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Introduction

The spread of MEMS in the consumer market is rapidly increasing thanks to their small dimensions, high performances and low costs. At the same time new application elds for MEMS devices are emerging and rapidly evolving, e.g. Internet of Things, Aerospace, high-end applications, virtual or augmented reality. This is posing an important challenge to MEMS designers that have to simultaneously improve the eectiveness of actual devices and nd innovative working principles that go beyond the actual state of the art mainly limited to linear dynamic behaviours of mechanical components. In this context, nonlinear phenomena usually avoided by design [START_REF] Gu-Stoppel | A highly linear piezoelectric quasi-static MEMS mirror with mechanical tilt angles of larger than 10[END_REF][START_REF] Rabenimanana | Enhancing the linear dynamic range of a mode-localized MEMS mass sensor with repulsive electrostatic actuation[END_REF], are starting to emerge as promising solutions to improve performances of existing MEMS devices [START_REF] Antonio | Frequency stabilization in nonlinear micromechanical oscillators[END_REF][START_REF] Nitzan | Self-induced parametric amplication arising from nonlinear elastic coupling in a micromechanical resonating disk gyroscope[END_REF] and/or to design a new generation of sensors and actuators [START_REF] Hajjaj | Mode coupling and nonlinear resonances of MEMS arch resonators for bandpass lters[END_REF][START_REF] Sarrafan | A nonlinear rate microsensor utilising internal resonance[END_REF].

Among other nonlinear phenomena, phononic frequency combs, which are the mechanical counterparts of photonic frequency combs largely studied in the literature with specic reference to optic metrology [START_REF] Udem | Optical frequency metrology[END_REF], are attracting interest from the MEMS community since they can be employed as ecient sensing mechanisms [START_REF] Ganesan | Phononic frequency combs for engineering MEMS/NEMS devices with tunable sensitivity[END_REF] or promising solutions for vibration energy harvesting [START_REF] Bu | Frequency combs: A new mechanism for MEMS vibration energy harvesters[END_REF].

Phononic frequency combs can be generated through contact mechanisms [START_REF] Guerrieri | An investigation on the eects of contact in MEMS oscillators[END_REF], mutual synchronization of resonators [START_REF] Mirzaei | Mutual pulling between two oscillators[END_REF][START_REF] Zhang | Synchronization and phase noise reduction in micromechanical oscillator arrays coupled through light[END_REF] or internal resonance [START_REF] Czaplewski | Bifurcation generated mechanical frequency comb[END_REF]. Internal resonance is dened in nonlinear vibration theory as an existing commensurate frequency relationship, which, in turn, gives rise to important coupling and energy exchange between the internally resonant modes. It is also known as favouring the appearance of phononic frequency combs, see e.g. [START_REF] Czaplewski | Bifurcation diagram and dynamic response of a MEMS resonator with a 1:3 internal resonance[END_REF][START_REF] Ruzziconi | Two-to-one internal resonance in the higher-order modes of a MEMS beam: Experimental investigation and theoretical analysis via local stability theory[END_REF].

In [START_REF] Ganesan | Phononic frequency comb via intrinsic three-wave mixing[END_REF], the rst experimental evidence for a phononic frequency comb is reported. In particular, through the intrinsic coupling of the driven phonon mode with a subharmonic mode, the authors generated a phononic frequency comb. Other works in the same direction conrmed the nding; for example in [START_REF] Park | Phononic frequency combs in stand-alone piezoelectric resonators[END_REF][START_REF] Park | Formation, evolution, and tuning of frequency combs in microelectromechanical resonators[END_REF], focusing on a piezoelectric resonator, a frequency comb based on nondegenerate parametric pumping is studied in depth. Furthermore, in [START_REF] Chiout | Multi-order phononic frequency comb generation within a MoS2 electromechanical resonator[END_REF] a tunable resonator using a suspended MoS 2 monolayer is employed to generate frequency combs.

Despite several works present experimental evidences of phononic frequency combs in MEMS devices, only few contributions focus on the modelling of these and other nonlinear phenomena [START_REF] Hajjaj | Two-to-one internal resonance of MEMS arch resonators[END_REF][START_REF] Hajjaj | Multiple internal resonances in MEMS arch resonators[END_REF][START_REF] Ke³kekler | Symmetry-breaking-induced frequency combs in graphene resonators[END_REF][START_REF] Kubena | Nonlinear analysis of phononic comb generation in high-Q quartz resonators[END_REF][START_REF] Putnik | Predicting the resonance frequencies in geometric nonlinear actuated MEMS[END_REF][START_REF] Tien | Non-linear dynamics of a shallow arch under periodic excitation i.1:2 internal resonance[END_REF].

Most of these works utilize structural theories for beams and analytical expressions for electrostatics. However, it has been recently shown [START_REF] Zega | Numerical modelling of non-linearities in MEMS resonators[END_REF] that even for simple beam-like structures a quantitative agreement with experiments is dicult to achieve. As a consequence, the main aim of this investigation is to propose a general technique, applicable also to complex and realistic MEMS, for which simplied theories are not applicable.

To simulate a full order model, i.e. Finite Element Models, a number of numerical methods are available. These approaches represent an appealing alternative to analytical models, that exploit simplied beams and shells structural theories, whose applicability to complex MEMS devices is limited [START_REF] Lim | Finite-element modeling of the transient response of MEMS sensors[END_REF][START_REF] Opreni | Analysis of the nonlinear response of piezo-micromirrors with the harmonic balance method[END_REF]. Despite the versatility of full order models, the computational burden remains the major drawback even using highlyecient methods like Harmonic Balance techniques or shooting procedures [START_REF] Renson | Numerical computation of nonlinear normal modes in mechanical engineering[END_REF]. Consequently the creation of fast, a-priori, reliable and nonlinear multiphysics tools for dynamic simulation, would represent a groundbreaking milestone in MEMS design and testing [START_REF] Hajjaj | Mode coupling and nonlinear resonances of MEMS arch resonators for bandpass lters[END_REF][START_REF] Jin | Gradient index phononic crystals and metamaterials[END_REF][START_REF] Shoshani | Phase noise reduction in an MEMS oscillator using a nonlinearly enhanced synchronization domain[END_REF].

MOR techniques allow in principle to reduce the full-order model to a few degrees of freedom system, thus signicantly lowering the computational cost. Dierent strategies that make use of linear normal modes as an optimal projection basis upon which the equations of motion can be reduced are actually routinely applied in linear problems arising from vibratory systems like MEMS. However, their extension to nonlinear dynamic problems is still an open issue that is attracting an increasing attention from the scientic community. In general and as done for example in [START_REF] Gobat | Reduced order modeling of nonlinear microstructures through proper orthogonal decomposition[END_REF][START_REF] Touzé | Model order reduction methods for geometrically nonlinear structures: a review of nonlinear techniques[END_REF], one can distinguish between linear and nonlinear techniques for model order reduction.

Linear ROMs are typically Galerkin projections onto low-dimensional linear subspaces. Among this class of methods, one of the simplest solutions is provided by the STiness Evaluation Procedure (STEP) [START_REF] Muravyov | Determination of nonlinear stiness with application to random vibration of geometrically nonlinear structures[END_REF], which uses a selection of linear eigenmodes to compute the coupling coecients. In order to determine all the coupling terms, the STEP method requires identifying and considering all the high-frequency modes [START_REF] Givois | On the frequency response computation of geometrically nonlinear at structures using reduced-order nite element models[END_REF][START_REF] Vizzaccaro | Non-intrusive reduced order modelling for the dynamics of geometrically nonlinear at structures using three-dimensional nite elements[END_REF], e.g. axial and lateral contraction in beams, thus making its application to 3D FEM models very critical. Such modes are indeed dicult to identify and compute without a deep a-priori knowledge of the structural behaviour of the system under study. Nevertheless, among Linear ROMs, the system eigenmodes are not the only choice for the identication of subspace bases. A valid alternative is represented by Proper Orthogonal Decomposition (POD) methods that generates the linear basis through a data-driven approach. Subspace bases are built from data obtained through simulations of a limited amount of congurations of the system by optimizing their orientation to better t the curvatures of the nonlinear manifold underlying the dynamics [START_REF] Amabili | Reduced-order models for nonlinear vibrations of cylindrical shells via the proper orthogonal decomposition method[END_REF][START_REF] Amabili | Reduced-order models for nonlinear vibrations of uid-lled circular cylindrical shells: comparison of POD and asymptotic nonlinear normal modes methods[END_REF][START_REF] Kerschen | The method of proper orthogonal decomposition for dynamical characterization and order reduction of mechanical systems: an overview[END_REF].

Among the nonlinear ROMs available so far in the literature, one can mention the quadratic manifold built from modal derivatives [START_REF] Jain | A quadratic manifold for model order reduction of nonlinear structural dynamics[END_REF][START_REF] Rutzmoser | Generalization of quadratic manifolds for reduced order modeling of nonlinear structural dynamics[END_REF], that takes into account the amplitude dependence of mode shapes and eigenfrequencies. However, since the nonlinear mapping dened in that case is by denition velocityindependent, this approach is limited to moderate transformations and apply only in presence of sucient slow/fast separation between the slave and master coordinates [START_REF] Haller | Exact model reduction by a slowfast decomposition of nonlinear mechanical systems[END_REF][START_REF] Touzé | Model order reduction methods for geometrically nonlinear structures: a review of nonlinear techniques[END_REF][START_REF] Vizzaccaro | Comparison of nonlinear mappings for reduced-order modelling of vibrating structures: normal form theory and quadratic manifold method with modal derivatives[END_REF]. Another class of nonlinear ROMs that deserves attention is represented by the methods based on the concept of Nonlinear Normal Mode (NNM) rstly proposed by Rosenberg [START_REF] Rosenberg | The normal modes of nonlinear n-degree-of-freedom systems[END_REF]. A NNM has been rstly dened as a synchronous vibration of the system and then generalized by the notion of invariant manifold [START_REF] Shaw | An invariant manifold approach to nonlinear normal modes of oscillation[END_REF]8183] and spectral submanifold [START_REF] Haller | Nonlinear normal modes and spectral submanifolds: existence, uniqueness and use in model reduction[END_REF][START_REF] Ponsioen | Automated computation of autonomous spectral submanifolds for nonlinear modal analysis[END_REF]. Despite the generation of ROMs based on the concept of NNM has been proposed for both small systems with few degrees of freedom (dofs) and complex structures involving inertia and geometrical nonlinearities [START_REF] Opreni | Model order reduction based on direct normal form: Application to large nite element MEMS structures featuring internal resonance[END_REF][START_REF] Vizzaccaro | Direct computation of nonlinear mapping via normal form for reduced-order models of nite element nonlinear structures[END_REF], its extension to multiphysic problems (e.g. electromechanics in MEMS) has not been addressed yet, and poses important computational challenges.

The implicit condensation (IC) approach is a versatile method that can be used in a non-intrusive manner to derive eciently accurate ROMs when a small number of master modes is needed [START_REF] Frangi | Reduced order modelling of the non-linear stiness in MEMS resonators[END_REF][START_REF] Hollkamp | Reduced-order models for nonlinear response prediction: Implicit condensation and expansion[END_REF][START_REF] Nicolaidou | Indirect reduced-order modelling: using nonlinear manifolds to conserve kinetic energy[END_REF]. It is a nonlinear method in the sense that the nonlinear relationship between the coordinates is deduced from a stress manifold built by applying series of static loads. This method has been recently tailored for MEMS structures exhibiting damping, geometric and electrostatic nonlinearities. In particular, a very good agreement between experiments and numerical predictions has been shown in [START_REF] Zega | Numerical modelling of non-linearities in MEMS resonators[END_REF] for two Double-Ended-Tuning-Fork resonators electrostatically actuated according to their rst bending mode and in [START_REF] Gobat | Reduced order modelling and experimental validation of a MEMS gyroscope test-structure exhibiting 1: 2 internal resonance[END_REF] for a MEMS gyroscope test structure exhibiting 1:2 internal resonance.

In this work, we take a step further by applying the proposed simulation technique to design a MEMS arch resonator exhibiting a 1:2 internal resonance leading to a phononic frequency comb.

MEMS Arch resonators have been extensively studied in the literature e.g. [START_REF] Alfosail | Theoretical and experimental investigation of two-to-one internal resonance in mems arch resonators[END_REF][START_REF] Hajjaj | Theoretical and experimental investigations of the crossover phenomenon in micromachined arch resonator: part iisimultaneous 1: 1 and 2: 1 internal resonances[END_REF][START_REF] Hajjaj | Theoretical and experimental investigations of the crossover phenomenon in micromachined arch resonator: part ilinear problem[END_REF] and theoretical and experimental analyses on 1:2 internal resonance are available as well [START_REF] Gobat | Backbone curves, Neimark-Sacker boundaries and appearance of quasi-periodicity in nonlinear oscillators: application to 1: 2 internal resonance and frequency combs in MEMS[END_REF][START_REF] Haddow | Theoretical and experimental study of modal interaction in a twodegree-of-freedom structure[END_REF][START_REF] Lenci | Longitudinaltransversal internal resonances in timoshenko beams with an axial elastic boundary condition[END_REF][START_REF] Shami | Nonlinear dynamics of coupled oscillators in 1: 2 internal resonance: eects of the non-resonant quadratic terms and recovery of the saturation eect[END_REF][START_REF] Vyas | A microresonator design based on nonlinear 1: 2 internal resonance in exural structural modes[END_REF]. Nevertheless only few applications target their numerical simulation and focus on the 1:2 internal resonance as a way to generate a frequency comb [START_REF] Ke³kekler | Symmetry-breaking-induced frequency combs in graphene resonators[END_REF]. In particular, the analytical results presented in [START_REF] Gobat | Reduced order modelling and experimental validation of a MEMS gyroscope test-structure exhibiting 1: 2 internal resonance[END_REF] and the preliminary numerical experiences reported in [START_REF] Gobat | Backbone curves, Neimark-Sacker boundaries and appearance of quasi-periodicity in nonlinear oscillators: application to 1: 2 internal resonance and frequency combs in MEMS[END_REF], are deepened to demonstrate that the proposed ab-initio simulation process allows predicting in real-time the complex nonlinear dynamics of MEMS resonators and at the same time guides the electro-mechanical design. Interestingly, the ROM is obtained directly from the FE model in a non-intrusive manner, without any tuned parameter tted from the experiments, and provides excellent predictions when compared to experiments, underlying the accuracy of the method.

The paper is organized as follows: in Section 2 the MEMS arch resonator mechanical design is discussed together with the electrostatic actuation/readout scheme, while the electromechanical IC ROM is introduced in Section 3. Experimental data measured on the fabricated MEMS arch resonator are reported in Section 4 in comparison with numerical results obtained by solving the IC ROM through dierent techniques. Conclusions are nally reported in Section 5.

Arch Resonators

To guarantee the activation of the 1:2 internal resonance able to generate phononic frequency combs by design, we optimized the geometry of a MEMS resonator starting from the topology reported in Fig. 1. An electrostatically actuated MEMS arch resonator is indeed chosen as a very promising candidate thanks to the simple geometry and the strong nonlinear dynamic behaviour. In particular, the asymmetric shape of the arch guarantees non-vanishing quadratic contributions in the elastic force, the clamped-clamped condition is responsible of cubic terms, while the parallel-plate scheme employed for the electrostatic actuation and readout provides electrostatic nonlinearities (see Section 3.3).

The arch resonator has been fabricated with the Thelma process of STMicroelectronics [START_REF] Corigliano | Mechanical characterization of polysilicon through on-chip tensile tests[END_REF] and is made of polysilicon, with E = 167 GPa, ν = 0.22 and ρ = 2330 kg/m 3 . It consists of two curved parallel clampedclamped beams coupled through a vertical rigid connection of length 27 µm and in-plane thickness of 10 µm. Each beam has a cross-section of 5µm x 24µm, a rectied length of 532µm and is suspended with respect to the substrate through the two lateral anchors.

To guarantee electrostatic actuation and readout, xed electrodes are also properly designed, as shown in Fig. 1. At rest, the distance between the MEMS arch resonator and the xed electrodes is equal to 1.8 µm according to fabrication constraints. When a voltage dierence is applied between the MEMS resonator and the xed electrodes, an electrostatic force is generated. Depending on the frequency of the applied voltage and on the employed polarization scheme, it is possible to actuate the arch mechanical modes reported in Fig. 2.

As an example, the polarization scheme reported in Fig. 1b is used to actuate the rst exural mode of the resonator (Fig. 2a). A time varying bias voltage V AC sin ωt is imposed on the drive electrodes (colored in green in Fig. 1b), while the mechanical structure (colored in blue in Fig. 1b) is kept at a constant V DC voltage. Sense electrodes (colored in red in Fig. 1b) are grounded to allow for the readout, while tuning electrodes (colored in light blue in Fig. 1b) are kept at voltage V T to shift the resonance frequency of the excited mechanical mode through the electrostatic softening eect [START_REF] Corigliano | Mechanics of Microsystems[END_REF]. Finally, dummy electrodes (colored in orange in Fig. 1b) are kept at the same DC voltage of the MEMS arch resonator. The numbering associated to the dierent coloured portions in Fig. 1b will be utilized in Section 3.3 to dene electrostatic forces. In the following, we will focus on the rst (Fig. 2a) and sixth (Fig. 2f) eigenmodes of the arch resonator whose natural frequencies are estimated through a Finite Element Method (FEM) modal analysis performed in COMSOL Multiphysics and read 416.66 kHz and 834.15 kHz, respectively. We will refer to these modes as the rst and second in-plane exural modes of the MEMS, while the mode shown in Fig. 2c is an out-ofplane exural mode and the modes reported in Fig. 2b,d,e are all related to localised bending modes of the curved half-beams. It is worth mentioning that the central clamp between the curved beams has shifted the anti-symmetric bending mode to much higher frequencies.

Since the natural frequencies of the rst and second bending modes of the resonator are in a ratio close to 1:2 by design and tuning electrodes can be exploited to slightly modify the ratio as desired through the electrostatic softening eect, the 1:2 internal resonance between the rst and the second bending modes can be easily activated for reasonable amplitudes of the drive voltage as demonstrated by the authors in [START_REF] Zega | Reduced order modelling in a MEMS arch resonator exhibiting 1:2 internal resonance[END_REF]. Dierently from [START_REF] Zega | Reduced order modelling in a MEMS arch resonator exhibiting 1:2 internal resonance[END_REF], we are here able to activate the phononic frequency comb for specic combinations of the actuation voltages, thanks to the proper design of the MEMS arch resonator and guided by the proposed ROM technique.

Modelling strategy

In order to develop and validate a general ab initio procedure, we start from a fully 3D FEM discretization of the MEMS without resorting to structural theories or semi-analytical approximations. The proposed method is a specic form of the implicit condensation (IC) approach [START_REF] Mcewan | A nite element/modal technique for nonlinear plate and stiened panel response prediction[END_REF][START_REF] Mignolet | A review of indirect/non-intrusive reduced order modeling of nonlinear geometric structures[END_REF] which has been recently validated for MEMS applications in [START_REF] Frangi | Reduced order modelling of the non-linear stiness in MEMS resonators[END_REF][START_REF] Gobat | Reduced order modelling and experimental validation of a MEMS gyroscope test-structure exhibiting 1: 2 internal resonance[END_REF][START_REF] Zega | Numerical modelling of non-linearities in MEMS resonators[END_REF]. The underlying assumption is that it is possible to describe the steadystate non-linear oscillation of a resonator as a combination of few low-frequency master modes. In the case under study, the two master modes are the rst and second bending modes previously discussed.

The specic limitations of the IC technique have been deeply analysed in [START_REF] Shen | Reduced order models for geometrically nonlinear structures: Assessment of implicit condensation in comparison with invariant manifold approach[END_REF][START_REF] Touzé | Model order reduction methods for geometrically nonlinear structures: a review of nonlinear techniques[END_REF] and are twofold. First, only moderate transformations can be addressed, meaning that inertia nonlinearities cannot be included. This implies, for instance, that IC in the proposed form cannot be applied e.g. to micromirrors in large rotations [START_REF] Opreni | Model order reduction based on direct normal form: Application to large nite element MEMS structures featuring internal resonance[END_REF], nor to cantilevers with large tip deections. Secondly, a slow/fast decomposition of the system is required, which means that the active slave coordinates should have eigenfrequencies well above those of the master coordinates. If these assumptions are respected, the IC technique is powerful and can be readily generalised to multiphysics problems, as discussed in the following sections. Interestingly, it can be used in a non-intrusive manner with any nite element code, and it gives good results when a small subset of master modes are selected (typically one or two). On the other hand, the generalization of the method to larger number of master modes comes with computational and accuracy issues. 

Training phase

Let ψ i (x) denote the non-dimensional linear modal shape functions of the master modes, mass normalized according to:

Ω0 ρψ i (x) • ψ j (x) dΩ = Mδ ij , (1) 
where M denotes a reference mass that is set to unity in all the numerical experiments but helps making explicit the consistency of units.

In a rst training phase, a stress manifold is built by statically forcing the structure with body forces per unit volume ρF(x) = ρ(β (1) ψ 1 (x) + β (2) ψ 2 (x)) where β (i) are load multipliers (with the dimensions of an acceleration) of the i -th mode, similarly to what proposed in [START_REF] Mcewan | A nite element/modal technique for nonlinear plate and stiened panel response prediction[END_REF]. It is worth stressing that the space of these body forces represents a notable approximation of the space of inertia forces that near resonance are essentially in equilibrium with elastic internal stresses. For this specic reason the resulting stress manifold, as discussed next, proves very accurate near the resonance peak.

Once the body forces are dened, several static non-intrusive non-linear analyses are run with any FEM code to sample the (β (1) , β (2) ) space through:

Ω0 P[u] : ∇ T w dΩ = Ω0 ρβ (j) ψ j (x) • w dΩ, ∀w ∈ C(0), (2) 
where P is the rst Piola-Kirchho stress and equilibrium is imposed in the reference conguration. The range of the load-multipliers β (j) is suitably prescribed so as to cover a predened range of expected displacements in the structure. For instance, considering the resonator shown in Fig. 1, a fraction of the gap between the resonator beams and the electrodes will be covered. Let u(β, x) denote the solution to Eq. ( 2) for a given β = (β (1) , β (2) ). In the linear limit u(β, x) is only a combination of the modal shapes, but as the load increases it also contains contributions from other modes, typically high frequency axial or striction modes which relax signicantly the elastic energy. The computed stresses P[u] dene a manifold P. We remark that, setting w = ψ i in (2), we have:

Mβ (i) = Ω0 P[u(β, x)] : ∇ T ψ i (x) dΩ, (3) 
thanks to the ortho-normality properties of the linear modal basis. In order to set up the necessary tools for the weak form of equilibrium, we rst dene the generalized modal coordinates q i , with the dimensions of a displacement, as:

Mq i (β) = Ω0 ρu(β, x) • ψ i (x) dΩ i = 1, 2, (4) 
and invert the map q(β) sampling the β space to obtain a discrete version of the function β(q). Invertibility is a reasonable assumption with mild non-linearities and, practically, the inversion is performed numerically through tting procedures. Consequently a continuous version of the stress manifold can be dened. In our case we adopt a cubic interpolation for β (i) as follows:

β (i) (q 1 , q 2 ) =c (i) 0 + c (i) 1 q 1 + c (i) 2 q 2 + c (i) 3 q 2 1 + c (i) 4 q 1 q 2 + (5) c (i) 5 q 2 2 + c (i) 6 q 3 1 + c (i) 7 q 2 1 q 2 + c (i) 8 q 1 q 2 2 + c (i) 9 q 3 2 ,
where the coecients are collected in Table 1 and a visualization of the modelled manifolds is presented in Fig. 3. In particular, the linear and constant components of the β (i) (q 1 , q 2 ) are removed in Fig. 3 b) and d) in order to provide a clear view of the nonlinear contributions

β (i)
NL . Coecients in Table 1 reveal some interesting properties of the structure under study. First, important quadratic coecients are present, as a consequence of the curvature of the structure. Second, these nonlinear coecients arise from the mechanical part of the structure which should derive from an elastic potential, such that for example, the quadratic coecients should full the two following relationships: c

(1) 4 = 2c (2) 3 , c (2) 4 = 2c 
(1) 5 , and the cubic coecients should be related through: c

(1) 7 = 3c (2) 6 , c (2) 7 = c 
(1) 8 and c

(2) 8

= 3c

(1) 9 [START_REF] Muravyov | Determination of nonlinear stiness with application to random vibration of geometrically nonlinear structures[END_REF][START_REF] Vizzaccaro | Non-intrusive reduced order modelling for the dynamics of geometrically nonlinear at structures using three-dimensional nite elements[END_REF]. One can notice that these ve relationships are almost perfectly veried by the IC procedure, despite not being imposed directly, highlighting that the method recovers important features of the internal forces. Finally, it is important to remark that between the six quadratic coecients, two of them namely c

(1) 4 and c

(2) 3 are particularly relevant in the case of 1:2 resonance, since being related to second-order resonant monomials [START_REF] Gobat | Backbone curves, Neimark-Sacker boundaries and appearance of quasi-periodicity in nonlinear oscillators: application to 1: 2 internal resonance and frequency combs in MEMS[END_REF][START_REF] Touzé | Hardening/softening behaviour in non-linear oscillations of structural systems using non-linear normal modes[END_REF]. It is interesting to remark in particular that c

(2) 3

has not a large value, however, as it will be shown next, this value is absolutely non negligible and plays a fundamental role in the dynamics of the 1:2 internally resonant system.

It should be remarked that functions β (i) (q 1 , q 2 ) could be tted with other interpolating function, like e.g. splines. Furthermore, the polynomial only has cubic order because the displacement levels, limited by the electrostatic pull-in eects, see Sect. 3.3, make higher-order contributions negligible. It is hence apparent that the IC method works at best and in great eciency when only few clearly identied master modes are interacting. In the presence of several master modes the IC method might rapidly lose its appeal.

Table 1: Coecients of the mechanical nonlinear manifold numerically computed for the two master modes. Numerical values of the c (i) j coecients are consistent with q k expressed in [µm] and

β (i) in [µm/µs 2 ].
β (1) [µm/µs 2 ] β (2) [µm/µs 2 ] (i = 1) 

(i = 2) c (i) 0 -9.
(i) 0 = c (i) 1 = c (i) 2 = 0.

Generation of the ROM

At this point, following a standard practice, we impose the weak form of the equilibrium condition (Principle of Virtual Power) for two specic choices of the test velocity eld, i.e. w = ψ i :

Ω0 ρü•ψ i dΩ + Ω0 P[u] : ∇ T ψ i dΩ = S0 f e •ψ i dS, i = 1, 2, (6) 
where f e are electrostatic forces.

In order to express all the terms as a function of the master coordinates q, we now introduce several simplications.

We assume that the tensor P[u] is constrained to evolve, during the oscillations, over the stress manifold P as a function of β and hence of q. Using Eq. ( 3) the second term in Eq. ( 6) simplies to β i (q). Inertia forces are taken as a combination of linear modes:

ρü(x) = ρψ 1 (x)q 1 (t) + ρψ 2 (x)q 2 (t).
It is worth stressing that this statement limits the applicability of the approach to moderate transformations, as it rules out the possibility to describe e.g. large rotations (micromirrors) or large deections of cantilever beams.

We nally assume that also the electrostatic forces can be expressed in terms of q, as commented in detail in the next section, and we introduce the load participation factors:

F i (q) = S0 f e (q) • ψ i dS. (7) 
As a consequence, Eq. ( 6) yields a ROM in the form of a system of two nonlinear dierential equations:

Mq i + Mβ i (q) = F i (q), i = 1, 2. (8) 
As anticipated, the reference mass M is only needed to correctly specify the dimensions of all the terms, and it will henceforth set to unity.

Electrostatic forces

Since we aim at developing a numerical technique for moderate transformations, similarly to what proposed for inertia forces, we compute the manifold of electrostatic forces assuming that, for this specic task, the displacement eld can be approximated by a linear combination of modes:

u ≃ ψ 1 (x)q 1 (t) + ψ 2 (x)q 2 (t),
i.e. we assume that the error will have a minor impact on the electrostatic forces despite being critical for the stress eld. The ecient generation of the manifold still remains a complex task. At present the most performing numerical tool is represented by integral equations suitably accelerated e.g. with fast multipole methods that have been intensively investigated in the last decades [START_REF] Frangi | Multipole BEM for the evaluation of damping forces on MEMS[END_REF].

In our applications the potentials of the conductors Ω i are imposed. According to the numbering of conductors introduced in Fig. 1,

Φ 1 = Φ 5 = V DC , Φ 2 = V T , Φ 3 = V AC sin ωt, Φ 4 =
0 and the distribution of charge surface density σ on the conductors is obtained solving the rst-kind integral equation:

Φ(x) = S 1 4π 1 r σ(y) ε 0 dS, ∀x ∈ S, (9) 
where σ denotes the unknown surface charge density, S is the collection of the surfaces S i and the data Φ has been dened such that Φ = Φ i on S i . It is worth recalling that the electrostatic force per unit surface f e exerted on the conductor at point x of unit normal vector n is directly associated to the main unknown of the problem:

f e = σ 2 /(2ε 0 )n. (10) 
The second major benet of the approach is that, since only the conductor surfaces need to be discretized, it is straightforward to repeat the analysis following the motion of the device, assuming that the dynamics of electromagnetic forces is much faster than the frequency of oscillation of the resonators. For a given q, let σi (x, q) denote the charge distribution corresponding to a ctitious problem where a unit potential is imposed only on Ω i : Φ i = 1 and Φ j = 0, j ̸ = i. Each eld σi (x, q) is the solution of ( 9) with the specied potentials. Thanks to the linearity of Eq. ( 9) at xed q, the total charge on every conductor can be expressed as:

σ(x, q) = 5 i=1 σi (x, q)Φ i . (11) 
The nonlinear load participation factor (7) is thus:

F i (q) = S1 σ 2 2ε 0 ψ i • ndS = 5 m,n=1 S1 σm σn 2ε 0 ψ i • ndS Φ m Φ n , i = 1, 2, (12) 
where the integration is limited to the surface of the resonator as ψ i vanishes elsewhere. Since typically V AC is much smaller than V DC and V T , terms in V 2 AC are neglected and hence

F i (q) = f (i) DD (q)V 2 DC + f (i) TT (q)V 2 T + 2f (i) DT (q)V DC V T + 2f (i) DA (q)V DC V AC sin ωt, (13) 
where also the term f

(i)
AT V AC V T has been considered negligible due to the specic topology of the resonator. In the present case a cubic interpolation for f (i) αβ (q) is selected and the computed coecients, with the same ordering as in Eq. ( 5), are collected in Table 2, while the corresponding manifolds are illustrated in Fig. 4. Also in this case, due to the limited displacements at hand, we opted for a polynomial expression truncated at third order. Table 2: Coecients of the electrostatic nonlinear manifold numerically computed for the two modes under study. Numerical values of the c (i) j coecients are consistent with q k expressed in [µm] and f 

(i) αβ /ϵ 0 in [µN µm/(V 2 pF)] f (1) DD /ϵ 0 f (1) DA /ϵ 0 f (1) DT /ϵ 0 f (1) TT /ϵ 0 f (2) DD /ϵ 0 f (2) DA /ϵ 0 f (2) DT /ϵ 0 f (2) TT /ϵ 0 (i = 1) (i = 2) c (i

Current equation

The IC ROM allows computing the displacements of the structure under given loading conditions. Nevertheless, the MEMS device here considered is near-vacuum encapsulated and direct displacement measurements are not available. Experimental data are on the contrary provided in the form of current I owing out of the sense electrodes (Ω 4 ). However, following [START_REF] Zega | Numerical modelling of non-linearities in MEMS resonators[END_REF], the current can be expressed in terms of modal coordinates as:

I(q) = 2 i=1 3 n=1 S1 σ4 σn 2ε 0 ψ i • ndS Φ n qi , (14) 
which can be simplied retaining the only meaningful contribution from V DC :

I(q) = 2 i=1 S1 σ4 σ1 2ε 0 ψ i • ndS V DC qi ≃ 2 i=1 f (i) DA (q)V DC qi . (15) 
Eq.( 15), known as current equation, will thus be used in the following sections to transform the output of the IC ROM simulations and perform direct comparisons with experimental data.

Quality factor

Dissipation has been neglected in the derivation of Eq. ( 8) and is now added at the level of the Reduced Order Model considering dierent sources [START_REF] Kim | Temperature dependence of quality factor in MEMS resonators[END_REF][START_REF] Zega | Analysis of frequency stability and thermoelastic eects for slotted tuning fork MEMS resonators[END_REF].

In slender MEMS with minimum thickness in the order of few microns the spread of elastic energy through the anchors (i.e. anchor losses) and surface eects can be safely neglected [START_REF] Ardito | Solid damping in micro electro mechanical systems[END_REF][START_REF] Frangi | Analysis of anchor and interface losses in piezoelectric MEMS resonators[END_REF] and only two major independent contributions need to be accounted for: thermoelastic dissipation and uid damping. The overall quality factor Q, related to the ratio of the maximum stored energy over the dissipation in one cycle is thus expressed as the summation of two independent contributions:

1 Q = 1 Q uid + 1 Q TED , (16) 
where Q uid refers to the dissipation introduced by the interaction of the gas with the MEMS moving parts, while Q TED refers to the frequency-dependent thermoelastic quality factor. In our application the device is encapsulated in near vacuum at a nominal pressure of 70 mbar in Argon, yet uid damping cannot be neglected. In these conditions the gas ow develops in the so called free-molecule regime and its eects can be computed through the integral equation model proposed in [START_REF] Frangi | On a deterministic approach for the evaluation of gas damping in inertial MEMS in the free-molecule regime[END_REF] and extended in [START_REF] Frangi | A BEM technique for free-molecule ows in high frequency MEMS resonators[END_REF] to the high working frequencies typical of the resonators of interest herein. The resulting quality factor values are reported in Table 3. It is worth stressing that in the free molecule ow Q uid is proportional to the inverse of the package pressure which in principle is xed by the fabrication process at the bonding level, but in practice is strongly aected by technological spreads. Since the displacements of the resonator are limited, we ignore here the dependence of Q uid on the actual conguration. See however [START_REF] Zega | Numerical modelling of non-linearities in MEMS resonators[END_REF] for further comments on this issue. The frequency dependent thermoelastic quality factor Q TED refers to damping induced by the process in which part of the vibration energy of the resonator is dissipated into thermal energy, through irreversible heat conduction induced by elastic vibrations [START_REF] Ardito | Solid damping in micro electro mechanical systems[END_REF][START_REF] Hao | Electro-Thermo-Mechanical System: Thermoelastic Damping in Resonators[END_REF]. This contribution is broadly studied in the literature on MEMS and can be evaluated using standard numerical approaches [START_REF] Ardito | Solid damping in micro electro mechanical systems[END_REF] implemented in several commercial codes and will not be discussed herein. The thermal properties considered in the calculations are reported in Table 4 and the quality factor are reported in Table 3 for the two master modes. It can be appreciated, in 

[K] [ • C -1 ] [W m -1• C -1 ] [J/K] [K]
3.029462 • 10 -6 144.905 708.855 298.15 particular, that thermoelastic damping has non-negligible eect on the second bending mode. The aforementioned values can be compared with experimental estimates of the quality factors of the system. This can be done resorting to the approximate method developed in [START_REF] Davis | Measuring quality factor from a nonlinear frequency response with jump discontinuities[END_REF] for nonlinear Frequency Response Functions (FRFs) with Dung-like behaviour. Performing this procedure on dierent points of the FRF reported in Fig. 5 (see Section 4 for the experimental setup details), one obtains the values reported in the last column of Table 3. Considering all the uncertainties aecting the encapsulation pressure and the material properties, in the following we adopt the intermediate values 2800 and 5200 for the rst and the second master modes, respectively.

Integration of the nal ROM

The resulting nonlinear system describing the dynamics of the arch resonator biased at V DC and tuned with a potential V T eventually reads:

q1 + ω 01 Q 1 q1 + β 1 (q) -f (1) DD (q)V 2 DC -2f (1) 
DT (q)V DC V T -f (1) TT (q)V 2 T = 2V DC V AC f (1) 
AC (q) sin(ωt),

q2 + ω 02 Q 2 q2 + β 2 (q) -f (17) 
DD (q)V 2 DC -2f (2) 
DT (q)V DC V T -f (2) 
TT (q)V 2 T = 0, (2) 
where some simplications of the electrostatic load are included. The V DC V AC term is only meaningful for the lowest frequency oscillator, as ω ≈ ω 01 , while it is neglected in Eq. ( 18) since ω 02 ≈ 2ω. Furthermore, the V 2 AC terms are neglected as V DC ≫ V AC in the applications. The only exception is represented by the preliminary uncoupled simulation of the FRF of the second mode in Fig. 5c)-d) where ω ≈ ω 02 and the

2V DC V AC f (2)
AC (q) sin(ωt) forcing term must be included in Eq. [START_REF] Frangi | Analysis of anchor and interface losses in piezoelectric MEMS resonators[END_REF]. The aforementioned simplications are customary for MEMS as they are characterized by sharp peaks in the FRFs due to the high quality factors involved.

To enable a direct comparison with the output of experiments, the response obtained from Eqs. ( 17)-( 18) in terms of modal coordinates is transformed in terms of current owing out of the sense electrodes, using Eq. [START_REF] Dhooge | Matcont: a matlab package for numerical bifurcation analysis of odes[END_REF].

In standard operating conditions we are interested in the steady-state periodic solutions and a number of available numerical packages can be fruitfully applied to generate a rich portrait of the dynamics performing continuation of solutions with bifurcation analysis. Alongside the well established Auto07p [START_REF] Doedel | AUTO-07P: Continuation and bifurcation software for ordinary dierential equations[END_REF], a Fortran package that uses collocation methods, an alternative common choice is Matcont, a Matlab numerical continuation tool for the interactive bifurcation analysis of dynamical systems [START_REF] Dhooge | Matcont: a matlab package for numerical bifurcation analysis of odes[END_REF]. Among others, one can mention: Manlab, a Matlab package that implements an Harmonic Balance (HB) technique coupled with the Asymptotic Numerical Method developed in [START_REF] Guillot | A Taylor series-based continuation method for solutions of dynamical systems[END_REF][START_REF] Guillot | A purely frequency based Floquet-Hill formulation for the ecient stability computation of periodic solutions of ordinary dierential systems[END_REF]; Nlvib that also exploits HB methods [START_REF] Krack | Harmonic balance for nonlinear vibration problems[END_REF]; COCO based on collocation approaches [START_REF] Dankowicz | Recipes for continuation[END_REF]. Another excellent package is BifurcationKit [START_REF] Veltz | BifurcationKit.jl[END_REF], an emerging toolkit for continuation methods in ODEs and PDEs. These packages usually provide the ability to distinguish between stable and unstable branches, locate bifurcation points and follow alternative branches of the solution. We stress that the same versatility is dicult to achieve with a FOM. Indeed, even if a HB formulation with continuation has been recently proposed in [START_REF] Detroux | The harmonic balance method for bifurcation analysis of large-scale nonlinear mechanical systems[END_REF][START_REF] Opreni | Analysis of the nonlinear response of piezo-micromirrors with the harmonic balance method[END_REF] for large scale problems, computing times are not compatible with their application at the design or prototyping levels. In the upcoming sections, unless dierently specied, the analysis of the steady state periodic solutions and their stability is performed with Manlab. This section is devoted to the comparison between the a-priori predictions provided by the IC method and experiments. Since the design aims at controlling both internal resonance and quasi-periodic regimes, the two aspects are investigated separately using dedicated experimental setups.

Periodic response and internal resonance

A standard probe station has been employed to perform the experiments. The resonator is excited through an AC signal generated by the Network Analyzer Agilent 4395A while DC voltages (V DC , V T ) are provided by two power suppliers: Yokogawa GS 610 and Agilent E3631A. The output current, measured through the probe connected to the sensing electrodes, is amplied and converted to voltage through the Stanford Current Pre-Amplier SR570 and it is readout by the Network Analyzer. Finally, the data are post-processed in Matlab.

A preliminary characterisation of the MEMS arch resonator is performed by analyzing the frequency response of the rst and second bending modes (Fig. 5) for limited actuation levels, calibrated in order not to activate the internal resonance. The dynamic response of the arch resonator around the natural frequency of the rst mode is reported in Figs. 5 a)-b) in terms of amplitude and phase for V T = 0 V, V AC = 177.8 mV and V DC = 2, 3, 4 V. A standard softening response is obtained, as expected, with an increasing frequency shift at larger V DC .

It is worth stressing that in these tests the intensity of the measured output current is very limited, i.e. in the order of few nA, and a large noise level due to wires, instrument limitations and non-ideal connection between probes and MEMS-pads is expected. In particular, the response for V DC = 2 V is very noisy far from resonance, as the oscillation amplitudes are low and the noise of the experimental setup overcomes the system sensitivity.

For this reason the phase has been plotted only near resonance which is the frequency range of interest. Numerical predictions obtained by solving Eqs. ( 17)-( 18) for the aforementioned voltages levels are also reported in Fig. 5 using continuous lines. A very good agreement between experiments and numerical predictions is found thus providing a strong preliminary validation of ROM adopted. Figs. 5 c)-d) display the response of the MEMS resonator when excited near the second bending mode, for V DC = 4V, V T = 4V and V AC = 79.4mV.

A second phase of the experimental campaign has been devoted to investigate the 1:2 internal resonance between the two bending modes. This is achieved by: (i) selecting a proper combination of the tuning voltage V T and of the bias voltage V DC applied on the resonator and (ii) increasing the AC signal applied on the driving electrodes. The former acts on the ratio between the natural frequencies of the two modes under study in order to bring it suciently close to 2. The latter activates the nonlinear behaviour of the arch resonator, thus promoting the coupling between the two modes of the structure. In order to allow a better understanding of the plots, in Fig. 6 we rst present a typical pattern of the FRF for the amplitude of the rst mode in presence of a 1:2 IR.

The shape of the frequency response is typical when the 1:2 internal resonance is excited, and is organized around two peaks corresponding to two dierent coupled solutions, as highlighted for example in [START_REF] Gobat | Backbone curves, Neimark-Sacker boundaries and appearance of quasi-periodicity in nonlinear oscillators: application to 1: 2 internal resonance and frequency combs in MEMS[END_REF]. Each peak corresponds to the contribution of one of the two existing coupled solutions. The two backbones that underlie the dynamics of the FRF reported in Fig. 6 onset from the frequency ω 01 and ω 02 /2.

In this campaign, experiments are run in frequency control with an upward sweep and cannot follow the unstable branches delimited by Saddle Node (SN) bifurcations.

When considering the left-hand part of the curve, i.e. the softening peak, the measurement point follows the lower part of the branch and jumps to the upper part at the SN point. When considering the right-hand part of the curve, i.e. the hardening peak, the forward frequency sweep should in principle allow to travel on the upper part of the bifurcated branch up to the peak. Nevertheless, the expected experimental jump is always found before the theoretical SN point. This is a classical feature in such problems, which is due to the fact that the basin of attraction of the upper solution is dramatically shrinking when approaching the SN point. Consequently, the system is very sensitive to non-idealities, e.g. noise or parasitic capacitances coming from the set-up, e.g. wires or instruments, are always present and hardly controllable in a deterministic way with the standard set-up utilized.

Tracking the response beyond the critical bifurcation regime is in principle possible through variablephase feedback loop similar to the one proposed in [START_REF] Zega | Numerical modelling of non-linearities in MEMS resonators[END_REF], but the implementation of such a control scheme is outside the scope of the present work. On the contrary, the numerical solution of the ROM is performed with continuation techniques allowing to reproduce both stable and unstable branches.

Figs. 7-9 present, in terms of both current amplitude and phase, the frequency response of the arch resonator measured for dierent combinations of V DC , V T and V AC . Note that only the upward frequency sweep is reported for the sake of clarity. As anticipated, starting from low frequencies and following the upward sweep, the experimental data present a jump to the upper branch at the rst SN point, while they should follow the second peak before falling to the lower branch. Continuous lines illustrate numerical predictions showing a remarkable accuracy. In Fig. 7 the actuation level V AC is varied while keeping V DC = 7 V and V T = 5 V xed. In these conditions the amplitude of the motion increases and the frequency peaks become sharper and clearly visible. Regarding the bifurcation portrait, both simulations and experiments highlight the existence of the dierent stable and unstable branches delimited by the saddle-node points. Furthermore, with a V AC > 446.7 mV, Neimark-Sacker bifurcation points appear in between the two peaks.

Here the system response becomes quasi-periodic and further insight will be provided in what follows. The experimental measurements with the current setup cannot display the QP regime because the output signal is ltered assuming that only the forcing frequency is present. An accurate investigation of the QP regime is performed in Sect.4.2 recording the output signal in time. It is also worth noticing that for V AC = 446.7 mV four NS points are identied, while on the V AC = 562.3 mV curves only two exist. This is a consequence of the peculiar shape of the so called NS boundary region, analysed in [START_REF] Gobat | Backbone curves, Neimark-Sacker boundaries and appearance of quasi-periodicity in nonlinear oscillators: application to 1: 2 internal resonance and frequency combs in MEMS[END_REF] and shown in Fig. 16 of the Appendix A, having two local minima.

In Fig. 8 V DC = 10 V and V AC = 316.2 mV are kept xed while V T is varied highlighting the eect of the tuning electrode that is here used to control the frequency ratio of the coupled modes. In fact, as one may infer from Eqs. ( 17) and ( 18), tuning electrodes allow controlling the eigenfrequency mismatch through the variation of the bias dierence |V T -V DC | with respect to the resonator. When V T = 0 V the frequencies have a mismatch that reduces the interaction. With V T = 9 V, i.e. V DC -V T = 1 V, frequencies are close enough to provide a strong IR and small NS regions are detected by the numerical approximation. Finally, for V T = 15 V, i.e. V T -V DC = 5 V, the frequency mismatch starts increasing again; the IR eects are still present but the NS regions disappear. An analysis of the evolution of the ratio between the eigenfrequencies as a function of the bias and tuning potentials is reported in Appendix B.

In Fig. 9 V T = 5 V and V AC = 316.2 mV are kept xed while V DC is varied. The V DC parameter strongly aects the response as it directly controls the forcing and induces an electrostatic shift on both modes. The results reported highlight the outstanding capabilities of the IC method as a tool to design devices tailored to display internal resonance behaviour. 

Quasi-periodicity and Frequency Combs

As mentioned in previous sections, the system considered might encounter Neimark-Sacker bifurcations along the FRF and, more specically, due to the 1:2 internal resonance a Quasi-Periodic (QP) regime can be observed under certain conditions. As well known from classical nonlinear dynamics [START_REF] Nayfeh | Nonlinear oscillations[END_REF], and as recently investigated e.g. in [START_REF] Gobat | Backbone curves, Neimark-Sacker boundaries and appearance of quasi-periodicity in nonlinear oscillators: application to 1: 2 internal resonance and frequency combs in MEMS[END_REF], when the 1:2 internal resonance is present and proper conditions of forcing, damping and frequency mismatch are veried, Neimark-Sacker (NS) bifurcations can be observed in between the two frequency peaks of the response. As a consequence, the periodic response becomes unstable. Thanks to the design of the arch resonators and the IC ROM Eqs. ( 17)-( 18), such regime can be predicted and some of its features reproduced. Bifurcation points of this solution are highlighted by the green star markers for-Saddle Node bifurcations and by green square markers for NS bifurcations. Time-marching solutions of the IC model are reported as dot markers in terms of stroboscopic maps at dierent frequencies. Inside the NS bifurcation region the continuation of periodic orbits solution and the time marching solution depart from each other. This is due to the QP regime that onset in such regions as highlighted by the cloud of points given by the stroboscopic maps.

Let us consider the FRF of the mid-span displacement u MID plotted in Fig. 10. The bifurcation analysis performed on the IC model reveals two NS bifurcation points. Specic algorithms and packages could be in principle used to perform continuation of dierent branches [START_REF] Dhooge | Matcont: a matlab package for numerical bifurcation analysis of odes[END_REF]. Nevertheless we opt herein for a more straightforward time-marching solution, obtained with a Runge-Kutta scheme of order 4 and 5. . In Fig. 10 the Poincaré map of the midspan displacement u MID , is plotted with black dots. Numerical data are generated by recording the system response, after a transient, at equally spaced time instants t k = t 0 +kT with k = 1, 2...n, where T is the external forcing period and t 0 is a reference time corresponding, e.g., to a maximum in the periodic response. Before and after the NS bifurcation points the time marching solution is perfectly overlapped with the one obtained using the approaches detailed in the previous section, while inside the QP region the stroboscopic map provides a cloud of points as expected from a non-periodic regime.

The NS bifurcation, sometimes also called secondary Hopf bifurcation, is met when a limit cycle loses stability with a pair of Floquet mutlipliers crossing simultaneously the unit circle [START_REF] Kuznetsov | Elements of applied bifurcation theory[END_REF]. In these conditions, the system dynamics bifurcates to a QP regime where the forcing frequency Ω is paired with an incommensurate frequency ω NS that modulates the system time response. Furthermore, the frequency spectrum of the system is altered and, instead of presenting only isolated peaks corresponding to the multiples of Ω, also displays secondary, equally spaced peaks placed around the main ones. This spacing is a consequence of the combination of Ω with the ω NS multiples. More insight is provided by the 3D stroboscopic map of the numerical solution represented in Fig. 11, where f is the forcing frequency and u MID , uMID are the mid-span displacement and velocity. The result is a collection of points that can be used to characterise the system regime: for a xed f , a single point in the phase space corresponds to a periodic motion; a closed curve corresponds to a quasi-periodic regime with a single incommensurate frequency; more complex patterns denote the coexistence of several incommensurate frequencies and a route to chaos [START_REF] Thomsen | Vibrations and stability[END_REF].

To provide an insight into the behaviour of the system in such regions, we recorded the output signal in time using an oscilloscope Tektronix MSO 454. An example of experimental measurements of the signal performed inside the predicted QP region is reported in Fig. 12(a). Due to the measurement noise in the signal, the typical amplitude modulation expected for a QP regime, and predicted by the IC model in Fig. 12(b), is not clearly visible and a post-processing is required.

To better analyse these data, we perform a spectrum analysis of experimental data obtained at various forcing frequencies spanning the region of interest setting V DC = 7 V, V T = 5 V, V AC = 0.562 V, corresponding to the FRFs of Figs. 7 and10. The results are collected in Fig. 13. Even though the time signal is noisy, using suciently long time windows to operate the Fourier transform allows us to recover a good accuracy in the spectrum and to put in evidence the structure of the frequency combs. We notice that, for points lying outside the NS region predicted by the IC simulation, the response has a sharp peak at the forcing frequency. Entering into the predicted QP region, frequency combs appear in the spectrum. The spacing between the peaks varies depending on the forcing frequency and ranges from 103 Hz up to 725 Hz.

Following the branch of QP solutions, the second frequency of the torus ω NS is known to vary with the parameters (here the forcing frequency), see e.g. [START_REF] Gobat | Backbone curves, Neimark-Sacker boundaries and appearance of quasi-periodicity in nonlinear oscillators: application to 1: 2 internal resonance and frequency combs in MEMS[END_REF]. Even though ω NS should change smoothly in the frequency window, we detect experimentally an irregular pattern, as a consequence of the stability of the QP solution [START_REF] Li | Nonlinear analysis of forced mechanical systems with internal resonance using spectral submanifolds, part ii: Bifurcation and quasi-periodic response[END_REF]. This aspect has not been deeply investigated during our experiments as the analysis of Numerical frequency combs obtained by solving the IC model through time marching techniques are reported in Fig. 14. The clear transition from a periodic response with a single sharp peak in the spectrum to a QP regime with FCs obtained experimentally is indeed well predicted by the ROM model here proposed. The numerical FC spacing ranges from 125 to 500 Hz and tends to change along the frequency path till becoming almost chaotic, in satisfactory agreement with experimental data. This behaviour is compatible with what observed in Fig. 11 where, in a certain range of the forcing frequency, the Poincaré map changes from a pattern with simple closed curves towards a more complicate one denoting the presence of several incommensurate frequencies.

Results are further elaborated in Fig. 15. Here we consider the 40 numerical output-signal time histories used to generate Fig. 11, corresponding to equally spaced forcing frequencies. Their spectral amplitudes are plotted in Fig. 15a) as a heatmap in the (f FFT , f ) plane, where f FFT denotes the FFT component and f the forcing frequency. Colours correspond to the FFT amplitude values. One can identify the same pattern as in Fig. 11. Below f ≈ 416.75kHz, the spectrum is characterised by one single peak typical of a periodic regime. After the onset of the NS bifurcation, the incommensurate frequency adds equally spaced peaks around the forcing frequency value. Initially the peak spacing is quite large and clear peaks can be identied. Proceeding further, for f ≈ 416.85 : 416.95 kHz, some peaks disappear and the spacing progressively reduces. After f ≈ 416.95 kHz the portrait changes abruptly and additional peaks arise suggesting a more complicate behaviour possibly associated with the appearance of several incommensurate frequencies.

Such representation allows estimating the trend of the incommensurate frequency f NS reported in Fig. 15b). Since the FFT resolution is limited by the simulated time-series to ∆f ≈ 20.8Hz and due to diculties in identifying peaks position, we plot an average peak value (thick red line) and the maximum-minimum frequency spacing range (grey shaded region). The global trend shows a decrease of the incommensurate frequency value compatible with the experimental data and a spread after f ≈ 416.95kHz, as previously highlighted. Figure 14: Frequency spectra of the simulated time histories for V DC = 7 V, V T = 5 V, V AC = 0.562 V and dierent frequencies. For each spectrum the forcing frequency as well as the comb spacing (if present) is reported. Frequency peaks are highlighted with circle markers Figure 15: a) FFT heatmap with varying excitation frequency. The Power Spectral Density (PSD) of each FFT is normalized with respect to its maximum so that all the peaks correspond to red regions. The comb spacing tends to shrink inside the QP region enriching with more than one incommensurate frequency after a certain value. b) Plot of the incommensurate frequency trend estimated from the FFTs using the average value encountered (red line). The comb spacing is decreasing along the path. Along the path some dispersion on the estimated values can be observed and is highlighted by the grey shaded region.

Conclusions

This paper presents an electromechanical Reduced Order Model based on the Implicit Condensation approach, that is able to describe the complex nonlinear dynamics of a MEMS resonator. Importantly, this is an ab-initio approach in the sense that, starting from general principles, it takes into account the mechanics of the arch resonator, the electrostatic actuation/readout schemes and the dierent dissipation mechanisms without resorting to simplied and problem-dependent semi-analytical approximations. The ROM has thus been generated from an a priori modelisation, without any need to resort to a tting procedure to tune some of its parameter on the basis of experimental measurements.

By comparing numerical simulations and experiments performed on a MEMS arch resonator fabricated by STMicroelectronics under dierent operating conditions, we have demonstrated that the ROM model is able to correctly reproduce the 1:2 internal resonance arising from the interaction of the rst and second bending modes of the arch resonator. Moreover, we have brought the simulation technique to an unprecedented level of complexity by reproducing the phononic frequency comb observed experimentally. The location of the Neimark-Sacker bifurcations points has been accurately predicted and an in-depth analysis of the quasiperiodic regime arising from these points has been indeed carried out. Also the simulation of the spacing between the secondary peaks of the comb has been addressed, showing that the correct trend and range can be reproduced.

The technique is fairly general and can be applied to a broad family of resonating microstructures experiencing moderate transformations. It only requires the a-priori identication of the master modes and can be applied with reasonable computing cost provided that the number of interacting modes is limited.

Thanks to its ab-initio and Reduced Order nature, the proposed simulation approach represents a powerful tool to support the design process of a new class of complex nonlinear MEMS devices. The intricate nonlinear dynamics phenomena of such sensors/actuators are indeed very dicult to predict without simple ROM models and consequently were avoided by design. The development of rened numerical tools is thus expected to be a key enabling technology for a new family of MEMS devices built with and for nonlinearities that could potentially revolutionise their applications.

A Comparison with an analytical approach

All the results presented in Section 4 show the potential of the IC method in predicting QP states in MEMS systems. Nevertheless, an analytical model might be helpful in obtaining a direct control on the nonlinear parameters. In the literature many contributions have addressed the topic of internal resonances from an analytical perspective, including e.g. 1:3 [START_REF] Kloda | Flexuralexural internal resonances 3: 1 in initially straight, extensible timoshenko beams with an axial spring[END_REF] 1:1:2 [START_REF] Thomas | Non-linear vibrations of free-edge thin spherical shells: modal interaction rules and 1: 1: 2 internal resonance[END_REF] and 1:2:4 [START_REF] Monteil | Identication of mode couplings in nonlinear vibrations of the steelpan[END_REF] cases. In particular, we discuss herein the analytical model for 1:2 internal resonance discussed in [START_REF] Gobat | Backbone curves, Neimark-Sacker boundaries and appearance of quasi-periodicity in nonlinear oscillators: application to 1: 2 internal resonance and frequency combs in MEMS[END_REF] and we compare its results with the experiments. The model is given by a set of two nonlinear ODEs representing the two eigenmodes as coupled oscillators:

q1 + ω 01 Q 1 q1 + k 1 q 1 + k 3 q 1 q 2 = f 1 sin(ωt), (19) 
q2 + ω 02 Q 2 q2 + k 2 q 2 + k 4 q 2 1 = 0, (20) 
with q i , i = 1, 2 modal coordinates and the coecients k i dened as a combination of the coecients in Tables 1 and2. Referring to the c j coecient of each table by means of the notation □ cj the values in Eqs. [START_REF] Frangi | Multipole BEM for the evaluation of damping forces on MEMS[END_REF] and ( 20) are taken as:

k 1 = β (1) c1 -f (1) 
DD,c1 V 2 DC ,

k 2 = β (2) c2 -f (2) 
DD,c2 V 2 DC ,

k 3 = β (1) c4 -f (1) 
DD,c4 V 2 DC -2f

DT,c4

V DC V T -f (1) 
TT,c4 V 2 T ,

k 4 = β (2) c3 -f (2) DD,c3 V 2 DC -2f (2) 
DT,c3

V DC V T -f (2) 
TT,c3

V 2 T f 1 = 2V DC V AC f (1) 
DA,c0 .

The analysis of Eqs. ( 19) and ( 20) allows tracing the FRCs, but also to address the stability of the system through the inspection of the Jacobian of the modulation equation. In particular, the NS bifurcation points can be identied and their envelope, i.e. the NS boundary curve, can be dened, see [START_REF] Gobat | Backbone curves, Neimark-Sacker boundaries and appearance of quasi-periodicity in nonlinear oscillators: application to 1: 2 internal resonance and frequency combs in MEMS[END_REF] for the analytical expressions. Along such a curve, it is possible to provide an estimate of the incommensurate frequency. Such a value can be expressed as [START_REF] Gobat | Backbone curves, Neimark-Sacker boundaries and appearance of quasi-periodicity in nonlinear oscillators: application to 1: 2 internal resonance and frequency combs in MEMS[END_REF]:

ω 2 NS = 1 2(µ 1 + µ 2 ) q 2 k 3 k 1 (µ 1 +µ 2 ) µ 2 2 + (k 2 -2ω) 2 - q 2 2 k 2 3 µ 2 8k 2 1 +2µ 1 (µ 2
2 +(ω 02 -2ω) 2 )+2µ 2 (ω-k 1 ) 2 +2µ 2 µ 2 1 , (21) with µ 1 = ω 01 /(2Q 1 ) and µ 2 = ω 02 /(2Q 2 ) and q 2 corresponding to the values predicted for the NS bifurcation point [START_REF] Gobat | Backbone curves, Neimark-Sacker boundaries and appearance of quasi-periodicity in nonlinear oscillators: application to 1: 2 internal resonance and frequency combs in MEMS[END_REF]. The results of the analytical model, compared with the experiments, are reported in Fig. 16. The FRF is almost superimposed with the experiments. For the frequencies corresponding to the NS bifurcations on the FRC the model predicts a spacing between 500 and 350 Hz. These values are compatible with the ones of the IC model and the experiments. 

B Eect of the bias and tuning voltages on the resonance frequencies

The crucial role played by V DC and V T has been highlighted in experiments and simulations. They generally induce a negative shift of the eigenfrequencies and the arch resonator is designed to provide a certain level of exibility in the frequency match between the coupled bending modes by suitably tuning V DC and V T . Indeed, data reported in Figs.7,8 and 9 clearly show that certain combinations of V DC and V T allow for a better frequency match. This can be easily justied on the basis of Eqs.( 17) and [START_REF] Frangi | Analysis of anchor and interface losses in piezoelectric MEMS resonators[END_REF]. Performing a linearization with respect to the reduced coordinate q 1 and q 2 in Eqs.( 17) and ( 18) respectively, an analytical expression for ω 1 and ω 2 can be readily obtained:

ω 2 1 = c (1) 1 -c (1) 1DD V 2 DC -c (1) 1TT V 2 T -2c (1) 
1DT V DC V T ω 2 2 = c (2) 2 -c (2) 2DD V 2 DC -c (2) 2TT V 2 T -2c (2) 
2DT V DC V T [START_REF] Ganesan | Phononic frequency comb via intrinsic three-wave mixing[END_REF] The ratio between the two frequencies ω 2 /ω 1 with varying V DC and V T is plotted in Fig. 17. These plots highlight how the ideal ratio of 2 between the two resonance frequencies cannot be reached exactly. Nevertheless, a value of V T close to V DC allows reducing the mismatch, see the marker point in Fig. 17a.
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Figure 1 :

 1 Figure 1: (a) Scanning Electron Microscopy (SEM) image of the MEMS arch resonator fabricated through the Thelma process of STMicroelectronics. (b) Schematic view of the electrostatic actuation/detection electrodes: (1) resonator (V DC ), (2) tuning electrodes (V T ), (3) driving electrodes (V AC ), (4) sensing electrodes (ground) and (5) dummy electrodes (V DC ).

Figure 2 :

 2 Figure 2: Eigenmodes of the MEMS arch resonator shown in Fig. 1. The contour of the normalized displacement eld is shown in colour. Eigenmodes a) and f) have frequency ratio close to 2 and are coupled through the internal resonance of interest in this investigation.

72 10 - 9 - 2 Figure 3 :

 923 Figure 3: Nonlinear β (i) manifolds for the two master modes. Figs. a) and c) plot the complete manifolds while in Figs. b) and d) only the nonlinear contributions are highlighted, setting c

Figure 4 :

 4 Figure 4: Nonlinear electrostatic force manifolds for the two master modes, rst bending modes in column 1 and second bending mode in column 2.

Figure 5 :Figure 6 :

 56 Figure 5: Frequency response of the MEMS arch resonator around the frequency of the rst exural mode in terms of (a) amplitude and (b) phase for V DC = 2, 3, 4 V, V T = 0 V and V AC = 177.8 mV. Frequency response of the MEMS arch resonator around the frequency of the second bending mode in terms of (c) amplitude and (d) phase for V DC = 4 V, V T = 4 V and V AC = 79.4 mV. Experiments are reported in dotted lines and numerical predictions in continuous lines.

Figure 7 :

 7 Figure 7: Frequency response in terms of amplitude and phase for V DC = 7 V,V T = 5 V and variable V AC . The NS bifurcation regions are zoomed in the insets

Figure 8 :Figure 9 :

 89 Figure 8: Frequency response in terms of amplitude and phase for V DC = 10 V, V AC = 316.2 mV and variable V T

Figure 10 :

 10 Figure 10: FRF for the mid-span displacement u MID . Numerical solution of the IC model for V DC = 7 V, V T = 5 V and V AC = 0.562 V. The red line denotes the IC model continuation of periodic solutions.Bifurcation points of this solution are highlighted by the green star markers for-Saddle Node bifurcations and by green square markers for NS bifurcations. Time-marching solutions of the IC model are reported as dot markers in terms of stroboscopic maps at dierent frequencies. Inside the NS bifurcation region the continuation of periodic orbits solution and the time marching solution depart from each other. This is due to the QP regime that onset in such regions as highlighted by the cloud of points given by the stroboscopic maps.

Figure 11 :

 11 Figure 11: Poincaré sections of the IC model mid-span displacement time histories for V DC = 7 V, V T = 5 V, V AC = 0.562 V for dierent frequency values.

Figure 12 :

 12 Figure 12: Experimental a) and simulated b) time history of the normalised signal output considering V DC = 7 V, V T = 5 V, V AC = 0.562 V and Ω = 416.90 kHz.

Figure 13 :

 13 Figure 13: Frequency spectra of the experimental time histories for V DC = 7 V, V T = 5 V, V AC = 0.562 V and dierent excitation frequencies. For each spectrum the forcing frequency as well as the comb spacing (if present) is reported. Frequency peaks are highlighted with bullet markers

Figure 16 :

 16 Figure 16: Comparison between the analytical model and experiments for V DC = 7 V, V T = 5 V and V AC = 0.562 V. Fig. a): experimental FRF compared with the analytical one and NS boundary. Fig. b): enlarged view of the QP region and the NS boundary crossing points. Fig. c): incommensurate frequency predicted by the analytical model along the NS boundary.

  

Table 3 :

 3 Quality factor numerical predictions and experimental estimates

	mode Q uid Q TED Q (simulations) Q (experiments)
	1	2740 103248	2699	2860±150
	2	7522	26408	5855	4799±200

Table 4 :

 4 Thermal properties of the polysilicon Thermal Expansion Thermal Conductivity Heat capacity Reference Temperature
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