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Abstract

This paper is devoted to a detailed analysis of the appearance of frequency combs in the dynamics of a
Micro-Electro-Mechanical Systems (MEMS) resonator featuring 1:2 internal resonance. To that purpose,
both experiments and numerical predictions are reported and analysed to predict and follow the appear-
ance of the phononic frequency comb arising as a quasi-periodic regime between two Neimark-Sacker
bifurcations. Numerical predictions are based on a reduced-order model built thanks to an implicit con-
densation method, where both mechanical nonlinearities and electrostatic forces are taken into account.
The reduced order model is able to predict a priori, i.e. without the need of experimental calibration of
parameters, and in real-time, i.e. by solving one or two degrees-of-freedom system of equations, the non-
linear behaviour of the MEMS resonator. Numerical predictions show a good agreement with experiments
under di�erent operating conditions, thus proving the great potentiality of the proposed simulation tool.
In particular, the bifurcation points and frequency content of the frequency comb are carefully predicted
by the model, and the main features of the periodic and quasi-periodic regimes are given with accuracy,
underlining that the complex dynamics of such MEMS device is e�ectively driven by the characteristics
of the 1:2 internal resonance.

1 Introduction

The spread of MEMS in the consumer market is rapidly increasing thanks to their small dimensions, high
performances and low costs. At the same time new application �elds for MEMS devices are emerging and
rapidly evolving, e.g. Internet of Things, Aerospace, high-end applications, virtual or augmented reality. This
is posing an important challenge to MEMS designers that have to simultaneously improve the e�ectiveness
of actual devices and �nd innovative working principles that go beyond the actual state of the art mainly
limited to linear dynamic behaviours of mechanical components. In this context, nonlinear phenomena
usually avoided by design [28,68], are starting to emerge as promising solutions to improve performances of
existing MEMS devices [4, 61] and/or to design a new generation of sensors and actuators [37,73].

Among other nonlinear phenomena, phononic frequency combs, which are the mechanical counterparts of
photonic frequency combs largely studied in the literature with speci�c reference to optic metrology [85], are
attracting interest from the MEMS community since they can be employed as e�cient sensing mechanisms
[23] or promising solutions for vibration energy harvesting [6].

Phononic frequency combs can be generated through contact mechanisms [29], mutual synchronization
of resonators [56, 94] or internal resonance [10]. Internal resonance is de�ned in nonlinear vibration theory

1

https://orcid.org/0000-0003-1914-9123
https://orcid.org/0000-0003-1607-5827
https://orcid.org/0000-0003-2225-4936
https://orcid.org/0000-0002-4346-4484
https://orcid.org/0000-0002-7100-1321


as an existing commensurate frequency relationship, which, in turn, gives rise to important coupling and
energy exchange between the internally resonant modes. It is also known as favouring the appearance of
phononic frequency combs, see e.g. [11, 72].

In [22], the �rst experimental evidence for a phononic frequency comb is reported. In particular, through
the intrinsic coupling of the driven phonon mode with a subharmonic mode, the authors generated a phononic
frequency comb. Other works in the same direction con�rmed the �nding; for example in [64, 65], focusing
on a piezoelectric resonator, a frequency comb based on nondegenerate parametric pumping is studied in
depth. Furthermore, in [7] a tunable resonator using a suspended MoS2 monolayer is employed to generate
frequency combs.

Despite several works present experimental evidences of phononic frequency combs in MEMS devices,
only few contributions focus on the modelling of these and other nonlinear phenomena [33,34,44,49,67,80].

Most of these works utilize structural theories for beams and analytical expressions for electrostatics.
However, it has been recently shown [92] that even for simple beam-like structures a quantitative agreement
with experiments is di�cult to achieve. As a consequence, the main aim of this investigation is to propose
a general technique, applicable also to complex and realistic MEMS, for which simpli�ed theories are not
applicable.

To simulate a full order model, i.e. Finite Element Models, a number of numerical methods are available.
These approaches represent an appealing alternative to analytical models, that exploit simpli�ed beams
and shells structural theories, whose applicability to complex MEMS devices is limited [53,62]. Despite the
versatility of full order models, the computational burden remains the major drawback even using highly-
e�cient methods like Harmonic Balance techniques or shooting procedures [69]. Consequently the creation
of fast, a-priori, reliable and nonlinear multiphysics tools for dynamic simulation, would represent a ground-
breaking milestone in MEMS design and testing [37,43,77].

MOR techniques allow in principle to reduce the full-order model to a few degrees of freedom system, thus
signi�cantly lowering the computational cost. Di�erent strategies that make use of linear normal modes as
an optimal projection basis upon which the equations of motion can be reduced are actually routinely applied
in linear problems arising from vibratory systems like MEMS. However, their extension to nonlinear dynamic
problems is still an open issue that is attracting an increasing attention from the scienti�c community. In
general and as done for example in [26,84], one can distinguish between linear and nonlinear techniques for
model order reduction.

Linear ROMs are typically Galerkin projections onto low-dimensional linear subspaces. Among this class
of methods, one of the simplest solutions is provided by the STi�ness Evaluation Procedure (STEP) [58],
which uses a selection of linear eigenmodes to compute the coupling coe�cients. In order to determine all
the coupling terms, the STEP method requires identifying and considering all the high-frequency modes
[24, 87], e.g. axial and lateral contraction in beams, thus making its application to 3D FEM models very
critical. Such modes are indeed di�cult to identify and compute without a deep a-priori knowledge of the
structural behaviour of the system under study. Nevertheless, among Linear ROMs, the system eigenmodes
are not the only choice for the identi�cation of subspace bases. A valid alternative is represented by Proper
Orthogonal Decomposition (POD) methods that generates the linear basis through a data-driven approach.
Subspace bases are built from data obtained through simulations of a limited amount of con�gurations of
the system by optimizing their orientation to better �t the curvatures of the nonlinear manifold underlying
the dynamics [2, 3, 45].

Among the nonlinear ROMs available so far in the literature, one can mention the quadratic manifold
built from modal derivatives [42, 71], that takes into account the amplitude dependence of mode shapes
and eigenfrequencies. However, since the nonlinear mapping de�ned in that case is by de�nition velocity-
independent, this approach is limited to moderate transformations and apply only in presence of su�cient
slow/fast separation between the slave and master coordinates [39,84,88]. Another class of nonlinear ROMs
that deserves attention is represented by the methods based on the concept of Nonlinear Normal Mode (NNM)
�rstly proposed by Rosenberg [70]. A NNM has been �rstly de�ned as a synchronous vibration of the system
and then generalized by the notion of invariant manifold [75,81�83] and spectral submanifold [38,66]. Despite
the generation of ROMs based on the concept of NNM has been proposed for both small systems with few
degrees of freedom (dofs) and complex structures involving inertia and geometrical nonlinearities [63,89], its
extension to multiphysic problems (e.g. electromechanics in MEMS) has not been addressed yet, and poses
important computational challenges.
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The implicit condensation (IC) approach is a versatile method that can be used in a non-intrusive
manner to derive e�ciently accurate ROMs when a small number of master modes is needed [21, 41, 60].
It is a nonlinear method in the sense that the nonlinear relationship between the coordinates is deduced
from a stress manifold built by applying series of static loads. This method has been recently tailored for
MEMS structures exhibiting damping, geometric and electrostatic nonlinearities. In particular, a very good
agreement between experiments and numerical predictions has been shown in [92] for two Double-Ended-
Tuning-Fork resonators electrostatically actuated according to their �rst bending mode and in [27] for a
MEMS gyroscope test structure exhibiting 1:2 internal resonance.

In this work, we take a step further by applying the proposed simulation technique to design a MEMS
arch resonator exhibiting a 1:2 internal resonance leading to a phononic frequency comb.

MEMS Arch resonators have been extensively studied in the literature e.g. [1,35,36] and theoretical and
experimental analyses on 1:2 internal resonance are available as well [25,32,51,74,90]. Nevertheless only few
applications target their numerical simulation and focus on the 1:2 internal resonance as a way to generate
a frequency comb [44]. In particular, the analytical results presented in [27] and the preliminary numerical
experiences reported in [25], are deepened to demonstrate that the proposed ab-initio simulation process
allows predicting in real-time the complex nonlinear dynamics of MEMS resonators and at the same time
guides the electro-mechanical design. Interestingly, the ROM is obtained directly from the FE model in
a non-intrusive manner, without any tuned parameter �tted from the experiments, and provides excellent
predictions when compared to experiments, underlying the accuracy of the method.

The paper is organized as follows: in Section 2 the MEMS arch resonator mechanical design is discussed
together with the electrostatic actuation/readout scheme, while the electromechanical IC ROM is introduced
in Section 3. Experimental data measured on the fabricated MEMS arch resonator are reported in Section 4 in
comparison with numerical results obtained by solving the IC ROM through di�erent techniques. Conclusions
are �nally reported in Section 5.

2 Arch Resonators

To guarantee the activation of the 1:2 internal resonance able to generate phononic frequency combs by
design, we optimized the geometry of a MEMS resonator starting from the topology reported in Fig. 1. An
electrostatically actuated MEMS arch resonator is indeed chosen as a very promising candidate thanks to the
simple geometry and the strong nonlinear dynamic behaviour. In particular, the asymmetric shape of the
arch guarantees non-vanishing quadratic contributions in the elastic force, the clamped-clamped condition
is responsible of cubic terms, while the parallel-plate scheme employed for the electrostatic actuation and
readout provides electrostatic nonlinearities (see Section 3.3).

The arch resonator has been fabricated with the Thelma process of STMicroelectronics [9] and is made
of polysilicon, with E = 167 GPa, ν = 0.22 and ρ = 2330 kg/m3. It consists of two curved parallel clamped-
clamped beams coupled through a vertical rigid connection of length 27µm and in-plane thickness of 10 µm.
Each beam has a cross-section of 5µm x 24µm, a recti�ed length of 532µm and is suspended with respect to
the substrate through the two lateral anchors.

To guarantee electrostatic actuation and readout, �xed electrodes are also properly designed, as shown
in Fig. 1. At rest, the distance between the MEMS arch resonator and the �xed electrodes is equal to 1.8 µm
according to fabrication constraints. When a voltage di�erence is applied between the MEMS resonator and
the �xed electrodes, an electrostatic force is generated. Depending on the frequency of the applied voltage
and on the employed polarization scheme, it is possible to actuate the arch mechanical modes reported in
Fig. 2.

As an example, the polarization scheme reported in Fig. 1b is used to actuate the �rst �exural mode of
the resonator (Fig. 2a). A time varying bias voltage VAC sinωt is imposed on the drive electrodes (colored
in green in Fig. 1b), while the mechanical structure (colored in blue in Fig. 1b) is kept at a constant VDC
voltage. Sense electrodes (colored in red in Fig. 1b) are grounded to allow for the readout, while tuning
electrodes (colored in light blue in Fig. 1b) are kept at voltage VT to shift the resonance frequency of the
excited mechanical mode through the electrostatic softening e�ect [8]. Finally, dummy electrodes (colored in
orange in Fig. 1b) are kept at the same DC voltage of the MEMS arch resonator. The numbering associated
to the di�erent coloured portions in Fig. 1b will be utilized in Section 3.3 to de�ne electrostatic forces.
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Figure 1: (a) Scanning Electron Microscopy (SEM) image of the MEMS arch resonator fabricated through
the Thelma process of STMicroelectronics. (b) Schematic view of the electrostatic actuation/detection elec-
trodes: (1) resonator (VDC), (2) tuning electrodes (VT), (3) driving electrodes (VAC), (4) sensing electrodes
(ground) and (5) dummy electrodes (VDC).

In the following, we will focus on the �rst (Fig. 2a) and sixth (Fig. 2f) eigenmodes of the arch resonator
whose natural frequencies are estimated through a Finite Element Method (FEM) modal analysis performed
in COMSOL Multiphysics and read 416.66 kHz and 834.15 kHz, respectively. We will refer to these modes
as the �rst and second in-plane �exural modes of the MEMS, while the mode shown in Fig. 2c is an out-of-
plane �exural mode and the modes reported in Fig. 2b,d,e are all related to localised bending modes of the
curved half-beams. It is worth mentioning that the central clamp between the curved beams has shifted the
anti-symmetric bending mode to much higher frequencies.

Since the natural frequencies of the �rst and second bending modes of the resonator are in a ratio close
to 1:2 by design and tuning electrodes can be exploited to slightly modify the ratio as desired through the
electrostatic softening e�ect, the 1:2 internal resonance between the �rst and the second bending modes can
be easily activated for reasonable amplitudes of the drive voltage as demonstrated by the authors in [93].
Di�erently from [93], we are here able to activate the phononic frequency comb for speci�c combinations of
the actuation voltages, thanks to the proper design of the MEMS arch resonator and guided by the proposed
ROM technique.

3 Modelling strategy

In order to develop and validate a general ab initio procedure, we start from a fully 3D FEM discretization of
the MEMS without resorting to structural theories or semi-analytical approximations. The proposed method
is a speci�c form of the implicit condensation (IC) approach [54, 55] which has been recently validated for
MEMS applications in [21, 27, 92]. The underlying assumption is that it is possible to describe the steady-
state non-linear oscillation of a resonator as a combination of few low-frequency master modes. In the case
under study, the two master modes are the �rst and second bending modes previously discussed.

The speci�c limitations of the IC technique have been deeply analysed in [76,84] and are twofold. First,
only moderate transformations can be addressed, meaning that inertia nonlinearities cannot be included.
This implies, for instance, that IC in the proposed form cannot be applied e.g. to micromirrors in large
rotations [63], nor to cantilevers with large tip de�ections. Secondly, a slow/fast decomposition of the
system is required, which means that the active slave coordinates should have eigenfrequencies well above
those of the master coordinates. If these assumptions are respected, the IC technique is powerful and can be
readily generalised to multiphysics problems, as discussed in the following sections. Interestingly, it can be
used in a non-intrusive manner with any �nite element code, and it gives good results when a small subset
of master modes are selected (typically one or two). On the other hand, the generalization of the method to
larger number of master modes comes with computational and accuracy issues.
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Figure 2: Eigenmodes of the MEMS arch resonator shown in Fig. 1. The contour of the normalized displace-
ment �eld is shown in colour. Eigenmodes a) and f) have frequency ratio close to 2 and are coupled through
the internal resonance of interest in this investigation.

3.1 Training phase

Let ψi(x) denote the non-dimensional linear modal shape functions of the master modes, mass normalized
according to: ∫

Ω0

ρψi(x) ·ψj(x) dΩ = Mδij , (1)

where M denotes a reference mass that is set to unity in all the numerical experiments but helps making
explicit the consistency of units.

In a �rst training phase, a stress manifold is built by statically forcing the structure with body forces
per unit volume ρF(x) = ρ(β(1)ψ1(x) + β(2)ψ2(x)) where β(i) are load multipliers (with the dimensions of
an acceleration) of the i -th mode, similarly to what proposed in [54]. It is worth stressing that the space of
these body forces represents a notable approximation of the space of inertia forces that near resonance are
essentially in equilibrium with elastic internal stresses. For this speci�c reason the resulting stress manifold,
as discussed next, proves very accurate near the resonance peak.

Once the body forces are de�ned, several static non-intrusive non-linear analyses are run with any FEM
code to sample the (β(1), β(2)) space through:∫

Ω0

P[u] : ∇Tw dΩ =

∫
Ω0

ρβ(j)ψj(x) ·w dΩ, ∀w ∈ C(0), (2)

whereP is the �rst Piola-Kirchho� stress and equilibrium is imposed in the reference con�guration. The range
of the load-multipliers β(j) is suitably prescribed so as to cover a prede�ned range of expected displacements
in the structure. For instance, considering the resonator shown in Fig. 1, a fraction of the gap between the
resonator beams and the electrodes will be covered.

Let u(β,x) denote the solution to Eq. (2) for a given β = (β(1), β(2)). In the linear limit u(β,x) is only a
combination of the modal shapes, but as the load increases it also contains contributions from other modes,
typically high frequency axial or striction modes which relax signi�cantly the elastic energy. The computed
stresses P[u] de�ne a manifold P. We remark that, setting w = ψi in (2), we have:

Mβ(i) =

∫
Ω0

P[u(β,x)] : ∇Tψi(x) dΩ, (3)
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thanks to the ortho-normality properties of the linear modal basis. In order to set up the necessary tools for
the weak form of equilibrium, we �rst de�ne the generalized modal coordinates qi, with the dimensions of a
displacement, as:

Mqi(β) =

∫
Ω0

ρu(β,x) ·ψi(x)dΩ i = 1, 2, (4)

and invert the map q(β) sampling the β space to obtain a discrete version of the function β(q). Invertibility
is a reasonable assumption with mild non-linearities and, practically, the inversion is performed numerically
through �tting procedures. Consequently a continuous version of the stress manifold can be de�ned. In our
case we adopt a cubic interpolation for β(i) as follows:

β(i)(q1, q2) =c
(i)
0 + c

(i)
1 q1 + c

(i)
2 q2 + c

(i)
3 q21 + c

(i)
4 q1q2+ (5)

c
(i)
5 q22 + c

(i)
6 q31 + c

(i)
7 q21q2 + c

(i)
8 q1q

2
2 + c

(i)
9 q32 ,

where the coe�cients are collected in Table 1 and a visualization of the modelled manifolds is presented in
Fig. 3. In particular, the linear and constant components of the β(i)(q1, q2) are removed in Fig. 3 b) and d)

in order to provide a clear view of the nonlinear contributions β
(i)
NL

.
Coe�cients in Table 1 reveal some interesting properties of the structure under study. First, important

quadratic coe�cients are present, as a consequence of the curvature of the structure. Second, these nonlinear
coe�cients arise from the mechanical part of the structure which should derive from an elastic potential,

such that for example, the quadratic coe�cients should ful�l the two following relationships: c
(1)
4 = 2c

(2)
3 ,

c
(2)
4 = 2c

(1)
5 , and the cubic coe�cients should be related through: c

(1)
7 = 3c

(2)
6 , c

(2)
7 = c

(1)
8 and c

(2)
8 =

3c
(1)
9 [58, 87]. One can notice that these �ve relationships are almost perfectly veri�ed by the IC procedure,

despite not being imposed directly, highlighting that the method recovers important features of the internal

forces. Finally, it is important to remark that between the six quadratic coe�cients, two of them �namely c
(1)
4

and c
(2)
3 � are particularly relevant in the case of 1:2 resonance, since being related to second-order resonant

monomials [25, 83]. It is interesting to remark in particular that c
(2)
3 has not a large value, however, as it

will be shown next, this value is absolutely non negligible and plays a fundamental role in the dynamics of
the 1:2 internally resonant system.

It should be remarked that functions β(i)(q1, q2) could be �tted with other interpolating function, like e.g.
splines. Furthermore, the polynomial only has cubic order because the displacement levels, limited by the
electrostatic pull-in e�ects, see Sect. 3.3, make higher-order contributions negligible. It is hence apparent
that the IC method works at best and in great e�ciency when only few clearly identi�ed master modes are
interacting. In the presence of several master modes the IC method might rapidly lose its appeal.
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Table 1: Coe�cients of the mechanical nonlinear manifold numerically computed for the two master modes.

Numerical values of the c
(i)
j coe�cients are consistent with qk expressed in [µm] and β(i) in [µm/µs2].

β(1) [µm/µs2] β(2) [µm/µs2]
(i = 1) (i = 2)

c
(i)
0 -9.72 10−9 -1.34 10−7

c
(i)
1 6.85 -2.23 10−6

c
(i)
2 1.08 10−6 27.47

c
(i)
3 9.55 10−2 -5.52 10−2

c
(i)
4 -0.11 0.20

c
(i)
5 9.98 10−2 0.40

c
(i)
6 3.62 10−4 -4.86 10−4

c
(i)
7 -1.46 10−3 3.00 10−3

c
(i)
8 3.00 10−3 -7.51 10−3

c
(i)
9 -2.52 10−3 1.01 10−2

Figure 3: Nonlinear β(i) manifolds for the two master modes. Figs. a) and c) plot the complete manifolds

while in Figs. b) and d) only the nonlinear contributions are highlighted, setting c
(i)
0 = c

(i)
1 = c

(i)
2 = 0.
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3.2 Generation of the ROM

At this point, following a standard practice, we impose the weak form of the equilibrium condition (Principle
of Virtual Power) for two speci�c choices of the test velocity �eld, i.e. w = ψi:∫

Ω0

ρü·ψi dΩ+

∫
Ω0

P[u] :∇Tψi dΩ =

∫
S0

fe ·ψi dS, i = 1, 2, (6)

where fe are electrostatic forces.
In order to express all the terms as a function of the master coordinates q, we now introduce several

simpli�cations.

� We assume that the tensor P[u] is constrained to evolve, during the oscillations, over the stress manifold
P as a function of β and hence of q. Using Eq. (3) the second term in Eq. (6) simpli�es to βi(q).

� Inertia forces are taken as a combination of linear modes:

ρü(x) = ρψ1(x)q̈1(t) + ρψ2(x)q̈2(t).

It is worth stressing that this statement limits the applicability of the approach to moderate transfor-
mations, as it rules out the possibility to describe e.g. large rotations (micromirrors) or large de�ections
of cantilever beams.

� We �nally assume that also the electrostatic forces can be expressed in terms of q, as commented in
detail in the next section, and we introduce the load participation factors:

Fi(q) =

∫
S0

fe(q) ·ψi dS. (7)

As a consequence, Eq. (6) yields a ROM in the form of a system of two nonlinear di�erential equations:

Mq̈i +Mβi(q) = Fi(q), i = 1, 2. (8)

As anticipated, the reference mass M is only needed to correctly specify the dimensions of all the terms,
and it will henceforth set to unity.

3.3 Electrostatic forces

Since we aim at developing a numerical technique for moderate transformations, similarly to what proposed
for inertia forces, we compute the manifold of electrostatic forces assuming that, for this speci�c task, the
displacement �eld can be approximated by a linear combination of modes:

u ≃ ψ1(x)q1(t) +ψ2(x)q2(t),

i.e. we assume that the error will have a minor impact on the electrostatic forces despite being critical for
the stress �eld. The e�cient generation of the manifold still remains a complex task. At present the most
performing numerical tool is represented by integral equations suitably accelerated e.g. with fast multipole
methods that have been intensively investigated in the last decades [19].

In our applications the potentials of the conductors Ωi are imposed. According to the numbering of
conductors introduced in Fig. 1, Φ1 = Φ5 = VDC, Φ2 = VT, Φ3 = VAC sinωt, Φ4 = 0 and the distribution of
charge surface density σ on the conductors is obtained solving the �rst-kind integral equation:

Φ(x) =

∫
S

1

4π

1

r

σ(y)

ε0
dS, ∀x ∈ S, (9)

where σ denotes the unknown surface charge density, S is the collection of the surfaces Si and the data Φ
has been de�ned such that Φ = Φi on Si. It is worth recalling that the electrostatic force per unit surface fe
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exerted on the conductor at point x of unit normal vector n is directly associated to the main unknown of
the problem:

fe = σ2/(2ε0)n. (10)

The second major bene�t of the approach is that, since only the conductor surfaces need to be discretized,
it is straightforward to repeat the analysis following the motion of the device, assuming that the dynamics
of electromagnetic forces is much faster than the frequency of oscillation of the resonators.

For a given q, let σ̃i(x,q) denote the charge distribution corresponding to a �ctitious problem where a
unit potential is imposed only on Ωi: Φi = 1 and Φj = 0, j ̸= i. Each �eld σ̃i(x,q) is the solution of (9) with
the speci�ed potentials. Thanks to the linearity of Eq. (9) at �xed q, the total charge on every conductor
can be expressed as:

σ(x, q) =

5∑
i=1

σ̃i(x, q)Φi. (11)

The nonlinear load participation factor (7) is thus:

Fi(q) =

∫
S1

σ2

2ε0
ψi · ndS =

5∑
m,n=1

(∫
S1

σ̃mσ̃n

2ε0
ψi · ndS

)
ΦmΦn, i = 1, 2, (12)

where the integration is limited to the surface of the resonator as ψi vanishes elsewhere.
Since typically VAC is much smaller than VDC and VT, terms in V 2

AC
are neglected and hence

Fi(q) = f
(i)
DD

(q)V 2
DC + f

(i)
TT

(q)V 2
T + 2f

(i)
DT

(q)VDCVT + 2f
(i)
DA

(q)VDCVAC sinωt, (13)

where also the term f
(i)
AT

VACVT has been considered negligible due to the speci�c topology of the resonator.

In the present case a cubic interpolation for f
(i)
αβ(q) is selected and the computed coe�cients, with the same

ordering as in Eq. (5), are collected in Table 2, while the corresponding manifolds are illustrated in Fig. 4.
Also in this case, due to the limited displacements at hand, we opted for a polynomial expression truncated
at third order.

Table 2: Coe�cients of the electrostatic nonlinear manifold numerically computed for the two modes under

study. Numerical values of the c
(i)
j coe�cients are consistent with qk expressed in [µm] and f

(i)
αβ/ϵ0 in [µN

µm/(V 2 pF)]

f
(1)
DD

/ϵ0 f
(1)
DA

/ϵ0 f
(1)
DT

/ϵ0 f
(1)
TT

/ϵ0 f
(2)
DD

/ϵ0 f
(2)
DA

/ϵ0 f
(2)
DT

/ϵ0 f
(2)
TT

/ϵ0
(i = 1) (i = 2)

c
(i)
0 96.08 -91.81 -94.50 93.94 -41.01 -202.73 34.82 -34.79

c
(i)
1 21.11 -5.52 -10.27 10.27 8.34 -6.05 3.88 -3.89

c
(i)
2 8.51 -6.10 3.80 -3.80 37.76 -17,62 -1.63 1.63

c
(i)
3 1.28 -0.38 -1.26 1.26 -0.51 -0.32 0.50 -0.50

c
(i)
4 -1.06 -0.60 1.05 -1.05 0.41 -1.05 -0.46 0.46

c
(i)
5 0.25 -0.51 -0.28 0.28 -0.25 -1.62 0.13 -0.13

c
(i)
6 0.14 -0.02 -0.11 0.11 -0.02 -0.01 0.04 -0.04

c
(i)
7 -0.06 -0.04 0.13 -0.13 0.16 -0.05 -0.06 0.06

c
(i)
8 0.16 -0.05 -0,06 0.06 0.19 -0.11 0.03 -0.03

c
(i)
9 0.059 -0.03 0.01 -0.01 0.25 -0.12 -0.01 0.01
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3.4 Current equation

The IC ROM allows computing the displacements of the structure under given loading conditions. Neverthe-
less, the MEMS device here considered is near-vacuum encapsulated and direct displacement measurements
are not available. Experimental data are on the contrary provided in the form of current I �owing out of the
sense electrodes (Ω4). However, following [92], the current can be expressed in terms of modal coordinates
as:

I(q) =

2∑
i=1

3∑
n=1

(∫
S1

σ̃4σ̃n

2ε0
ψi · ndS

)
Φn q̇i, (14)

which can be simpli�ed retaining the only meaningful contribution from VDC:

I(q) =

2∑
i=1

(∫
S1

σ̃4σ̃1

2ε0
ψi · ndS

)
VDC q̇i ≃

2∑
i=1

f
(i)
DA

(q)VDC q̇i. (15)

Eq.(15), known as current equation, will thus be used in the following sections to transform the output of
the IC ROM simulations and perform direct comparisons with experimental data.

3.5 Quality factor

Dissipation has been neglected in the derivation of Eq. (8) and is now added at the level of the Reduced
Order Model considering di�erent sources [46,91].

In slender MEMS with minimum thickness in the order of few microns the spread of elastic energy
through the anchors (i.e. anchor losses) and surface e�ects can be safely neglected [5,18] and only two major
independent contributions need to be accounted for: thermoelastic dissipation and �uid damping. The
overall quality factor Q, related to the ratio of the maximum stored energy over the dissipation in one cycle
is thus expressed as the summation of two independent contributions:

1

Q
=

1

Q�uid

+
1

QTED

, (16)

where Q�uid refers to the dissipation introduced by the interaction of the gas with the MEMS moving parts,
while QTED refers to the frequency-dependent thermoelastic quality factor. In our application the device
is encapsulated in near vacuum at a nominal pressure of 70 mbar in Argon, yet �uid damping cannot be
neglected. In these conditions the gas �ow develops in the so called free-molecule regime and its e�ects can
be computed through the integral equation model proposed in [20] and extended in [17] to the high working
frequencies typical of the resonators of interest herein. The resulting quality factor values are reported in
Table 3. It is worth stressing that in the free molecule �ow Q�uid is proportional to the inverse of the package
pressure which in principle is �xed by the fabrication process at the bonding level, but in practice is strongly
a�ected by technological spreads. Since the displacements of the resonator are limited, we ignore here the
dependence of Q�uid on the actual con�guration. See however [92] for further comments on this issue.

Table 3: Quality factor numerical predictions and experimental estimates

mode Q�uid QTED Q (simulations) Q (experiments)

1 2740 103248 2699 2860±150
2 7522 26408 5855 4799±200

The frequency dependent thermoelastic quality factor QTED refers to damping induced by the process
in which part of the vibration energy of the resonator is dissipated into thermal energy, through irreversible
heat conduction induced by elastic vibrations [5, 40]. This contribution is broadly studied in the literature
on MEMS and can be evaluated using standard numerical approaches [5] implemented in several commercial
codes and will not be discussed herein. The thermal properties considered in the calculations are reported
in Table 4 and the quality factor are reported in Table 3 for the two master modes. It can be appreciated, in
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Table 4: Thermal properties of the polysilicon

Thermal Expansion Thermal Conductivity Heat capacity Reference Temperature [K]
[◦C−1] [Wm−1◦C−1] [J/K] [K]

3.029462 · 10−6 144.905 708.855 298.15

particular, that thermoelastic damping has non-negligible e�ect on the second bending mode. The aforemen-
tioned values can be compared with experimental estimates of the quality factors of the system. This can
be done resorting to the approximate method developed in [13] for nonlinear Frequency Response Functions
(FRFs) with Du�ng-like behaviour. Performing this procedure on di�erent points of the FRF reported in
Fig. 5 (see Section 4 for the experimental setup details), one obtains the values reported in the last column of
Table 3. Considering all the uncertainties a�ecting the encapsulation pressure and the material properties,
in the following we adopt the intermediate values 2800 and 5200 for the �rst and the second master modes,
respectively.

3.6 Integration of the �nal ROM

The resulting nonlinear system describing the dynamics of the arch resonator biased at VDC and tuned with
a potential VT eventually reads:

q̈1 +
ω01

Q1
q̇1 + β1(q)− f

(1)
DD

(q)V 2
DC − 2f

(1)
DT

(q)VDCVT − f
(1)
TT

(q)V 2
T = 2VDCVACf

(1)
AC

(q) sin(ωt), (17)

q̈2 +
ω02

Q2
q̇2 + β2(q)− f

(2)
DD

(q)V 2
DC − 2f

(2)
DT

(q)VDCVT − f
(2)
TT

(q)V 2
T = 0, (18)

where some simpli�cations of the electrostatic load are included. The VDCVAC term is only meaningful for
the lowest frequency oscillator, as ω ≈ ω01, while it is neglected in Eq. (18) since ω02 ≈ 2ω. Furthermore,
the V 2

AC
terms are neglected as VDC ≫ VAC in the applications. The only exception is represented by the

preliminary uncoupled simulation of the FRF of the second mode in Fig. 5c)-d) where ω ≈ ω02 and the

2VDCVACf
(2)
AC

(q) sin(ωt) forcing term must be included in Eq. (18). The aforementioned simpli�cations are
customary for MEMS as they are characterized by sharp peaks in the FRFs due to the high quality factors
involved.

To enable a direct comparison with the output of experiments, the response obtained from Eqs. (17)-(18)
in terms of modal coordinates is transformed in terms of current �owing out of the sense electrodes, using
Eq. (15).

In standard operating conditions we are interested in the steady-state periodic solutions and a number of
available numerical packages can be fruitfully applied to generate a rich portrait of the dynamics performing
continuation of solutions with bifurcation analysis. Alongside the well established Auto07p [16], a Fortran

package that uses collocation methods, an alternative common choice is Matcont, a Matlab numerical con-
tinuation tool for the interactive bifurcation analysis of dynamical systems [15]. Among others, one can
mention: Manlab, a Matlab package that implements an Harmonic Balance (HB) technique coupled with the
Asymptotic Numerical Method developed in [30,31]; Nlvib that also exploits HB methods [48]; COCO based
on collocation approaches [12]. Another excellent package is BifurcationKit [86], an emerging toolkit for
continuation methods in ODEs and PDEs. These packages usually provide the ability to distinguish between
stable and unstable branches, locate bifurcation points and follow alternative branches of the solution. We
stress that the same versatility is di�cult to achieve with a FOM. Indeed, even if a HB formulation with
continuation has been recently proposed in [14, 62] for large scale problems, computing times are not com-
patible with their application at the design or prototyping levels. In the upcoming sections, unless di�erently
speci�ed, the analysis of the steady state periodic solutions and their stability is performed with Manlab.
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Figure 4: Nonlinear electrostatic force manifolds for the two master modes, �rst bending modes in column
1 and second bending mode in column 2.
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Figure 5: Frequency response of the MEMS arch resonator around the frequency of the �rst �exural mode in
terms of (a) amplitude and (b) phase for VDC = 2, 3, 4V, VT = 0V and VAC = 177.8mV. Frequency response
of the MEMS arch resonator around the frequency of the second bending mode in terms of (c) amplitude
and (d) phase for VDC = 4V, VT = 4V and VAC = 79.4mV. Experiments are reported in dotted lines and
numerical predictions in continuous lines.
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and downward (blue) sweeps have been slightly shifted to improve readability
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4 Experimental campaign and simulations

This section is devoted to the comparison between the a-priori predictions provided by the IC method and
experiments. Since the design aims at controlling both internal resonance and quasi-periodic regimes, the
two aspects are investigated separately using dedicated experimental setups.

4.1 Periodic response and internal resonance

A standard probe station has been employed to perform the experiments. The resonator is excited through
an AC signal generated by the Network Analyzer Agilent 4395A while DC voltages (VDC, VT) are provided
by two power suppliers: Yokogawa GS 610 and Agilent E3631A. The output current, measured through
the probe connected to the sensing electrodes, is ampli�ed and converted to voltage through the Stanford
Current Pre-Ampli�er SR570 and it is readout by the Network Analyzer. Finally, the data are post-processed
in Matlab.

A preliminary characterisation of the MEMS arch resonator is performed by analyzing the frequency
response of the �rst and second bending modes (Fig. 5) for limited actuation levels, calibrated in order not
to activate the internal resonance. The dynamic response of the arch resonator around the natural frequency
of the �rst mode is reported in Figs. 5 a)-b) in terms of amplitude and phase for VT = 0V, VAC = 177.8mV
and VDC = 2, 3, 4V. A standard softening response is obtained, as expected, with an increasing frequency
shift at larger VDC.

It is worth stressing that in these tests the intensity of the measured output current is very limited, i.e.
in the order of few nA, and a large noise level due to wires, instrument limitations and non-ideal connection
between probes and MEMS-pads is expected. In particular, the response for VDC = 2V is very noisy far
from resonance, as the oscillation amplitudes are low and the noise of the experimental setup overcomes the
system sensitivity.

For this reason the phase has been plotted only near resonance which is the frequency range of interest.
Numerical predictions obtained by solving Eqs. (17)-(18) for the aforementioned voltages levels are also
reported in Fig. 5 using continuous lines. A very good agreement between experiments and numerical
predictions is found thus providing a strong preliminary validation of ROM adopted. Figs. 5 c)-d) display
the response of the MEMS resonator when excited near the second bending mode, for VDC = 4V, VT = 4V
and VAC = 79.4mV.

A second phase of the experimental campaign has been devoted to investigate the 1:2 internal resonance
between the two bending modes. This is achieved by: (i) selecting a proper combination of the tuning voltage
VT and of the bias voltage VDC applied on the resonator and (ii) increasing the AC signal applied on the
driving electrodes. The former acts on the ratio between the natural frequencies of the two modes under
study in order to bring it su�ciently close to 2. The latter activates the nonlinear behaviour of the arch
resonator, thus promoting the coupling between the two modes of the structure. In order to allow a better
understanding of the plots, in Fig. 6 we �rst present a typical pattern of the FRF for the amplitude of the
�rst mode in presence of a 1:2 IR.

The shape of the frequency response is typical when the 1:2 internal resonance is excited, and is organized
around two peaks corresponding to two di�erent coupled solutions, as highlighted for example in [25]. Each
peak corresponds to the contribution of one of the two existing coupled solutions. The two backbones that
underlie the dynamics of the FRF reported in Fig. 6 onset from the frequency ω01 and ω02/2.

In this campaign, experiments are run in frequency control with an upward sweep and cannot follow the
unstable branches delimited by Saddle Node (SN) bifurcations.

When considering the left-hand part of the curve, i.e. the softening peak, the measurement point follows
the lower part of the branch and jumps to the upper part at the SN point. When considering the right-hand
part of the curve, i.e. the hardening peak, the forward frequency sweep should in principle allow to travel
on the upper part of the bifurcated branch up to the peak. Nevertheless, the expected experimental jump is
always found before the theoretical SN point. This is a classical feature in such problems, which is due to the
fact that the basin of attraction of the upper solution is dramatically shrinking when approaching the SN
point. Consequently, the system is very sensitive to non-idealities, e.g. noise or parasitic capacitances coming
from the set-up, e.g. wires or instruments, are always present and hardly controllable in a deterministic way
with the standard set-up utilized.
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Tracking the response beyond the critical bifurcation regime is in principle possible through variable-
phase feedback loop similar to the one proposed in [92], but the implementation of such a control scheme
is outside the scope of the present work. On the contrary, the numerical solution of the ROM is performed
with continuation techniques allowing to reproduce both stable and unstable branches.

Figs. 7-9 present, in terms of both current amplitude and phase, the frequency response of the arch
resonator measured for di�erent combinations of VDC, VT and VAC. Note that only the upward frequency
sweep is reported for the sake of clarity. As anticipated, starting from low frequencies and following the
upward sweep, the experimental data present a jump to the upper branch at the �rst SN point, while they
should follow the second peak before falling to the lower branch. Continuous lines illustrate numerical
predictions showing a remarkable accuracy. In Fig. 7 the actuation level VAC is varied while keeping VDC =
7V and VT = 5V �xed. In these conditions the amplitude of the motion increases and the frequency peaks
become sharper and clearly visible. Regarding the bifurcation portrait, both simulations and experiments
highlight the existence of the di�erent stable and unstable branches delimited by the saddle-node points.
Furthermore, with a VAC > 446.7mV, Neimark-Sacker bifurcation points appear in between the two peaks.
Here the system response becomes quasi-periodic and further insight will be provided in what follows. The
experimental measurements with the current setup cannot display the QP regime because the output signal
is �ltered assuming that only the forcing frequency is present. An accurate investigation of the QP regime is
performed in Sect.4.2 recording the output signal in time. It is also worth noticing that for VAC = 446.7mV
four NS points are identi�ed, while on the VAC = 562.3mV curves only two exist. This is a consequence
of the peculiar shape of the so called NS boundary region, analysed in [25] and shown in Fig. 16 of the
Appendix A, having two local minima.

In Fig. 8 VDC = 10V and VAC = 316.2mV are kept �xed while VT is varied highlighting the e�ect of the
tuning electrode that is here used to control the frequency ratio of the coupled modes. In fact, as one may
infer from Eqs. (17) and (18), tuning electrodes allow controlling the eigenfrequency mismatch through the
variation of the bias di�erence |VT − VDC| with respect to the resonator. When VT = 0V the frequencies
have a mismatch that reduces the interaction. With VT = 9V, i.e. VDC − VT = 1V, frequencies are close
enough to provide a strong IR and small NS regions are detected by the numerical approximation. Finally,
for VT = 15V, i.e. VT − VDC = 5V, the frequency mismatch starts increasing again; the IR e�ects are still
present but the NS regions disappear. An analysis of the evolution of the ratio between the eigenfrequencies
as a function of the bias and tuning potentials is reported in Appendix B.

In Fig. 9 VT = 5V and VAC = 316.2mV are kept �xed while VDC is varied. The VDC parameter strongly
a�ects the response as it directly controls the forcing and induces an electrostatic shift on both modes. The
results reported highlight the outstanding capabilities of the IC method as a tool to design devices tailored
to display internal resonance behaviour.
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4.2 Quasi-periodicity and Frequency Combs

As mentioned in previous sections, the system considered might encounter Neimark-Sacker bifurcations
along the FRF and, more speci�cally, due to the 1:2 internal resonance a Quasi-Periodic (QP) regime can
be observed under certain conditions. As well known from classical nonlinear dynamics [59], and as recently
investigated e.g. in [25], when the 1:2 internal resonance is present and proper conditions of forcing, damping
and frequency mismatch are veri�ed, Neimark-Sacker (NS) bifurcations can be observed in between the two
frequency peaks of the response. As a consequence, the periodic response becomes unstable. Thanks to the
design of the arch resonators and the IC ROM Eqs. (17)-(18), such regime can be predicted and some of its
features reproduced.

Figure 10: FRF for the mid-span displacement uMID. Numerical solution of the IC model for VDC =
7V, VT = 5V and VAC = 0.562V. The red line denotes the IC model continuation of periodic solutions.
Bifurcation points of this solution are highlighted by the green star markers for-Saddle Node bifurcations
and by green square markers for NS bifurcations. Time-marching solutions of the IC model are reported
as dot markers in terms of stroboscopic maps at di�erent frequencies. Inside the NS bifurcation region the
continuation of periodic orbits solution and the time marching solution depart from each other. This is due
to the QP regime that onset in such regions as highlighted by the cloud of points given by the stroboscopic
maps.

Let us consider the FRF of the mid-span displacement uMID plotted in Fig. 10. The bifurcation analysis
performed on the IC model reveals two NS bifurcation points. Speci�c algorithms and packages could be
in principle used to perform continuation of di�erent branches [15]. Nevertheless we opt herein for a more
straightforward time-marching solution, obtained with a Runge-Kutta scheme of order 4 and 5. .

In Fig. 10 the Poincaré map of the midspan displacement uMID, is plotted with black dots. Numerical data
are generated by recording the system response, after a transient, at equally spaced time instants tk = t0+kT
with k = 1, 2...n, where T is the external forcing period and t0 is a reference time corresponding, e.g., to a
maximum in the periodic response. Before and after the NS bifurcation points the time marching solution
is perfectly overlapped with the one obtained using the approaches detailed in the previous section, while
inside the QP region the stroboscopic map provides a cloud of points as expected from a non-periodic regime.

The NS bifurcation, sometimes also called secondary Hopf bifurcation, is met when a limit cycle loses
stability with a pair of Floquet mutlipliers crossing simultaneously the unit circle [50]. In these conditions, the
system dynamics bifurcates to a QP regime where the forcing frequency Ω is paired with an incommensurate
frequency ωNS that modulates the system time response. Furthermore, the frequency spectrum of the
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Figure 11: Poincaré sections of the IC model mid-span displacement time histories for VDC = 7V, VT = 5V,
VAC = 0.562V for di�erent frequency values.

system is altered and, instead of presenting only isolated peaks corresponding to the multiples of Ω, also
displays secondary, equally spaced peaks placed around the main ones. This spacing is a consequence of
the combination of Ω with the ωNS multiples. More insight is provided by the 3D stroboscopic map of the
numerical solution represented in Fig. 11, where f is the forcing frequency and uMID, u̇MID are the mid-span
displacement and velocity. The result is a collection of points that can be used to characterise the system
regime: for a �xed f , a single point in the phase space corresponds to a periodic motion; a closed curve
corresponds to a quasi-periodic regime with a single incommensurate frequency; more complex patterns
denote the coexistence of several incommensurate frequencies and a route to chaos [79].

To provide an insight into the behaviour of the system in such regions, we recorded the output signal
in time using an oscilloscope Tektronix MSO 454. An example of experimental measurements of the signal
performed inside the predicted QP region is reported in Fig. 12(a). Due to the measurement noise in the
signal, the typical amplitude modulation expected for a QP regime, and predicted by the IC model in
Fig. 12(b), is not clearly visible and a post-processing is required.

To better analyse these data, we perform a spectrum analysis of experimental data obtained at various
forcing frequencies spanning the region of interest setting VDC = 7V, VT = 5V, VAC = 0.562V, corresponding
to the FRFs of Figs. 7 and 10. The results are collected in Fig. 13. Even though the time signal is noisy,
using su�ciently long time windows to operate the Fourier transform allows us to recover a good accuracy
in the spectrum and to put in evidence the structure of the frequency combs. We notice that, for points
lying outside the NS region predicted by the IC simulation, the response has a sharp peak at the forcing
frequency. Entering into the predicted QP region, frequency combs appear in the spectrum. The spacing
between the peaks varies depending on the forcing frequency and ranges from 103 Hz up to 725 Hz.

Following the branch of QP solutions, the second frequency of the torus ωNS is known to vary with the
parameters (here the forcing frequency), see e.g. [25]. Even though ωNS should change smoothly in the
frequency window, we detect experimentally an irregular pattern, as a consequence of the stability of the
QP solution [52]. This aspect has not been deeply investigated during our experiments as the analysis of
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Figure 12: Experimental a) and simulated b) time history of the normalised signal output considering
VDC = 7V, VT = 5V, VAC = 0.562V and Ω = 416.90 kHz.

alternative states as a consequence of the torus stability is out of the scope of this work.
Numerical frequency combs obtained by solving the IC model through time marching techniques are

reported in Fig. 14. The clear transition from a periodic response with a single sharp peak in the spectrum
to a QP regime with FCs obtained experimentally is indeed well predicted by the ROM model here proposed.
The numerical FC spacing ranges from 125 to 500 Hz and tends to change along the frequency path till
becoming almost chaotic, in satisfactory agreement with experimental data. This behaviour is compatible
with what observed in Fig. 11 where, in a certain range of the forcing frequency, the Poincaré map changes
from a pattern with simple closed curves towards a more complicate one denoting the presence of several
incommensurate frequencies.

Results are further elaborated in Fig. 15. Here we consider the 40 numerical output-signal time histories
used to generate Fig. 11, corresponding to equally spaced forcing frequencies. Their spectral amplitudes are
plotted in Fig. 15a) as a heatmap in the (fFFT, f) plane, where fFFT denotes the FFT component and f the
forcing frequency. Colours correspond to the FFT amplitude values. One can identify the same pattern as in
Fig. 11. Below f ≈ 416.75kHz, the spectrum is characterised by one single peak typical of a periodic regime.
After the onset of the NS bifurcation, the incommensurate frequency adds equally spaced peaks around
the forcing frequency value. Initially the peak spacing is quite large and clear peaks can be identi�ed.
Proceeding further, for f ≈ 416.85:416.95 kHz, some peaks disappear and the spacing progressively reduces.
After f ≈ 416.95 kHz the portrait changes abruptly and additional peaks arise suggesting a more complicate
behaviour possibly associated with the appearance of several incommensurate frequencies.

Such representation allows estimating the trend of the incommensurate frequency fNS reported in Fig. 15b).
Since the FFT resolution is limited by the simulated time-series to ∆f ≈ 20.8Hz and due to di�culties in
identifying peaks position, we plot an average peak value (thick red line) and the maximum-minimum fre-
quency spacing range (grey shaded region). The global trend shows a decrease of the incommensurate
frequency value compatible with the experimental data and a spread after f ≈ 416.95kHz, as previously
highlighted.
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Figure 13: Frequency spectra of the experimental time histories for VDC = 7V, VT = 5V, VAC = 0.562V
and di�erent excitation frequencies. For each spectrum the forcing frequency as well as the comb spacing (if
present) is reported. Frequency peaks are highlighted with bullet markers
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Figure 14: Frequency spectra of the simulated time histories for VDC = 7V, VT = 5V, VAC = 0.562V and
di�erent frequencies. For each spectrum the forcing frequency as well as the comb spacing (if present) is
reported. Frequency peaks are highlighted with circle markers
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Figure 15: a) FFT heatmap with varying excitation frequency. The Power Spectral Density (PSD) of each
FFT is normalized with respect to its maximum so that all the peaks correspond to red regions. The comb
spacing tends to shrink inside the QP region enriching with more than one incommensurate frequency after
a certain value. b) Plot of the incommensurate frequency trend estimated from the FFTs using the average
value encountered (red line). The comb spacing is decreasing along the path. Along the path some dispersion
on the estimated values can be observed and is highlighted by the grey shaded region.

5 Conclusions

This paper presents an electromechanical Reduced Order Model based on the Implicit Condensation ap-
proach, that is able to describe the complex nonlinear dynamics of a MEMS resonator. Importantly, this is
an ab-initio approach in the sense that, starting from general principles, it takes into account the mechanics
of the arch resonator, the electrostatic actuation/readout schemes and the di�erent dissipation mechanisms
without resorting to simpli�ed and problem-dependent semi-analytical approximations. The ROM has thus
been generated from an a priori modelisation, without any need to resort to a �tting procedure to tune some
of its parameter on the basis of experimental measurements.

By comparing numerical simulations and experiments performed on a MEMS arch resonator fabricated by
STMicroelectronics under di�erent operating conditions, we have demonstrated that the ROM model is able
to correctly reproduce the 1:2 internal resonance arising from the interaction of the �rst and second bending
modes of the arch resonator. Moreover, we have brought the simulation technique to an unprecedented level
of complexity by reproducing the phononic frequency comb observed experimentally. The location of the
Neimark-Sacker bifurcations points has been accurately predicted and an in-depth analysis of the quasi-
periodic regime arising from these points has been indeed carried out. Also the simulation of the spacing
between the secondary peaks of the comb has been addressed, showing that the correct trend and range can
be reproduced.

The technique is fairly general and can be applied to a broad family of resonating microstructures
experiencing moderate transformations. It only requires the a-priori identi�cation of the master modes and
can be applied with reasonable computing cost provided that the number of interacting modes is limited.

Thanks to its ab-initio and Reduced Order nature, the proposed simulation approach represents a powerful
tool to support the design process of a new class of complex nonlinear MEMS devices. The intricate nonlinear
dynamics phenomena of such sensors/actuators are indeed very di�cult to predict without simple ROM
models and consequently were avoided by design. The development of re�ned numerical tools is thus expected
to be a key enabling technology for a new family of MEMS devices built with and for nonlinearities that
could potentially revolutionise their applications.

A Comparison with an analytical approach

All the results presented in Section 4 show the potential of the IC method in predicting QP states in MEMS
systems. Nevertheless, an analytical model might be helpful in obtaining a direct control on the nonlinear
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parameters. In the literature many contributions have addressed the topic of internal resonances from
an analytical perspective, including e.g. 1:3 [47] 1:1:2 [78] and 1:2:4 [57] cases. In particular, we discuss
herein the analytical model for 1:2 internal resonance discussed in [25] and we compare its results with the
experiments. The model is given by a set of two nonlinear ODEs representing the two eigenmodes as coupled
oscillators:

q̈1 +
ω01

Q1
q̇1 + k1q1 + k3q1q2 = f1 sin(ωt), (19)

q̈2 +
ω02

Q2
q̇2 + k2q2 + k4q

2
1 = 0, (20)

with qi, i = 1, 2 modal coordinates and the coe�cients ki de�ned as a combination of the coe�cients in
Tables 1 and 2. Referring to the cj coe�cient of each table by means of the notation □cj the values in
Eqs. (19) and (20) are taken as:

k1 = β(1)
c1 − f

(1)
DD,c1

V 2
DC,

k2 = β(2)
c2 − f

(2)
DD,c2

V 2
DC,

k3 = β(1)
c4 − f

(1)
DD,c4

V 2
DC − 2f

(1)
DT,c4

VDCVT − f
(1)
TT,c4

V 2
T ,

k4 = β(2)
c3 − f

(2)
DD,c3

V 2
DC − 2f

(2)
DT,c3

VDCVT − f
(2)
TT,c3

V 2
T

f1 = 2VDCVACf
(1)
DA,c0

.

The analysis of Eqs. (19) and (20) allows tracing the FRCs, but also to address the stability of the system
through the inspection of the Jacobian of the modulation equation. In particular, the NS bifurcation points
can be identi�ed and their envelope, i.e. the NS boundary curve, can be de�ned, see [25] for the analytical
expressions. Along such a curve, it is possible to provide an estimate of the incommensurate frequency. Such
a value can be expressed as [25]:

ω2
NS =

1

2(µ1 + µ2)

(
q2k3
k1

(µ1+µ2)
√

µ2
2 + (k2 − 2ω)2− q22k

2
3µ2

8k21
+2µ1(µ

2
2+(ω02−2ω)2)+2µ2(ω−k1)

2+2µ2µ
2
1

)
,

(21)
with µ1 = ω01/(2Q1) and µ2 = ω02/(2Q2) and q2 corresponding to the values predicted for the NS bifurcation
point [25]. The results of the analytical model, compared with the experiments, are reported in Fig. 16. The
FRF is almost superimposed with the experiments. For the frequencies corresponding to the NS bifurcations
on the FRC the model predicts a spacing between 500 and 350 Hz. These values are compatible with the
ones of the IC model and the experiments.

25



416 416.5 417 417.5 418
f [kHz]

0

10

20

30

40

50

416.7 416.8 416.9 417 417.1

8

10

12

14

16

18

300

400

500

600

700

N
S
 [H

z]

Am
pl

itu
de

 [n
A]

Am
pl

itu
de

 [n
A]

f[kHz]

416.7 416.8 416.9 417 417.1
f [kHz]

ω

a) b)

c)

Analytical FRF Analytical NS boundary Experiments

Figure 16: Comparison between the analytical model and experiments for VDC = 7V, VT = 5V and
VAC = 0.562V. Fig. a): experimental FRF compared with the analytical one and NS boundary. Fig. b):
enlarged view of the QP region and the NS boundary crossing points. Fig. c): incommensurate frequency
predicted by the analytical model along the NS boundary.

B E�ect of the bias and tuning voltages on the resonance frequen-

cies

The crucial role played by VDC and VT has been highlighted in experiments and simulations. They generally
induce a negative shift of the eigenfrequencies and the arch resonator is designed to provide a certain level of
�exibility in the frequency match between the coupled bending modes by suitably tuning VDC and VT. Indeed,
data reported in Figs.7,8 and 9 clearly show that certain combinations of VDC and VT allow for a better
frequency match. This can be easily justi�ed on the basis of Eqs.(17) and (18). Performing a linearization
with respect to the reduced coordinate q1 and q2 in Eqs.(17) and (18) respectively, an analytical expression
for ω1 and ω2 can be readily obtained:

ω2
1 = c

(1)
1 − c

(1)
1DDV

2
DC − c

(1)
1TTV

2
T − 2c

(1)
1DTVDCVT

ω2
2 = c

(2)
2 − c

(2)
2DDV

2
DC − c

(2)
2TTV

2
T − 2c

(2)
2DTVDCVT (22)

The ratio between the two frequencies ω2/ω1 with varying VDC and VT is plotted in Fig.17. These plots high-
light how the ideal ratio of 2 between the two resonance frequencies cannot be reached exactly. Nevertheless,
a value of VT close to VDC allows reducing the mismatch, see the marker point in Fig.17a.
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