bounds with a margin depending on the estimation of
the level of uncertainties and a chosen success probability
threshold. Let us formulate the norm and direction con-
straints. First, consider the norm constraint (3) such that
for all t ∈ [0, tf )

Pr(umin ≤ uρ and uρ ≤ umax) > pn . (15)

Then, considering the direction constraint (4), we impose
with a threshold pd that for all t ∈ [0, tf )

Pr (sin(uθ) ≥ sin(θmin)) > pd . (16)

Chance constraints are well suited for statistically lin-
earized system, since, under a Gaussian distribution hy-
pothesis, they can be reformulated into deterministic con-
straints on the mean and the covariance, thanks to the
following common result that we recall.

Let us consider a chance constraint such as

Pr[a⊤x ≤ c] ≥ p, (17)

where x ∈ Rn is a stochastic variable Gaussian distributed
of mean mx and covariance Px, a ∈ Rn, c a constant and
p a probability threshold. Then, (17) is equivalent to

a⊤mx +Ψ−1(p)

a⊤Pxa ≤ c, (18)

where Ψ−1 is the inverse cumulative distribution function
of the normal distribution. Therefore, (15) is equivalent to

umax − (ρ(t) +Kn(t)ξ̂(t)) ≥

Ψ−1(pn)


Kn(t)P (t)Kn(t)⊤ ,

and

(ρ(t) +Kn(t)ξ̂(t))−umin ≥

Ψ−1(pn)


Kn(t)P (t)Kn(t)⊤ ;

(19)

and (16) is equivalent to

(π − θmin)− (θ(t) +Kd(t)ξ̂(t)) ≥

Ψ−1(pd)


Kd(t)P (t)Kd(t)⊤ ,

and

(θ(t) +Kd(t)ξ̂(t))− θmin ≥

Ψ−1(pd)


Kd(t)P (t)Kd(t)⊤ ;

(20)

where P ∈ M4(R) is a matrix composed of the first
four lines and columns of P . The disadvantage of this
modeling is that the constraints can be numerically hard
to handle, since (19) and (20) constrain both the mean
and the covariance.

4.3 Smooth approximation of the saturation function

We propose an other approach that amounts to consider
(14) as dynamics with (11) as control. This requires to
approximate the saturated dynamics by smooth functions
in order to make them tractable. Let us recall first that
(13) can be explicited as

satba(x) =
b+ a

2
+

|x− a| − |x− b|
2

. (21)

Therefore (13) can be approximated smoothly by replacing
absolute values in (21) following

|x| ∼

x2 + ϵ2, (22)

the approximation being all the more accurate as the
parameter ϵ > 0 is close to zero.

4.4 State constraints

The state constraints given by (2) and (5) indicate that
any violation of these constraints would result in a failure
of the motion planning problem due to a significant change
in the system dynamics. Indeed, the violation of (2) would
force the control to zero, and assuming that the violation
of (5) would cause a crash, then in that situation the
entire dynamics of the vehicle would be zero. Therefore,
we formulate the motion planning problem to ensure that
these constraints are satisfied with a chosen level of con-
fidence. To do this, when considering hazards, we impose
constraints on the mean with conservative deterministic
margins. Considering the mass constraint (2), this leads
to

m̂(t) > (1 + η)me ∀t ∈ [0, tf ), (23)

where η is a margin greater than the order of magnitude
of the uncertainties on mass measurements. Considering
the glide-slope constraint (5), this leads to

r̂z − tan(γ)|r̂x| ≥ 0. (24)

The robustness of the satisfaction of the glide-slope-
constraint is ensured by taking γ sufficiently high.

Remark 5. Chance constraint formulations could be used
to include state constraints too. However, it would require
to change the definition of the glide-slope constraint,
by taking a constraint cone of vertex at lower altitude
than the target, so that it does not conflict with the
terminal constraint. A probability formulation for the mass
constraint is also possible, but we prefer not to add a
constraint on the mass variance since there is no feedback
on the mass.

5. NUMERICAL RESULTS

Now, let us present some examples of motion planning
for the powered descent problem, illustrating the differ-
ent formulations presented in this paper. Computations,
based on a direct method, are performed using CasADi
(Andersson et al. (2019)) with Python language and the
IPOPT solver. For time discretization of the considered
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Fig. 1. Simulations of random trajectories with an open
loop control

optimal control problems, a grid of 150 nodes is used.
The vehicle parameters are T = 16573N , umin = 0.3,
umax = 0.8, q = 8.4294kg/s and me = 1350kg. The
parameter ga = 3.71m/s2 corresponds to the Earth
gravitational constant. The goal is to steer the vehicle
to zero final position and velocity, and the final time
tf is free. The initial mean state is given by x0 =
(2000m, 1500m, 100m/s,−75m/s, 1905kg). The initial co-
variance matrix is set in order to model measurement
uncertainties of the initial state, assumed to be Gaussian,
such that P 0 = diag(200m2, 200m2, 10(m/s)2, 10(m/s)2,
361kg2). Along the trajectory, the dynamics are subject to
perturbations of dispersion σ = (0, 0, 100N, 10N, 0). The
pointing constraint angle is θmin = 25◦ and the glide slope
angle γ = 5◦. The dynamics of the launcher are such that
the mass covariance changes little along the trajectory.
Therefore, we fix the mass margin to a conservative value
η = 3.7% such that ηme is superior to two times the
initial mass dispersion. To generate the results, the fol-
lowing approach was applied: first the solution of Problem
2 was calculated with Q = diag(200, 200, 100, 100) and
Qf = diag(1000, 2000, 100, 100). We do not penalize the
mass variance since there is no feedback on the mass.
Then the dynamics (8) were simulated using the computed
reference controls and feedback gains, and the resulted
trajectories and controls are plotted. The deterministic
fuel saving optimal solution for Q = Qf = 0 is shown
in red on the first set of plots for comparison.

Fig. 1 shows in blue trajectories generated by the solution
of Problem 2, which is depicted below, when considering
an open-loop control. The norm of the control solution is
almost always saturated, and the final time tf = 68.2s
is smaller than in the deterministic case (tf = 78.9s).
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Fig. 2. Simulations of random trajectories minimizing the
covariance, with actuator limits as chance constraints

This seems to be a consequence of the lack of accessibility
of the covariance, which forces the solution to choose
another way to limit its growth by reducing the duration
of the trajectory. Therefore, it is not surprising that
covariance stays high, with a final position and velocity
standard deviation of (233.9m, 259.5m, 3.2m/s, 5.0m/s).
Fig. 2 shows trajectories generated by the control solution
when considering feedback dynamics and using chance
constraints (pn = pd = 0.99) to handle actuator limits.
Then, the cost function is now the sum of (9) and a
penalization of the feedback gains and their derivatives:

min
ρ,θ,Kn,Kd,tf

−m̂(tf ) + tr(QfP (tf )) +

∫ tf

0

tr(QP )

+0.5(∥Kn∥2 + ∥Kd∥2 + ∥K̇n∥2 + ∥K̇d∥2)dt.
(25)

The dispersion is controlled all along the trajectory, and
the final state standard deviation is (12.2m, 9.7m, 1.4m/s,
1.0m/s), and tf = 78.7s. Finally, Fig. 3 shows trajec-
toires generated by the solution when considering feedback
controls and a smooth modeling of actuator limits, with
ϵ = 0.02 for the norm saturation and ϵ = 0.0002 for the
direction. The cost is still expressed by (25). The final
state standard deviation is (12.8m, 9.9m, 1.2m/s, 0.9m/s)
and the final time tf = 80.4s.

Remark that the two stochastic controls are alike the de-
terministic solution, regarding the shape and the duration,
except that there are margins between the extreme values
of the control and the real values of actuator bounds
umin and umax. By setting the probability parameters
pn and pd to larger values in the second approach and
the ϵ parameters in the third approach, we would obtain
solutions with larger margins, which would ensure better
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Fig. 3. Simulations of random trajectories minimizing the
covariance, with a smooth modeling of actuator limits

robustness with respect to the control bounds. However,
this may cause convergence issues, especially for the chance
constraints approach. Here, the third solution takes larger
margins from the bounds, while attaining similar final
dispersions. Moreover, since the ϵ parameter in the third
approach influences the smoothness of the solution, it can
be adjusted so that the reference control fits realistic en-
gine dynamics. Finally, the smoothly saturated dynamics
approach is adaptable outside the context of statistical
linearization since it only requires estimations of the mean
to compute the control margins, while in the chance con-
straints approach the margins depend on both mean and
covariance estimations.

6. CONCLUSION

In this paper, we have presented a robust motion planning
method using statistical linearization and applied it to a
powered descent problem. The vehicle dynamics represen-
tation considers a feedback form of control, based on two
crucial observations: first, limiting the covariance is essen-
tial to ensure the robustness of the solution, and second,
it requires the control to depend on the state. Moreover,
we propose several ways to take into account actuator
limits and state constraints, and justify our approach by
numerical results. A comparative analysis of our method
and established techniques could be conducted in future
research, as well as a study for non Gaussian noise.
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