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forcing terms and parametrically excited systems
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Touzé4 · Attilio Frangi1
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Abstract The direct parametrisation method for invariant manifolds is used for model order reduction
of forced-damped mechanical structures subjected to geometric nonlinearities. Nonlinear mappings are
introduced, allowing one to pass from the degrees of freedom of the finite-element model to the normal
coordinates. Arbitrary order of expansions are considered for the unknown mappings and the reduced
dynamics, which are then solved sequentially through the homological equations, for both autonomous
and time-dependent terms. It is emphasized that the two problems share a similar structure, which can
be used for an efficient implementation of the non-autonomous added terms. A special emphasis is also
put on the new resonance conditions arising due to the presence of the external forcing frequencies, which
allows predicting phenomena such as parametric excitation and isolas formation. The method is then
applied to structures of academic and industrial interest. First, the large amplitude vibrations of a forced-
damped cantilever beam are studied. This example highlights that high order non-autonomous terms are
compulsory to correctly estimate the maximum vibration amplitude experienced by the structure. The birth
of isolated solutions is also illustrated on this example. The cantilever is then used to show how quadratic
coupling creates conditions for the excitation of the parametric instability, all these features being correctly
embedded in the reduction process. A shallow arch excited with multi-modal forcing is then studied to
detail different forcing effects. Finally, the approach is validated on a structure of industrial relevance, i.e.
a comb driven micro-electro-mechanical resonator. The accuracy and computational performance reported
suggest that the proposed methodology can accurately predict the nonlinear dynamic response of a large
class of nonlinear vibratory systems.

Keywords finite element method · geometric nonlinearities · model order reduction · invariant manifold ·
whisker · non-autonomous systems

1 Introduction

This work is concerned with model order reduction techniques based on nonlinear transformations for forced-
damped vibratory systems subjected to geometric nonlinearities, with emphasis on large dimensional finite
element (FE) models stemming from the discretisation of the governing partial differential equation. A
major motivation is the need of efficient reduction techniques in the semiconductor industry, where the
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2 1 INTRODUCTION

design stage is of primary importance and necessitates a fast and agile prediction of the steady dynamic
response of complex structures [1]. Furthermore, the development of systems operating in a fully nonlinear
regime poses tight design requirements for proposing solutions based on features such as mode interaction
[2] or parametric excitation [3].

Reduction methods for geometrically nonlinear structures have now a long history, and numerous ap-
proaches have been proposed that can be roughly divided into linear and nonlinear techniques [4,5]. Linear
methods, like modal projection, rely on a linear change of coordinates and have been used for decades.
However, in presence of nonlinearities, the dimension of the subspace required to define a proper embed-
ding for system solutions increases importantly, hence making linear projections techniques less efficient for
dimensionality reduction [6,7,8]. This is a direct consequence of the loss of invariance of linear subspaces,
like modal subspaces or POD bases [9,7] and has stimulated an interest towards the invariant manifold
theory [10,11,12,13] for dynamical systems.

Along this direction, an important research effort has thus been devoted to the definition of nonlinear
normal modes (NNMs) in order to extend the properties of the linear modal basis to the nonlinear regime,
mainly by preserving the invariance property [10,11,14]. For conservative vibratory systems, where the
eigenspectrum is composed of pairs of purely imaginary complex conjugates, the center theorem from
Lyapunov [15,16] guarantees the existence of two-dimensional manifolds densely filled with periodic orbits,
named Lyapunov subcenter manifolds (LSM), thus offering a solid framework to define an NNM as a
family of periodic orbits lying on the LSM attached to the selected pair of conjugate eigenvalues. In the
dissipative case, Shaw and Pierre proposed to define an NNM as an invariant manifold that is tangent to
its linear counterpart at origin [10]. As remarked by numerous investigators [17,18], this definition however
lacks unicity since the phase space is foliated with an infinity of invariant manifolds tangent at the origin
to a linear modal subspace. To retrieve uniqueness, Haller and Ponsioen showed that among all these
invariant subsets, there exist a unique two-dimensional manifold with the highest continuity degree, under
non-resonance conditions and for expansion orders exceeding the so-called spectral quotient [18]. They then
defined this unique invariant manifold as the spectral submanifold (SSM) and used the SSM for the purpose
of model order reduction [18,19]. As commented in [5], following the original ideas and definitions of Shaw
and Pierre, this unique SSM is thus the NNM that was computed with low-order approximations in earlier
studies [20,21,22]. Importantly, uniqueness is retrieved only once the order of the expansion reaches the
spectral quotient, which in practical applications is generally a very large integer, so that all proposed
computations generally lead only to an approximation of the SSM. Application of these methods based
on the invariant manifold theory has enabled meaningful results in model order reduction of geometrically
nonlinear structures [23,20,21,13,24].

Recently, an important step forward has been realised in the mathematical community thanks to the in-
troduction of the parametrisation method for invariant manifolds (PIM), first formalized by Cabré, Fontich,
and de la Llave with the purpose of deriving the invariant manifolds attached to fixed points in maps [25,
26,27]. Starting from the invariance equation [28], the procedure allows unifying in the same framework [5]
previous approaches that used either the center manifold theorem [10] or the normal form approach [13].
The PIM has been first introduced in the nonlinear vibration community in a series of papers by Haller
and coworkers [18,19,29,30,31]. An important improvement, as compared to previous developments that
only considered low-order approximations, has also been to introduce an automatic procedure allowing to
reach arbitrary orders in the expansions, ensuring convergence of the reduced order models [29].

However, the PIM was originally formulated for systems expressed in modal coordinates, thus requiring
the computation of the complete set of eigenfunctions as a first step. This in turn represented a major
bottleneck for the application of the method to real structures. In the field of vibration theory, the problem
has been recently overcome by proposing direct techniques that can be applied in the physical space and
hence directly to the nodal degrees of freedom of a FE mesh. Elaborating on the normal form approach
discussed in [13,22], a direct normal form (DNF) has been proposed in [32], then reformulated for general-
ization purpose in [33] and applied to MEMS (Micro Electro Mechanical Systems) structures. At the same
time and elaborating on the parametrisation method, a direct formulation with extension to arbitrary order
of expansions in the asymptotic development has been proposed in [34,35], and applied to problems with
internal resonances in [36,37].

The direct parametrisation method for invariant manifolds (DPIM), as it is proposed for example in [35],
has been formulated in the context of autonomous systems, such that the presence of the external forcing
was introduced approximately by considering only the global translation of the invariant manifold created
by the presence of harmonic forcing, while neglecting its deformations. When external forcing comes into
play, the picture is indeed different and may lead to computing a manifold for each forcing frequency, as
first observed by [38]. Time-dependent manifolds are taken into account in [34] where, however, only a
zero-order truncation of the non-autonomous asymptotic development is considered, thus yielding, in the
case of modal forcing, the same approximations as the one used in [35]. This approach is not sufficient
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for modeling systems subjected to large forcing values with generic distributions or for systems that are
parametrically excited. This class of problems requires a proper treatment of the non-autonomous system.

In the dynamical systems community, the PIM has been extended to take into account non-autonomous
terms for maps in a series of contributions [39,40,41]. In these papers, time-dependent manifolds are often
referred to as whiskers, which generally represent a stable (or unstable) manifold attached to a periodic
orbit or an invariant torus. In the remainder of the paper, we will use the wording time-dependent invariant
manifolds or whiskers to refer to the computed structures in phase space. Following this general setting,
PIM has been applied to vibratory systems in order to enlarge the scope and properly derive ROMs for
forced-damped systems in the following papers by Haller et al. [18,30,42,43]. More specifically, a zero-
order assumption for the non-autonomous part is retained in [30], the idea being to derive simplified
formulas to address the relationship between backbone curves and frequency response curves (FRCs).
In [42], general expressions for the non-autonomous part are considered in an appendix, but the main
part of the derivation is concerned with proposing an analytical criterion to detect isolated solutions.
The most complete derivation is detailed in [43], and the computations relative to both autonomous and
non-autonomous part have been made publicly available in the code SSMtool 1.0. However, all these
developments used the PIM such that the dynamics in the modal basis needs to be given as starting
point. Also, in the numerical examples, the computations of the whiskers are detailed for each external
forcing frequency, which constitutes a limitation since ROMs are more likely to be used for parameter
continuations as in FRCs, where the continuation is performed with respect to the external frequency. The
need to recompute the ROM for each forcing frequency thus constitutes a drawback, already underlined
in [38].

In this contribution, a method is derived allowing to compute ROMs for forced-damped systems. The
method leverages the parametrisation method developed in the dynamical systems community [39,40,41],
and later applied to nonlinear vibration problems in [30,34,36,37], but allows one to use an arbitrary order
of expansion for the terms generated by the forcing, and generates ROMs that can be used to produce
FRCs with the forcing frequency as continuation parameter. Overcoming this limitation is an important
step and comes with two main consequences that can be separately analyzed. On the one hand, the whisker
will show some deformations along the phase of the forcing, which are now exactly computed. On the
other hand, the reduced dynamics is also modified and new important terms appear, making the link with
parametric excitation and isolated solutions. These two effects can be analyzed separately and give rise to
different phenomena. Furthermore, we report extensive examples of structures that require such accuracy
in the method to correctly predict vibration amplitudes.

The remainder of the work is structured as follows. In Section 2 we report the general set of equations of
motion for mechanical systems subjected to geometric nonlinearities. In Section 3 the DPIM in the context
of non-autonomous systems is presented in a general framework and its extension to the parametrisation of
whiskers is detailed. Explicit expressions for the solution to the homological equations are detailed together
with a unified framework for solving both invariance equations. Among the different points discussed in the
present Section, we remark that the core of the method is reported in Section 3.1, while the remainder of the
Section is devoted to the analytical and numerical aspect of the problem. In Section 4, extensive analysis of
the new results provided by the non-autonomous setting are reported. New trivial resonance relationships
are highlighted. In Section 5 we detail computational aspects regarding the realification procedure assuming
a real-valued forcing. In Section 6, the proposed methodology is applied to large finite element models of
structures subjected to loading conditions that require the present approach to correctly predict their
nonlinear dynamical response. Finally, in Section 7 we summarise the outcomes of the presented work.

2 Equations of motion and spectral properties

2.1 Continuous problem, FE formulation and forcing representation

In the present Section the governing equations are derived from a continuum mechanics perspective. Struc-
tures are modeled in the framework of large transformations but small strains, and the governing equation
is the conservation of linear momentum with proper boundary conditions, as derived in classical textbooks,
see e.g. [44]:

ρ ü−DivP = ερ b, in B× t ∈ (t0, T ], (1a)

P · n = ε t, on ΓN × t ∈ (t0, T ], (1b)

u = ū, on ΓD × t ∈ (t0, T ], (1c)

u = u0, in B× t = t0, (1d)

u̇ = u̇0, in B× t = t0. (1e)
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All quantities are defined in the reference configuration B. ρ is the material density, u the displacement
field, (̈·) stands for double time derivative, Div(·) is the divergence operator, P is the first Piola-Kirchhoff
stress tensor, ε is a real-valued book-keeping parameter, and b is the body force field defined per unit mass.
n is the unit outward vector defined over the boundary ΓN , t is the configuration-independent surface
traction vector, ū is the prescribed displacement along the boundary ΓD. u0 is the displacement at the
initial time t0 and u̇0 is the initial velocity. We neglect rigid body motions by imposing that ΓD is not an
empty set.

The book-keeping parameter ε has been introduced to underline that the external forcing is a priori
considered small, in the sense that it shall lead to large amplitude vibrations of the structure with small
strains, in order to respect the assumptions of geometric nonlinearity. Note however that in the forthcoming
developments ε is mainly used to distinguish, in the analytical derivations, the non-autonomous part from
the terms where the forcing is involved. Since each part will be solved with asymptotic expansions of
arbitrary order, the assumption of small forcing has to be seen in a relative sense, and the numerical results
reported in Section 6 will underline that the method can handle important forcing values as long as small
strains are conserved. In order to assess quantitatively this assumption of small forcing and the criterion to
respect, a nondimensional forcing parameter will be introduced and discussed when coming to the numerical
examples reported in Section 6. This will provide a valuable quantitative assessment of the small forcing
assumption.

Equations (1) represent the well known strong form of the conservation of linear momentum. We here
derive a discretisation of the equation by means of a Galerkin approach, hence we recast Eq. (1) in its
weak form. To this aim, we introduce the function w defined over the space C(0) of sufficiently continuous
functions vanishing on the portion of the boundary where Dirichlet boundary conditions on the displacement
field are imposed. By projecting Eq. (1) on w and integrating over the domain, the classical weak form of
the equation governing the conservation of linear momentum, also known as principle of virtual power, is
obtained as [44]:∫

B

ρ ü ·w dB+

∫
B

P : ∇Tw dB = ε

(∫
B

ρ b ·w dB+

∫
ΓN

t ·w dΓ

)
, ∀w ∈ C(0). (2)

where ∇(·) denotes the material gradient. Since we are interested in studying vibratory systems subjected
to geometric nonlinearity only, a Saint Venant-Kirchhoff constitutive model is assumed, i.e. S = A : e,
where S is the second Piola-Kirchhoff stress tensor, with P = (I +∇u) · S, A is the elasticity tensor and
e is the Green-Lagrange strain tensor. This represent the canonical framework of geometrically nonlinear
systems, i.e. mechanical systems subjected to large transformations but small strain values. Let us now
define the following quantities:

ε(a) =
1

2

(
∇a+∇Ta

)
, γ(a, b) =

1

2

(
∇Ta · ∇b+∇T b · ∇a

)
, (3)

where ε(a) is simply the symmetric part of the gradient of a generic vector field a and γ(a, b) is the symmet-
ric part of the product of the gradients of a and b. We remark that ε(u) is the classical small displacement
strain measure and that the Green-Lagrange tensor can be expressed as e = ε(u)+(1/2)γ(u,u). By means
of these quantities the internal power splits into linear, quadratic and cubic powers of the displacement as:∫

B

P : ∇Tw dB =

∫
B

ε(u) : A : ε(w) dB

+

∫
B

1

2
γ(u,u) : A : ε(w) + ε(u) : A : γ(u,w) dB

+

∫
B

1

2
γ(u,u) : A : γ(u,w) dB. (4)

In the context of the DPIM, splitting nonlinear terms in increasing order is necessary for developing fast
and efficient algorithms. Moving to a numerical discretisation, we chose a standard finite dimensional trial
space Ch. As a consequence, the problem now recasts in finding uh ∈ Ch such that:∫

B

ρ üh ·wh dB+

∫
B

ε(uh) : A : ε(wh) dB

+

∫
B

1

2
γ(uh,uh) : A : ε(wh) + ε(uh) : A : γ(uh,wh) dB

+

∫
B

1

2
γ(uh,uh) : A : γ(uh,wh) dB =

ε

(∫
B

ρ b ·wh dB+

∫
ΓN

t ·wh dΓ

)
∀wh ∈ Ch(0). (5)
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Where the subscript (·)h denotes fields and spaces approximated in the sense of isoparametric FEs. Upon
integration of Eq. (5) for any independent choice ofwh, the following system of coupled nonlinear differential
equations is retrieved:

MÜ+KU+G(U,U) +H (U,U,U) = εF̂. (6)

where U is an array collecting all the unknown nodal values for uh, M is the mass matrix, K is the stiffness
matrix, G(U,U) is the quadratic nonlinearity tensor, H (U,U,U) is the cubic nonlinearity tensor, and F̂
is the external force vector.

A Rayleigh damping is here assumed, whose continuous and discrete formulations write:∫
B

αρ u̇h ·wh + βε(u̇h) : A : ε(wh) dB = WT (αM+ βK) U̇ = WTCU̇, (7)

with α and β non-negative scalar values, and W nodal values of the test field. Selecting a Rayleigh damping
for the present developments could be seen as a restriction, however this choice is retained in the vast
majority of dynamical studies with the Finite Element Method (FEM) for engineering applications, mainly
because it comes with convenient properties (e.g. positive definite damping matrix diagonalised by the
same eigenvectors obtained from the generalised eigenvalue problem that stems from the undamped case).
As a matter of fact, damping sources are very different in mechanical vibrations, see e.g. [45,46,47,48] for
general references and [49,50,51] for damping models in MEMS structures and their implementation in
the FEM context often comes with case-by-case derivations and implementations. In order to simplify the
presentation, only Rayleigh damping is assumed in the rest of the paper but other sources of damping forces
could be further implemented in the method provided an analytic time-domain formulation is at hand.

Let us now consider the representation of the external forcing F̂ which acts on the mechanical system as
either a surface traction or a body force. In this study, the external force will be expressed as a summation
of harmonic components without constant terms, in order to bypass the computation of the new position
at rest and simplify the presentation:

F̂ =
n̂∑

j=1

F̂+
j e

+iΩjt +
n̂∑

j=1

F̂−
j e−iΩjt, (8)

where n̂ stands for the number of excitation frequencies, defined over a set Ω and F̂+
j , F̂

−
j are complex

conjugate vectors. The double summation is exploited in Section 5, where the real-valued structure of the
forcing is leveraged to yield real-valued mappings and reduced dynamics coefficients. Alternatively, the
following more concise expression can be used:

F̂(t) =
2n̂∑
j=1

F̂je
λ̂jt, (9)

where F̂j spans over both F̂+
j and F̂−

j and λ̂j represents both +iΩj and −iΩj . The structure of λ̂j is
further detailed in Section 2.2, where the linear properties of the problem are recalled, including the added
frequencies due to the forcing.

Finally, the discretized finite element system considered in this work can be expressed as [52,53]:

MÜ+CU̇+KU+G(U,U) +H (U,U,U) = ε

2n̂∑
j=1

F̂je
λ̂jt, (10)

which is a system of N coupled nonlinear differential equations. Alternatively, one can adopt a first-order
representation by introducing the velocity V as the time derivative of the displacement U:

MV̇ +CV +KU+G(U,U) +H (U,U,U) = ε
2n̂∑
j=1

F̂je
λ̂jt, (11a)

MU̇−MV = 0. (11b)

Note that the choice to premultiply both sides of Eq. (11b) by the mass matrix is to ensure symmetry of the
upcoming formulation as extensively detailed in [35]. Furthermore, premultiplying both sides of Eq. (11b)
provides simpler expressions for the eigenfunctions of the first order formulation reported in Section 2.2. In
structural mechanics, N is typically large, hence computing periodic orbits for this system is prohibitively
costly. Furthermore, stability analysis and continuation approaches are often computationally unfeasible,
hence dimensionality reduction techniques play a crucial role. For F̂ = 0, the system becomes autonomous
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and a high-order direct parametrisation of invariant manifolds for dimensionality reduction has already been
proposed by the authors in [35]. In the present work, we extend the treatment to the non-autonomous case
and develop a high-order approach to the non-autonomous problem by extending the procedure initially
introduced by Haro and de la Llave [39] and later applied for the first time in the context of mechanical
systems by Breunung et al to problems described in the modal basis [30].

2.2 Spectral properties

In this Section we focus on the main spectral properties associated with the problem at hand. In particular,
the intricate link between the first-order problem and the second-order formulation will be specifically used
in the remainder of the developments in order to simplify calculations.

Given the assumptions introduced in Section 2.1, Eq. (10) has at least a fixed point at the origin. For
α, β = 0, the point is marginally stable, while for α, β > 0, the point is asymptotically stable. The linearized
version of the autonomous part in Eq. (10) has the form:

MÜ+CU̇+KU = 0. (12)

However, since C is defined as a linear combination of M and K, real eigenfunctions and eigenfrequencies
of system (12) can be obtained from the simpler generalised eigenvalue problem of the undamped system,
i.e.: (

−ω2
jM+K

)
Φj = 0. (13)

For mechanical systems, M and K are symmetric positive definite in absence of rigid body motions. As a
consequence, right and left eigenmodes coincide, and both Φj and ωj are real-valued. Eigenfunctions are
mass-normalised and hence the following orthogonality properties hold:

ΦT
i MΦj = δij , ΦT

i KΦj = ω2
i δij . (14)

Importantly, eigenfunctions ϕϕϕj also solve the generalised eigenvalue problem for the damped system:(
Λ2

jM+ ΛjC+K
)
Φj = 0, (15)

while eigenvalues Λj can be computed by projecting Eq. (15) on the modal basis Φi. Indeed, since Rayleigh
damping is considered, we have that:

ΦT
i CΦj =

(
α+ βω2

j

)
δij = 2ξjωjδij , (16)

with ξj the modal damping coefficient, hereafter subjected to the condition of light damping, i.e. ξj < 1.

Eigenvalues are organised in complex conjugate pairs with expression Λj = −ξjωj ± iωj

√
1− ξ2j , where i is

the imaginary unit. The complex eigenvalues Λj are hence totally defined by the eigenfrequencies ωj and
the the Rayleigh damping coefficients α and β.

The procedure detailed in the present work is based on the PIM, which is formulated for dynamical
systems written with first-order formulation in time. As a consequence, it is necessary to derive spectral
properties of the first-order linearised system:

MV̇ +CV +KU = 0, (17a)

MU̇−MV = 0. (17b)

The first-order system, of dimension 2N, is non-symmetric and one needs to solve both right and left
eigenvalue problems:(

Λi

[
M 0
0 M

]
+

[
C K

−M 0

])
Yi = 0, XT

i

(
Λi

[
M 0
0 M

]
+

[
C K

−M 0

])
= 0, (18)

with Y and X right and left eigenvectors, respectively. Eigenvalues are the same as those obtained from
Eq. (15), and they can be ordered as:

∀ j = 1, ...,N,

Λj =∆ −ξjωj + iωj

√
1− ξ2j ,

Λj+N = Λ̄j =∆ −ξjωj − iωj

√
1− ξ2j . (19)
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where the bar denotes the complex conjugate operator. For mechanical vibratory problems, eigenvalues
come in pairs of complex conjugates, which reflects the fact that the original problem is second-order in
time, and that the velocity is needed as independent variable. Consequently manifolds associated to linear
modes or NNMs are essentially even-dimensional, in order to allow the birth of periodic orbits representing
the oscillations [10,54,5]. The eigenfunctions that result from Eq. (18) are:

∀ j = 1, ...,N,

Xj =∆
1

Λj − Λ̄j

[
Φj

−ΦjΛ̄j ,

]
, Yj =∆

[
ΦjΛj

Φj

]
,

Xj+N = Xj =∆
1

Λ̄j − Λj

[
Φj

−ΦjΛj

]
, Yj+N = Yj =∆

[
ΦjΛ̄j

Φj

]
. (20)

These expressions highlight once again that the solution to the standard eigenvalue problem for the second-
order conservative problem provides all the quantities required to define eigenvectors and eigenvalues of the
first order formulation. These eigenfunctions satisfy the following orthogonality properties:

XT
i

[
M 0
0 M

]
Yj = δij , XT

i

[
C K

−M 0

]
Yj = −Λjδij . (21)

It is worth stressing that the parametrization procedure, detailed in the following Sections, does not re-
quire the computation of the whole modal basis, but only of the n ≪ N selected master modes {Φm1 ,Φm2 , ...,Φmn}
with complex eigenvalues {Λm1 , Λm2 , ..., Λmn}.

The spectral properties associated to the master modes are collected in the matrices:

ϕϕϕ =∆ [Φm1 ,Φm2 , ...,Φmn ,Φm1 ,Φm2 , ...,Φmn ], (22a)

X =∆ [Xm1 ,Xm2 , ...,Xmn , X̄m1 , X̄m2 , ..., X̄mn ], (22b)

Y =∆ [Ym1 ,Ym2 , ...,Ymn , Ȳm1 , Ȳm2 , ..., Ȳmn ], (22c)

λ =∆ diag[Λm1 , Λm2 , ..., Λmn , Λ̄m1 , Λ̄m2 , ..., Λ̄mn ], (22d)

all having 2n columns, for reasons that will be clarified in the course of the development (see e.g. Eq. (35)).
Moreover, in what follows, the symbols ϕϕϕj , Xj , Yj will be used to denote at the j-th column in the
respective matrices, and λj for the j-th diagonal coefficient in λ.

Similarly, and as anticipated in Section 2.1, it is possible to define a specific ordering for the of com-
plex eigenvalues λ̂j related to the frequencies introduced by the external forcing. Such eigenvalues can be
organised with the same ordering as the one used for the autonomous problem:

∀ j = 1, ..., n̂,

λ̂j =∆ +iΩj , (23a)

λ̂j+n̂ =
¯̂
λj =∆ −iΩj . (23b)

This is associated with the fact that the forced (non-autonomous) system can be recast as an autonomous
one by introducing a set of auxiliary linear oscillator equations, the solutions to which being the sine and
cosine functions.

∀ j = 1, ..., n̂,

˙̂aj = Ωj âj+n̂, (24a)

˙̂aj+n̂ = −Ωj âj , (24b)

with âj real-valued auxiliary variables. Generally, nonlinear terms are added to Eqs. (24) to ensure
that their unique limit cycle is the unitary circle (see e.g. [55] and references therein), but for the purpose
of the present explanation such constraint is not required. The linear part of this last set of equations
is uncoupled for each harmonic term and its block antidiagonal structure yields the conjugate pair of
eigenvalues described by Eq. (23).

Finally, for future use, we also introduce the projection of the displacement onto the modes. The modal
displacement uj and velocity vj are defined as:

uj = ΦT
j MU, vj = ΦT

j MV. (25)
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3 Parametrisation method for time-dependent manifolds

The aim of the present Section is to adapt the direct parametrisation method in order to take into account
the external forcing. The resulting time-dependent invariant manifolds will thus contain the periodic orbits
of the forced system and will allow the derivation of efficient ROMs. The effect of the forcing might result in
deformations of the whisker that will be computed with a dedicated expansion. The methodology has been
first adapted to vibratory mechanical systems in [42], and used for model order reduction in [43], according
to the general guidelines given in [40,41]. Following the same line of research, the method is here adapted
to allow for a direct computation eliminating the need to compute the full modal basis as a first step. We
start by detailing the general methodology in the next Section. Then the solution to the autonomous part,
which follows the calculations presented in [35], is recalled, and finally the non-autonomous part is solved
at generic order.

3.1 General framework

Fig. 1 Qualitative representation of the time-dependent invariant manifold (or whisker) for a fictitious problem. Upon
parametrisation of a two-dimensional invariant set the reduced dynamics is flat (purple ellipsoid) and pairs of normal
coordinates values are mapped through time dependent laws Ψ , Υ to the physical space. The reported hypersurfaces
represent the physical configuration of the whisker at different time instants. For mechanical systems subjected to harmonic
forcing, the two-dimensional whisker undergoes harmonic motion in physical space with instantaneous configuration defined
by the phase Θ. On the other hand, the reduced dynamics results non-autonomous but it retains its two-dimensional planar
structure as for the autonomous case. ( ),( ),( ),( ),( ) colors correspond to a phase Θ = Ωt equal to 0, π/4, π/2, 3π/4,
and π, respectively.

The general idea of the parametrisation method for invariant manifolds is to introduce a nonlinear
change of coordinates between the physical space variables U, V and the new normal coordinates z. These
normal coordinates, with dimension 2n, describe the motion on an invariant manifold, which can be seen
as the nonlinear continuation of the eigenspace spanned by the n master modes. Being the dimension of
the invariant set much smaller than that of the original problem, we have n ≪ N. Moreover, the dimension
of the reduction subspace is always an even number (thus 2n) of paired reduced coordinates, to reflect the
fact that oscillations come with complex conjugate eigenvalues as also done for example in [18,29,35].

Using our initial scaling of the external forcing with the book-keeping parameter ε, the main idea is to
split the searched nonlinear mappings into two terms as:

U = Ψ(z,Ω, t) = Ψ(z) + εΨ̂(z,Ω, t) +O(ε2), (26a)

V = Υ (z,Ω, t) = Υ (z) + εΥ̂ (z,Ω, t) +O(ε2). (26b)

In these equations, two different nonlinear mappings, respectively for the displacementU and the velocityV,
are introduced, following [33,35], since it has been shown that such splitting allows a better understanding
of the relationships between variables as well as a reduction of the computational burden. Secondly, the
ε0 terms Ψ(z) and Υ (z) are related to the autonomous problems, and their computation has already been
tackled in [35]. In addition, the new terms Ψ̂(z,Ω, t) and Υ̂ (z,Ω, t) represent the first-order contribution
of the forcing on the time-dependent manifold, and the main aim of the present article is to detail their
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direct computation, at generic order. The reduced dynamics along the whisker, which is also unknown at
this stage, is then expressed as:

ż = f(z) + εf̂(z,Ω, t) +O(ε2), (27)

where again the splitting between autonomous and non-autonomous parts has been expressed. In this
last expression, f(z) is the vector field obtained from the autonomous problem, and f̂(z,Ω, t) is the new
contribution to the dynamics that will be introduced by taking into account the external forcing in the
parametrisation procedure.

Two remarks are worth mentioning here. First, the role of the ε book-keeping parameter is mainly to
separate, in the calculations, the terms according to their nature (autonomous vs non-autonomous). As
it is customary done in such perturbative development [56], the parameter is set to 1 at the end of the
process and the smallness of the forcing term is incorporated in its value. Consequently, once the theoretical
calculations done and the numerical results analyzed, in Section 6, ε = 1 will be set, and the smallness of
the forcing will be quantified by introducing a meaningful scaling on the amplitude of the external force.

Secondly, one can remark that the mappings are here introduced for the nodal coordinates of the
FE formulation (U,V), i.e. by taking as a starting point the semi-discrete problem, which is the most
customary approach to deal with general FE problems for mechanical systems. However, similar results
can be obtained by introducing a coordinate change for the continuous displacement and velocity fields
u and v. By following this approach, the resulting invariance equations are elliptic differential equations
that can be solved with numerical approaches such as the finite element method. Details of this alternative
derivation are reported in Appendix A.

In order to solve for the unknowns, which are respectively the nonlinear mappings and the reduced
dynamics, one derives the invariance equation of the searched manifold by eliminating the dependence with
respect to time. The first step is to differentiate Eqs. (26) with respect to time and use Eq. (27) to yield:

U̇ = ∇zΨ(z)f(z) + ε
(
˙̂
Ψ(z,Ω, t) +∇zΨ̂(z,Ω, t)f(z) +∇zΨ(z)f̂(z,Ω, t)

)
+O(ε2), (28a)

V̇ = ∇zΥ (z)f(z) + ε
(
˙̂
Υ (z,Ω, t) +∇zΥ̂ (z,Ω, t)f(z) +∇zΥ (z)f̂(z,Ω, t)

)
+O(ε2), (28b)

with∇z(·) denoting the gradient with respect to the normal coordinates. Upon substitution of mappings and
their derivatives in Eq. (11), one can derive for each order of ε a set of invariance equations whose unknowns
are estimated order by order in a hierarchical structure. For ε0, the invariance equations associated to the
autonomous system read:

M∇zΥ (z)f(z) +CΥ (z) +KΨ(z) +G(Ψ(z),Ψ(z)) +H (Ψ(z),Ψ(z),Ψ(z)) = 0, (29a)

M∇zΨ(z)f(z)−MΥ (z) = 0. (29b)

These equations have already been obtained and solved at arbitrary order of expansion in [35]. At order
ε1, time-dependent terms associated to the parametrisation of the non-autonomous system appear:

M
˙̂
Υ (z) +M∇zΥ̂ (z,Ω, t)f(z) +M∇zΥ (z)f̂(z,Ω, t) +CΥ̂ (z,Ω, t)

+KΨ̂(z,Ω, t) + 2G(Ψ̂(z,Ω, t),Ψ(z)) + 3H (Ψ̂(z,Ω, t),Ψ(z),Ψ(z)) =
2n̂∑
j=1

F̂je
λ̂j t, (30a)

M
˙̂
Ψ(z) +M∇zΨ̂(z,Ω, t)f(z) +M∇zΨ(z)f̂(z,Ω, t)−MΥ̂ (z,Ω, t) = 0, (30b)

where the symmetries of the G and H operators have been exploited to obtain a more compact expression.
Under the assumption that the ε0-invariance equations have been solved and that Ψ , Υ , and f are known,
Eq. (30) is a set of time-dependent linear ordinary differential equations in the unknown variables Ψ̂ , Υ̂ ,
and f̂ . This represents an important property of Eq. (30), which can be used to search for solutions with
finite Fourier expansions to represent all unknown variables of the system. Furthermore, thanks again to
linearity, the solution will have the same harmonic content as that of the external forcing and hence the
following expansions hold:

Ψ̂(z,Ω, t) =
2n̂∑
j=1

Ψ̂j(z)e
λ̂jt, (31a)

Υ̂ (z,Ω, t) =
2n̂∑
j=1

Υ̂j(z)e
λ̂jt, (31b)

f̂(z,Ω, t) =
2n̂∑
j=1

f̂j(z)e
λ̂jt, (31c)
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making appear the unknowns Ψ̂j(z), Υ̂j(z), and f̂j(z) as Fourier coefficients. Each term depends on the
normal coordinates only, hence dropping the explicit dependence on time. Upon substitution of Eq. (31) in
Eq. (30), an algebraic version of the invariance equation at order ε1 is retrieved. The resulting ε1-invariance
equations are then finally expressed as:

∀ j = 1, ..., 2n̂,

λ̂jMΥ̂j(z) +M∇zΥ̂j(z)f(z) +M∇zΥ (z)f̂j(z) +CΥ̂j(z)

+KΨ̂j(z) + 2G(Ψ̂j(z),Ψ(z)) + 3H (Ψ̂j(z),Ψ(z),Ψ(z)) = F̂j , (32a)

λ̂jMΨ̂j(z) +M∇zΨ̂j(z)f(z) +M∇zΨ(z)f̂j(z)−MΥ̂j(z) = 0. (32b)

These equations can be solved using the general procedure detailed in [35], since the structure of the
problem at hand is very similar. In the following Section, this procedure, based on an asymptotic polynomial
expansion at arbitrary order, is first briefly recalled. As a distinctive feature of the time-dependent problem,
both nonlinear mappings and reduced dynamics show an explicit dependence on forcing vectors F̂j and
excitation frequencies Ωi. Consequently, the solution should in principle be computed for every value of
those two parameters, as already remarked in [38,43]. This requirement drastically limits the applicability
of the method for model-order reduction, since one of the main goal is generally to derive a ROM able
to reproduce the nonlinear frequency response curves (FRCs) with varying values of excitation frequencies
and amplitudes, as reported in [22,30,43,36], where the deformation of the whisker has not been taken
into account. In order to cope with this limitation, it is here assumed that both unknowns (nonlinear
mappings and reduced dynamics) show a mild dependency on these parameters. As a consequence, a
single parametrisation procedure is realized, and assumed to be valid for a given frequency window [Ωi −
δΩ,Ωi+δΩ]. The resulting ROM can thus be used for parametric studies and directly solved with numerical
continuation techniques to compute the FRCs of the structure. The validity of such assumptions will be
checked and discussed with dedicated numerical examples in Section 6.

3.2 Invariance equations

This Section is devoted to detail the solutions to the invariance equations at generic order. The process relies
on introducing an asymptotic expansion into both autonomous and non-autonomous invariance equations
(29) and (32). The arbitrary order solution to the ε0-invariance equation has already been detailed for
example in [35], following the general guidelines provided in [28], but proposing a direct solution from the
physical space, as also shown in [34]. This important derivation is first briefly recalled in Section 3.2.1. Then
the direct solution, from the physical coordinate, to the ε1-invariance equation is detailed in Section 3.2.2.
This constitutes the main novelty of the present developments. Whereas general solutions for vibratory
systems have already been detailed in [42,43], the computations were operated from the modal space, and
thus not directly applicable to FE structures. A direct approach is here proposed. Emphasis is set to the
novel class of resonance conditions associated to the presence of forcing terms.

3.2.1 ε0-invariance equations

The arbitrary order solution to the autonomous problem is first recalled, following [35]. Taylor expansions
of both mappings Ψ(z), Υ (z), and reduced dynamics f(z) as function of the normal coordinate z, are
introduced as:

Ψ(z) =
o∑

p=0

[Ψ(z)]p, Υ (z) =
o∑

p=0

[Υ (z)]p, f(z) =
o∑

p=0

[f(z)]p. (33)

The adopted notation follows that used in [35] and is briefly summarized in Appendix B. In particular, o
stands for the maximum order of the computed expansion, and [.]p represents a collection of polynomial
terms of order p. Each order of the polynomial expansions can be explicitly formulated as:

[Ψ(z)]p =
∑
I

Ψ
(p)
I π

(p)
I , [Υ (z)]p =

∑
I

Υ
(p)
I π

(p)
I , [f(z)]p =

∑
I

f
(p)
I π

(p)
I . (34)

In these expressions, a compact notation for the the monomials has been used, where I is an arbitrary set

of p indexes, I = {i1 i2... ip}, and π
(p)
I stands for the monomial associated to I: π(p)

I = zi1zi2 ...zip . The

superscript (·)(p) denotes the order of both the unknown vectors of coefficients and the monomial.
Since the forcing is assumed to have no constant part, the origin of the phase space (representing the

structure at rest) is a fixed point. As a consequence, the order p = 0 in the expansions (33) is vanishing.
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The first-order terms are also easy to derive, see e.g. [35] for a detailed presentation, as the mappings have
to be identity-tangent to the set of n master modes.

The solution to the first-order homological equations writes (see the notation introduced in Eq. (22)):

[Ψ(z)]1 = ϕϕϕ, [Υ (z)]1 = λϕϕϕ, [f(z)]1 = λ. (35)

It should be noted that Eq. (35) sets a correspondence between the normal coordinates and the master
modes in the sense that, according to Eq. (22), zi and zi+n are both associated to the i-th master mode
Φi, but correspond to complex conjugate eigenvectors and eigenvalues of the first-order system.

Consequently the unknowns of the expansions start from order 2, and the nonlinear mappings and
reduced dynamics can be rewritten as

Ψ(z) =ϕϕϕz+
o∑

p=2

[Ψ(z)]p =
2n∑
i=1

ϕϕϕizi +
o∑

p=2

[Ψ(z)]p, (36a)

Υ (z) =λϕϕϕz+
o∑

p=2

[Υ (z)]p =
2n∑
i=1

λiϕϕϕizi +
o∑

p=2

[Υ (z)]p, (36b)

f(z) =λz+
o∑

p=2

[f(z)]p. (36c)

The general expressions for the solution to the order-p homological equation are now recalled, for an
arbitrary order p ≥ 2. Let us first denote as H(p) the collection of all possible sets I for a given expansion
order p. As detailed in [35], the order-p homological equation can be written for any monomial term πI as:

∀ p ∈ {2, ..., o}, ∀ I ∈ H(p),

σIMΥ
(p)
I +CΥ

(p)
I +KΨ

(p)
I +

2n∑
s=1

(
λsf

(p)
sI Mϕϕϕs

)
+Mν

(p)
I +G

(p)
I +H

(p)
I = 0, (37a)

σIMΨ
(p)
I −MΥ

(p)
I +

2n∑
s=1

(
f
(p)
sI Mϕϕϕs

)
+Mµ

(p)
I = 0, (37b)

All quantities reported in Eq. (37) are defined as:

σI =λi1 + λi2 + ...+ λip , (38a)

µ
(p)
I =

2n∑
s=1

p−1∑
k=2

p−k∑
l=0

Ψ
(p−k+1)
{i1...il s il+k+1...ip}f

(k)
s{il+1...il+k}, (38b)

ν
(p)
I =

2n∑
s=1

p−1∑
k=2

p−k∑
l=0

Υ
(p−k+1)
{i1...il s il+k+1...ip}f

(k)
s{il+1...il+k}, (38c)

G
(p)
I =

p−1∑
k=1

G
(
Ψ

(k)
{i1...ik},Ψ

(p−k)
{ik+1...ip}

)
, (38d)

H
(p)
I =

p−2∑
k=1

p−k−1∑
l=1

H
(
Ψ

(k)
{i1...ik},Ψ

(l)
{ik+1...ik+1},Ψ

(p−k−l)
{ik+l+1...ip}

)
, (38e)

where the terms G
(p)
I and H

(p)
I are computed as reported in Appendix C. It is worth stressing that all

the subscripts in belong to the set I = {i1, i2, ..., ip} that defines the monomial term π
(p)
I considered in

Eq. (37). The index notation is that adopted initially in [13]. The indices set collected within curly brackets
represents the monomial associated to a given term. The single index s not embedded within curly brackets

of a generic monomial f
(k)
s I identifies the s-th equation of the reduced dynamics. It is possible to use a more

convenient matrix representation of Eq. (37):

∀ p ∈ {2, ..., o}, ∀ I ∈ H(p),(
σI

[
M 0
0 M

]
+

[
C K

−M 0

])[
Υ

(p)
I

Ψ
(p)
I

]
+

2n∑
s=1

f
(p)
sI

[
M 0
0 M

]
Ys =

[
−Mν

(p)
I −G

(p)
I −H

(p)
I

−Mµ
(p)
I

]
. (39)
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Detailed expressions for the solutions to Eq. (39) are much easier to derive when the problem is projected
onto the modal space, as recommended for example in [28], since when operating from the physical space,
all the unknowns are interwoven. Projecting on the master modes yields the so-called tangent part of the
homological equation, the normal part corresponding on the contrary to the projection on the slave modes.
As shown in [28], the solution to the normal part of the homological equations is uniquely defined while, on
the other hand, the tangent part is underdetermined. Consequently, an infinite number of solutions exist,
which gives rise to the different styles of parametrisation.

Following the general procedure shown in [35], it is expedient to define the following quantities:

θ
(p)
rI =∆ XT

r

[
M 0
0 M

] [
Υ

(p)
I

Ψ
(p)
I

]
, g

(p)
rI =∆ XT

r

[
−Mν

(p)
I −G

(p)
I −H

(p)
I

−Mµ
(p)
I

]
, (40)

where Xr is a master left eigenvector of the first-order problem as defined in Eq. (22), with r ∈ [1,n]. In
the master modal space, the tangent part then simply writes as:

(σI − λr) θ
(p)
rI + f

(p)
rI = g

(p)
rI . (41)

In this expression, the unknowns are θ
(p)
rI , which are related to the coefficients of the nonlinear mappings, and

f
(p)
rI , related to the reduced dynamics. Eq. (41) introduces the notion of resonance, which is a cornerstone
in dynamical system theory [57,58]. A resonance is met when the following condition is fulfilled:

σI ≈ λr. (42)

In particular, one can observe that in this case θ
(p)
rI cannot be solved for, and the only possible solution is

f
(p)
rI = g

(p)
rI . Resonances and their importance in vibration theory has been analysed in many contributions

and the reader is invited to refer to [13,54,29,5,35] for further discussions, which in particular underline
the link between resonance and hardening/softening behaviour of nonlinear oscillators.

At this point the different styles of parametrisation adopt different strategies. The first strategy, called
the graph style [28], aims at making the mapping as simple as possible, such that all the complexity is
retained in the reduced dynamics. This leads to select, for each monomial of the tangent homological

equation, θ
(p)
rI = 0, and f

(p)
rI = g

(p)
rI . One can observe that this choice allows one to ignore any potential

occurrence of resonances. Also, it leads to a simple linear relationship, in the modal space, between the
normal coordinates and the master modal coordinates. As underlined in [5,35], this choice is thus equivalent
to computing the invariant manifold with the center manifold technique, as proposed by Shaw and Pierre
in their work on NNMs [10]. The second strategy, called the normal form style, takes the opposite point of
view to solve Eq. (41), and proposes to take the reduced dynamics as simple as possible, putting all the
complexity in the nonlinear mappings. In this case, one then needs to distinguish between resonant and

non-resonant monomials, according to Eq. (42). A non-resonant monomial can be solved setting f
(p)
rI = 0,

and θrI = g
(p)
rI /(σI − λr). On the other hand when a resonant monomial is present, then the same choice

as for the graph style is retained.
In vibration theory, since the starting point is a second-order problem in time with real coordinates, it

is also interesting to try to keep real quantities as far as possible in the developments in order to be able to
come back to oscillator-like equations. This leads to define a full real normal form as in [13], as well as to
distinguish two different normal form styles: the complex and the real one [35], the difference between the
two being detailed in [35]. These features are interesting in order to better understand the link between
the methods previously proposed. For example, a complex normal form is used in [59,18,29]. On the other
hand, a real normal form style is detailed in [35,60,61], and a full real normal form in [13,22,54].

We now turn to the solution to the non-autonomous part of the invariance equation. In this case,
the presence of the external forcing adds new frequencies to the system. As a consequence, the resonance
relationship needs to be revisited to take this peculiarity into account. General solutions will be detailed
and discussions on the different styles of solutions will also be given.

3.2.2 Non-autonomous part

This Section is devoted to solving the ε1-invariance equation (32) at arbitrary order. In particular, we
assume that the autonomous part of the problem has already been tackled and Ψ(z), Υ (z) and f(z) are
available. The unknowns to solve for in Eq. (32) are only those related to the non-autonomous part, i.e.
Ψ̂j(z), Υ̂j(z) and f̂j(z) for each of the forcing eigenvalues λ̂j . In order to make the presentation and notation

lighter, we thus restrict ourselves in this Section to the case of a single external excitation eigenvalue λ̂
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and omit the subscript (·)j in mappings and reduced dynamics. The asymptotic expansions for the Fourier
coefficients associated to the expressions given in Eq. (31) are thus written as:

Ψ̂j(z) = Ψ̂(z) =

q∑
p=0

[Ψ̂(z)]p, Υ̂j(z) = Υ̂ (z) =

q∑
p=0

[Υ̂ (z)]p, f̂j(z) = f̂(z) =

q∑
p=0

[f̂(z)]p, (43)

with q the maximum order of expansion of the ε1-invariance equation. Note that the maximum order of
the expansion of the non-autonomous part is intimately related to that of the autonomous one, such that
one has q < o. The notation now strictly follows the case summarized in the previous Section, and the
unknowns are expanded as:

[Ψ̂(z)]p =
∑
I

Ψ̂
(p)
I π

(p)
I , [Υ̂ (z)]p =

∑
I

Υ̂
(p)
I π

(p)
I , [f̂(z)]p =

∑
I

f̂
(p)
I π

(p)
I . (44)

These developments, together with the known ones related to the autonomous part, need then to be inserted
in the ε1-invariance equation (32), from which the homological equations for each order can be derived by
identification of same powers.

Contrary to the ε0 development, whose first-order homological equations require a dedicated treatment
to impose that the parametrised manifold is identity tangent to the linear subspace, the ε1 homological
equations can be derived immediately for a generic order p.

The main novelty of the ε1-invariance from a computational standpoint is the development of new
terms associated to the gradients with respect to the normal coordinates. A comprehensive treatment of
such terms is reported in Appendix D, where their derivations in a framework compatible with algorithmic

implementation is reported. We can thus write the order-p homological equation for any monomial π
(p)
I ,

that is to say for any set I of indices spanning all the possible monomial terms of order p:

∀ p = 0, ..., q, ∀ I ∈ Ĥ(p),

σ̂IMΥ̂
(p)
I +CΥ̂

(p)
I +KΨ̂

(p)
I +

2n∑
s=1

(
λsf̂

(p)
s I Mϕϕϕs

)
+Mν̂

(p)
I + Ĝ

(p)
I + Ĥ

(p)
I = F̂

(p)
I , (45a)

σ̂IMΨ̂
(p)
I −MΥ̂

(p)
I +

2n∑
s=1

(
f̂
(p)
s I Mϕϕϕs

)
+Mµ̂

(p)
I = 0, (45b)

where all quantities not previously defined are given as:

σ̂I = λ̂+ λi1 + λi2 + ...+ λip , (46a)

µ̂
(p)
I =

2n∑
s=1

(
p∑

k=2

p−k∑
l=0

Ψ̂
(p−k+1)
{i1...il s il+k+1...ip}f

(k)
s{il+1...il+k} +

p−1∑
k=0

p−k∑
l=0

Ψ
(p−k+1)
{i1...il s il+k+1...ip}f̂

(k)
s{il+1...il+k}

)
, (46b)

ν̂
(p)
I =

2n∑
s=1

(
p∑

k=2

p−k∑
l=0

Υ̂
(p−k+1)
{i1...il s il+k+1...ip}f

(k)
s{il+1...il+k} +

p−1∑
k=0

p−k∑
l=0

Υ
(p−k+1)
{i1...il s il+k+1...ip}f̂

(k)
s{il+1...il+k}

)
, (46c)

Ĝ
(p)
I =2

p∑
k=1

G
(
Ψ

(k)
{i1...ik}, Ψ̂

(p−k)
{ik+1...ip}

)
, (46d)

Ĥ
(p)
I =3

p−1∑
k=1

p−k∑
l=1

H
(
Ψ

(k)
{i1...ik},Ψ

(l)
{ik+1...ik+l}, Ψ̂

(p−k−l)
{ik+l+1...ip}

)
, (46e)

F̂
(0)
I = F̂, and F̂

(p)
I = 0, ∀ p ≥ 1. (46f)

One can notice from the last line, Eq. (46f), that the forcing terms appear only at order zero of the
asymptotic expansion since the applied force is not a function of the structure configuration or velocity.
Consequently, the order zero ε1-homological equation has a peculiar formulation as compared to higher order
developments, and a detailed discussion about this is reported in Section 4. Interestingly, the formulation of
the problem is identical to that obtained at order ε0 for the autonomous part. One can in particular note the

expressions of the coefficients µ̂
(p)
I and ν̂

(p)
I and compare them with µ

(p)
I and ν

(p)
I given in Eqs. (38b)-(38c).

Since we are working with non-autonomous terms (highlighted with hatted variables), the new coefficients
make appear the cross-products of terms from the autonomous part (solved and known, without hats) with
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unknowns from the non-autonomous part. As in the previous Section, the order-p homological equation for

the monomial π
(p)
I , can also be rewritten in matrix form to yield a more compact and readable form:

∀ I ∈ Ĥ(p), ∀ p ∈ {1, ..., q},(
σ̂I

[
M 0
0 M

]
+

[
C K

−M 0

])[
Υ̂

(p)
I

Ψ̂
(p)
I

]
+

2n∑
s=1

f̂
(p)
sI

[
M 0
0 M

]
Ys =

[
−Mν̂

(p)
I − Ĝ

(p)
I − Ĥ

(p)
I + F̂

(p)
I

−Mµ̂
(p)
I

]
. (47)

which is very similar to Eq. (39). The right-hand side of Eq. (47) has only one additional term, which is
simply related to the forcing.

At this stage and elaborating on the solution already obtained for the autonomous part, one under-
stands that the general solution to Eqs. (47) cannot be written directly, for the same reasons explained in
Section 3.2.1. In order to shed light on the solution procedure, one can again use the projection of Eqs. (47)
onto the master modes to derive the tangent part of the order-p homological equation. To that purpose, let
us now define:

θ̂
(p)
r I =∆ XT

r

[
M 0
0 M

] [
Υ̂

(p)
I

Ψ̂
(p)
I

]
, and ĝ

(p)
r I =∆ XT

r

[
−Mν̂

(p)
I − Ĝ

(p)
I − Ĥ

(p)
I + F̂

(p)
I

−Mµ̂
(p)
I

]
. (48)

In the master modal space, the tangent part of the order-p homological equation for the non-autonomous
problem simply reads:

∀ I ∈ Ĥ(p),∀p ∈ {0, ..., q},∀ r = 1, ..., 2n,

(σ̂I − λr)θ̂
(p)
r I + f̂

(p)
r I = ĝ

(p)
r I . (49)

The main difference with respect to the autonomous development is the definition of σ̂I given in Eq. (46a),
which now contains the external forcing eigenvalue λ̂, hence explicitly depending on the external forcing
frequency. This reflects the fact that the calculation treats the presence of the external forcing as an
additional degree of freedom with its own frequency, thus enlarging the scope of resonance relationships.
This has important consequences both on the definition of resonances and on the styles of solutions that
one can adopt. The following Sections are devoted to the general solution to this problem, detailing the
analysis of the resonance relationship with the external forcing included, and describing how to handle
them with the different styles of parametrisation.

3.3 Solution scheme for a direct computation and styles of parametrisation

In this Section, the solution scheme allowing one to derive a direct computation operating from the FE
degrees of freedom (dofs), and applicable to both autonomous and non-autonomous parts, is first detailed.
The main idea is to rely on the fact that the structure of the order-p homological equations is identical for
both ε0 and ε1-invariance equations, as underlined in the last Section. Consequently the solution scheme
proposed in [35] can be easily extended to handle the time-dependent part. First one has to solve in the
modal space the problem for the tangent part which is underdetermined. Next, since we operate in the
physical space, a direct approach must be devised for the different possible solutions (depending on the
style selected). This is realized thanks to an augmentation trick where the non-invertible matrices appearing
due to resonances are bordered with eigenvectors of the kernel, see [35] for details.

Let us first begin by using a common notation for the general structure of the order-p homological
equation derived for both autonomous and non-autonomous parts, Eqs. (37) and (45). Both these equations
can be rewritten as:

∀ I ∈ H̊(p), ∀p ∈ {0 ... q},

σ̊IMΥ̊
(p)
I +CΥ̊

(p)
I +KΨ̊

(p)
I +

2n∑
s=1

λsf̊
(p)
s I Mϕϕϕs = E̊

(p)
I , (50a)

σ̊IMΨ̊
(p)
I −MΥ̊

(p)
I +

2n∑
s=1

f̊
(p)
s I Mϕϕϕs = −Mµ̊

(p)
I . (50b)

The notation (̊·) is here used to denote the quantities associated with either ε0 or ε1 developments. For
instance σ̊I refers to σI for the autonomous problem, and to σ̂I for the non-autonomous case. The same
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holds for mappings and reduced dynamics terms. The right-hand sides of Eqs. (37) and (45) have been

rewritten with the simple generic term E̊
(p)
I , whose expression for the ε0-invariance is given as:

E̊
(p)
I =∆ E

(p)
I =∆ −Mν

(p)
I −G

(p)
I −H

(p)
I , (51)

while its expression for the ε1-invariance equations is:

E̊
(p)
I =∆ Ê

(p)
I =∆ −Mν̂

(p)
I − Ĝ

(p)
I − Ĥ

(p)
I + F̂

(p)
I , (52)

One important feature of Eq. (50) is that for any order there exists an algebraic relation between Υ̊
(p)
I

and Ψ̊
(p)
I . This implies that Eq. (50b) can be exploited to halve the number of equations associated to the

mappings. The resulting linear system obtained for Ψ̊
(p)
I , after condensing the velocity mapping terms, is

equal to: [̊
σ2
IM+ σ̊IC+K

]
Ψ̊

(p)
I +

2n∑
s=1

(̊
σI − λ̄s

)
Mϕϕϕsf̊

(p)
s I = E̊

(p)
I − [̊σIM+C] µ̊

(p)
I , (53)

where the following identity has been used for the derivation (see Appendix A of [35] for the proof of this
property):

((̊σI + λj)M+C)ϕϕϕj =
(̊
σI − λ̄j

)
Mϕϕϕj . (54)

In order to further unify the presentation of the solutions for both autonomous and non-autonomous
part, let us also introduce a generic notation for the tangent part of the order-p homological equation as:

∀ p ∈ {0, ..., q},∀ I ∈ H̊(p),∀ r = 1, ..., 2n,

(̊σI − λr)θ̊
(p)
r I + f̊

(p)
r I = g̊

(p)
r I , (55)

which holds for both Eq. (41) (by simply omitting the upper circle) and Eq. (49) (by replacing the circle

with a hat). As explained in Section 3.2.1, the two basic solutions to Eq. (55) are either to set θ̊
(p)
rI = 0 and

solve for f̊
(p)
rI or, on the contrary, to set f̊

(p)
rI = 0 and solve for θ̊

(p)
rI . This dichotomy gives rise to the two

main styles of parametrisation, the graph style and the normal form style. Unfortunately, while the writing
of these two types of solutions is obvious in the modal space, it is not in the physical space where all the
coordinates are interwoven. Moreover, one needs to take care of the occurrence of resonances, since in this
case the first term in Eq. (55) vanishes and the dichotomy is not applicable anymore.

In order to simultaneously write the solutions in physical space for a direct computation, and take care
of the resonances, the set R has been introduced in [35] as the set of indices such that the choice of setting

θ̊
(p)
rI = 0 is made. Following a direct parametrisation approach, imposing θ̊

(p)
rI = 0 is equivalent to enforce

orthogonality between the associated mappings (Ψ̊
(p)
I , Υ̊

(p)
I ), and the left eigenfunction Xr associated to

the relevant resonant monomial, which writes (see [35] for details):

XT
r

[
M 0
0 M

] [
Υ̊

(p)
I

Ψ̊
(p)
I

]
= 0, (56)

or equivalently:

ϕϕϕT
r MΥ̊

(p)
I = λ̄rϕϕϕ

T
r MΨ̊

(p)
I . (57)

Using Eq. (50b) in order to eliminate Υ̊
(p)
I , from the above equation, one can finally rewrite the orthogonality

condition (57) as:

ϕϕϕT
r M

(
σ̊IΨ̊

(p)
I +

2n∑
s=1

(
ϕϕϕsf̊

(p)
sI

)
+ µ̊

(p)
I

)
− λ̄rϕϕϕ

T
r MΨ̊

(p)
I = 0, (58)

This last equation will be used in the forthcoming developments to augment the system and write the direct
solution from the physical space.

Remembering that the order-p homological equation is written for each set I defining a monomial, and
the definition of R just recalled, one can now rewrite the general solutions in the modal space as:{

f̊
(p)
rI = 0, (̊σI − λr)θ̊

(p)
rI = g̊

(p)
rI , if r /∈ R,

θ̊
(p)
rI = 0, f̊

(p)
rI = g̊

(p)
rI , if r ∈ R.

(59)

Three styles of parametrisations have been defined in [35], and their difference can be highlighted by
focusing on how they fill the set R. The graph style, irrespective of resonance conditions, always sets

RGraph = {1 2 . . . 2n}. (60)
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On the contrary, the complex normal form style (CNF) is defined via

RCNF = {r}, ∀ I, r : σ̊I ≈ λr. (61)

while, finally, the real normal form style (RNF) is such that

RRNF = {r r∗}, ∀ I, r, r∗ : σ̊2
I ≈ λ2

r ≈ λ2
r∗ , (62)

where r∗ is defined as

r∗ =

{
r + n if r ≤ n,

r − n if r > n,
(63)

The overall linear system that yields the displacement mappings and the reduced dynamic coefficients
associated to a given monomial is of size N+m, m being the number of resonant degrees of freedom, i.e. the
cardinality of R. The resulting matrix structure is reported in [35] for the autonomous case, which extends
exactly to the non-autonomous system since the problems have the same shape. For the sake of brevity,
the augmentation strategy using a bordering technique is not repeated here, and the interested reader can
find the details of this procedure in [35]. Only the results are reported, for completeness.

For the complex normal form (CNF), where the size of the set R is the smallest one, the augmentation
procedure leads to solve the following problem:[

σ̊2
IM+ σ̊IC+K

(̊
σI − λ̄r

)
Mϕϕϕr(̊

σI − λ̄r

)
ϕϕϕT
r M 1

] [
Ψ̊

(p)
I

f̊
(p)
r I

]
=

[
E̊

(p)
I − [̊σIM+C] µ̊

(p)
I

−ϕϕϕT
r Mµ̊

(p)
I

]
. (64)

The added line corresponds to rewriting the orthogonality condition given by Eq. (58) in matrix form, using
the fact that in this case the cardinality of R is one.

For the real normal form style (RNF) the size of R is doubled, which leads to the following system: σ̊2
IM+ σ̊IC+K

(̊
σI − λ̄r

)
Mϕϕϕr (̊σI − λr)Mϕϕϕr(̊

σI − λ̄r

)
ϕϕϕT
r M 1 1

(̊σI − λr)ϕϕϕ
T
r M 1 1


 Ψ̊

(p)
I

f̊
(p)
rI

f̊
(p)
r∗I

 =

 E̊
(p)
I − [̊σIM+C] µ̊

(p)
I

−ϕϕϕT
r Mµ̊

(p)
I

−ϕϕϕT
r Mµ̊

(p)
I

 . (65)

In this case the two added lines deduces from RRNF = {r, r∗}, and each of them corresponds to Eq. (58).
Finally, the graph style parametrisation is characterized by a complete set R containing the coordinates

of all master modes; consequently the size of the system to solve is larger and reads: σ̊2
IM+ σ̊IC+K Mϕϕϕ

(
I[2n]σ̊I − λ̄

)(
Mϕϕϕ

(
I[2n]σ̊I − λ̄

))T [
I[n] I[n]
I[n] I[n]

] [ Ψ̊(p)
I

f̊
(p)
I

]
=

[
E̊

(p)
I − [̊σIM+C] µ̊

(p)
I

−ϕϕϕT
r Mµ̊

(p)
I

]
, (66)

where I[n] refers to the identity matrix of size n× n. All linear systems reported in this Section are sparse
and can be generated using the mass, damping, and stiffness matrices as well as standard functions to
compute system nonlinearities over the domain. Importantly, all the linear problems involve invertible
matrices that have been built based on the knowledge of the solution in the modal space. Singularities due
to the occurrence of resonances have been treated in each system by bordering the singular parts with the
eigenvectors of the kernels.

4 Single master mode analysis and resonances

In this Section, the new resonances appearing in the ε1-invariance equations, shown in Eq. (49) and briefly
underlined at the end of Section 3.2.2, are further analyzed together with their consequences on the reduced
dynamics and the nonlinear mappings. Importantly, the emphasis is put on the appearance of new trivial
resonance relationships in the non-autonomous part that are completely related to the fact that the forcing
is now taken into account. Following [13,54], resonances are named trivial when they cannot be avoided,
due to the peculiar structure of the eigenspectrum of vibration problems, composed of complex conjugate
pairs. While these resonances have been already well analyzed for the autonomous problem, this Section
tackles their definition and appearance in the context of a forced system. The consequences of these trivial
resonance relationships are numerous and important.

In order to initiate the analysis, we first restrict ourselves to the case where reduction to a single master
mode is undertaken, with the assumption of a single excitation frequency Ω, with associated eigenvalues
λ̂j = λ̂+ = +iΩ and λ̂j+n̂ = λ̂− = −iΩ, which is consistent with the definitions given in Section 2.2. In
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particular, it is assumed that the master mode does not generate any internal resonance with any of the
slave modes, ensuring that reduction to single mode is valid. In accordance with the notation introduced
before Eq. (22), the label of the master mode should be m1. However, for the sake of keeping the expressions
as simple as possible, we will use the label m and hence the selected master mode is denoted Φm, with
eigenfrequency ωm and complex eigenvalue Λm. With a single mode assumption, the normal variables list
has two entries that are indexed with 1 and 2 = 1∗: z = (z1, z2) = (z1, z1∗). According to the conventions
set in Eq. (22), λ1 = Λm, λ1∗ = Λ̄m, and ϕϕϕ1 = ϕϕϕ1∗ = Φm.

At order p of the development the resonance relationships, stemming from the non-autonomous part
with the single master mode assumption, simply read σ̂±,I ≈ λ1 or σ̂±,I ≈ λ̄1, where σ̂±,I refers to the
two possible cases:

σ̂+,I = λ̂+ + λi1 + λi2 + ...+ λip = +iΩ + λi1 + λi2 + ...+ λip , (67a)

σ̂−,I = λ̂− + λi1 + λi2 + ...+ λip = −iΩ + λi1 + λi2 + ...+ λip , (67b)

Let us recall that this condition is associated to the monomial π
(p)
I = zi1zi2 ...zip where I = {i1 i2... ip} is a

set of indices spanning master modes only. As a consequence, in the present case the indices will be either
1 or 1∗ only, where the conjugate notation introduced in Eq. (63) is used. Finally, since we are assuming
small damping, the resonance condition is to be checked on the imaginary parts of the eigenvalues, in order
to avoid the appearance of small denominators. Under this assumption, whenever both 1 and 1∗ are present
in I, then the associated summation in the resonance relationship vanishes since λ1+λ1∗ ≈ iωm− iωm = 0.
One can thus simply discard all pairs (1, 1∗) in the set I and simply rewrite (67) as

σ̂±,I = λ̂± + kλ1, or σ̂±,I = λ̂± + kλ1∗ , (68)

where the integer k ≥ 0 has been defined as the number of occurrences of index 1 (resp. 1∗ index) in I
that are not paired with their conjugate. Note in particular that when the order p is even (resp. odd), then
k is necessarily an even (resp. odd) number smaller or equal to p. For example when p = 3, then one can
create σ̂±,I = λ̂± + λ1, if I = {1 1∗ 1}, σ̂±,I = λ̂± + 3λ1, if I = {1 1 1}, and similarly σ̂±,I = λ̂± + λ1∗ ,

or σ̂±,I = λ̂± + 3λ1∗ , with the conjugate I sets.

A resonance condition is met when σ̂±,I is close to the eigenvalue of the master mode, i.e. when
σ̂±,I ≈ λ1 or σ̂±,I ≈ λ1∗ . Inspecting the four possible cases arising from these relationships, it can be
shown that all of them can be recast in the compact condition ±Ω ≈ (±1 ± k)ωm. Excluding the case
Ω ≈ 0, not considered here since static forcing with vanishing frequencies are not taken into account, one
can see that they all reduce to the simple condition:

Ω ≈ γωm, (69)

with γ ≥ 1 an integer such that

γ = k − 1, or γ = k + 1. (70)

As a summary, trivial resonance relationships appear when the forcing frequency is equal to a multiple
value of the eigenfrequency of the master mode. Also, as a consequence of Eq. (70), whenever the forcing
frequency is an odd (resp. even) multiple of the resonance frequency, i.e. γ is odd (resp. even), then trivial
resonances are met only at even (resp. odd) orders of the expansion.

As a first conclusion, the forcing frequency needs to be an integer multiple of the master mode’s eigen-
frequency to create new trivial resonances. If this is met, then the condition provided by Eq. (70) has to be
checked at any order p of the development and resonant monomials need to be embedded in the reduced
dynamics. Numerous different cases need then to be separately analyzed for increasing values of γ, and for
each of them important physical features arise. The analysis proposed here does not aim at being complete
for any γ and we will only propose, in the following Sections, a first analysis of the basic cases appearing for
small values of γ. To begin with, the simplest case of non-resonant forcing, where the excitation frequency
is different from all possible multiples of the master mode’s eigenfrequency, is detailed.

4.1 The case of a non-resonant forcing

In this case the relationship Ω = γωm is not verified whatever the value of γ, which means that the forcing
frequency is far from any multiple value of the master mode’s eigenfrequency. The main consequence is
that, at any order p of the development, no extra trivial resonance conditions will appear in the processing
of the non-autonomous part. Returning back to Eq. (55) which is written for both autonomous and non-
autonomous parts, one can thus immediately conclude that the simplest choice for the solution in the
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tangent space is to cancel all the terms of the reduced dynamics, at each order: f̂
(p)
rI = 0. This choice

is naturally associated with a complex normal form style parametrisation. Let us thus assume that this
parametrisation style has been selected for the remainder of the discussion, since it allows a more direct
understanding. The cases of other parametrisations styles (graph or real normal form), will be commented
at the end of the Section. Putting back this result in the homological equations at order p, Eq. (53), shows
that the remaining unknowns, which are the coefficients of the nonlinear mappings, can be computed from:

(σ̂2
±,IM+ σ̂±,IC+K)Ψ̂

(p)
± = Ê

(p)
±,I − [σ̂±,IM+C] µ̂

(p)
±,I . (71)

At order zero, a simple and exact solution for the mapping Ψ̂
(0)
± is found by replacing Ê

(0)
±,I by its value

given in Eq. (52). All the right-hand side terms are vanishing, except for the external forcing term, leading
to:

(λ̂2
±M+ λ̂±C+K)Ψ̂

(0)
± = F̂±. (72)

From this last equation, one immediately understands that the zero-order solution to the non-autonomous

part of the mapping Ψ̂
(0)
± is given by the linear transfer function of the underlying linear oscillatory problem,

which gives a very simple physical understanding. Furthermore, since no resonances are verified, we have
that f̂ = 0 and the reduced dynamics is simply conveyed by the autonomous part, regardless of the order
of the asymptotic expansion:

ż = f(z). (73)

Since the dynamics is assumed to be lightly damped, with Re[λj ] < 0 for all modes, the only steady-state
solution to the reduced dynamics is thus the origin z = 0. Hence in this case of non-resonant forcing, the
reduced dynamics is trivial and leads to the solution at rest. An important consequence is that all the
terms of the mappings for the autonomous part, Ψ(p)(z), vanish and are thus not needed to compute the
displacement field of the system (since being at least proportional to z, see their definition in Eq. (36)). The

same applies for all terms of the non-autonomous mappings Ψ̂
(p)
± for orders p ≥ 1. Under the assumption

of single excitation frequency, the only remaining term in all the calculations are those from the zero-order
mapping of the non-autonomous part, so that the only admissible steady state periodic motion of the
system reads:

U = ε
(
Ψ̂

(0)
+ e+iΩt + Ψ̂

(0)
− e−iΩt

)
, (74)

with Ψ̂
(0)
± given by (72). These results show that in this case of out-of-resonance excitation, the nonlinearities

can be fully neglected, which is coherent with the underlying assumptions since the forcing is assumed to
be small, such that when operated out of any multiple of the eigenfrequency of the master mode, it cannot
create large amplitude responses.

The effect of the external forcing on the computed whisker is better highlighted by projecting the
problem in the modal space, in order to separate the respective effects on the master mode, and on a
generic slave mode. Let us define the mass-weighted projection of a mapping vector onto a mode as:

Ψ̊
(p)
i I = ΦT

i MΨ̊
(p)
I , Υ̊

(p)
i I = ΦT

i MΥ̊
(p)
I . (75)

We can then compute modal displacements and velocities through mass-weighted projection of displace-
ment U and velocity V along any eigenmode Φi:

ui =ΦT
i MU = ε

(
Ψ̂

(0)
i+ e+iΩt + Ψ̂

(0)
i−e−iΩt

)
, (76a)

vi =ΦT
i MV = ε

(
Υ̂

(0)
i+ e+iΩt + Υ̂

(0)
i− e−iΩt

)
= ε iΩ

(
Ψ̂

(0)
i+ e+iΩt − Ψ̂

(0)
i−e−iΩt

)
, (76b)

where the specific solution for this non-resonant case, Eq. (74), has been used; subscripts ± refer to the forc-
ing frequencies ±iΩ, and the following relation between zero-order non-autonomous mappings, stemming
from Eq. (50b), has been used:

Υ̂
(0)
+ = +iΩΨ̂

(0)
+ , and Υ̂

(0)
− = −iΩΨ̂

(0)
− . (77)

Equation (76) allows one to better understand and represent the motions of the computed whisker
in phase space. At order zero, the effect of a non-resonant forcing is to introduce a time-modulation of
the invariant set. Indeed, all modal coordinates undergo harmonic motion with displacement and velocity
having a 90 degrees phase difference, as given by Eq. (77). Consequently, whenever the projection of the
zero-order mapping is non-zero for a given mode, then the manifold exhibits a rigid rotation along the
associated modal plane in phase space.
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Fig. 2 Whisker motion along time when the non-autonomous mapping is truncated at order zero. (a) whisker subjected

to Ψ̂
(0)
m± ̸= 0, and Ψ̂

(0)
s± = 0. (b) whisker subjected to Ψ̂

(0)
m± = 0 and Ψ̂

(0)
s± ̸= 0. The two pictures highlight the effects

conveyed by non-autonomous mappings colinear with the master mode and by mappings colinear with a slave mode. In (a)
colors ( ),( ),( ),( ),( ) correspond to a phase Θ = Ωt equal to 0, 2π/5, 4π/5, 6π/5, and 8π/5, respectively. In (b) colors
( ),( ),( ),( ),( ) correspond to a phase Θ = Ωt equal to 0, π/4, π/2, 3π/4, and π, respectively

In order to better highlight the physical implications of zero-order terms in the non-resonant forcing
scenario, Fig. 2 shows two schematic representations of the whisker computed for a system subjected to
single harmonic excitation, represented along the um, vm, and us coordinates, where the subscript m stands
for the master mode, and s stands for a generic slave mode. Figure 2(a) represents the condition such that

Ψ̂
(0)
m± ̸= 0 (which in turn implies Υ̂

(0)
m± ̸= 0 thanks to Eq. (77)), and Ψ̂

(0)
s± = 0. This condition is met when

the projection of the zero-order mapping onto any slave coordinate is zero. One can verify which forcing
conditions yields such behaviour, by taking the projection of Eq. (72) onto a generic mode Φi:

(
σ̂2
±, I + 2ξiωiσ̂±, I + ω2

i

)
Ψ̂

(0)
i± = ΦT

i F̂±, (78)

which highlights that Ψ̂
(0)
i± ̸= 0 whenever the modal participation factor of the force along a given linear

mode is not zero. Therefore, Fig. 2a represents the condition such that the force is perfectly co-linear with
the master mode Φm, a loading condition that has been exploited for instance in [33,35].

A different scenario is reported in Fig. 2(b), which shows a whisker exhibiting zero-order motion along
us only. In the selected phase space (um, vm, us), this represents a rigid oscillatory motion along us which
is the result of a circular motion of the invariant set along the (us, vs) plane as given by Eq. (77). Under
the assumption of non-resonant forcing, such kind of response is met when ΦT

s F̂± ̸= 0, and the force is
perfectly orthogonal to the master subspace. Note that in the most general scenario, a composition of the
two motions will be observed.

Two last remarks are worth stressing. Charts reported in Fig. 2 represent the two opposite loading
conditions for a system parametrised along a given master mode Φm, i.e. a whisker obtained for a system
subjected to a force that is co-linear with Φm, and a whisker derived for a system excited with a force
that is orthogonal to the master mode. In general, the applied forcing is neither completely orthogonal nor
exactly co-linear with the given master subspace. As a consequence, the parametrised invariant manifold
exhibits zero-order modulations that are a combination of those depicted in Fig. 2, i.e. the system undergoes
harmonic motion both along the plane spanned by Φm and along any plane associated to a slave mode Φs.
Furthermore, the presented treatment is proposed under the assumption that the system is excited out of
resonance and that the parametrisation style is either CNF or RNF. On the other hand, if a graph style

parametrisation is selected, one has then θ̊
(p)
I = 0. Consequently ΦT

mMΨ̂
(0)
± = 0, hence modulations of the

whisker in time along the master mode directions are not possible, and the main oscillations in such case
are represented by Fig. 2(b).

Contrary to order zero non-autonomous mappings, higher order terms yield a whisker that undergoes
time-dependent distortions, in addition to the main oscillatory motion conveyed by order 0. These effects
are hardly observed in structures of practical interest, yet they can be found in presence of strong nonlinear
coupling between master and slave modes and forcing on a slave mode. Examples of such modulations are
highlighted in Section 6.
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4.2 System driven at main resonance: primary resonance and isolated solutions

Let us begin the analysis of the resonance condition Ω ≈ γ ωm with the case γ = 1. Recalling that these
resonance conditions appear from the order γ − 1 of the asymptotic development, the consequence will
thus develop from the zero-order term of the non-autonomous part. Since now Ω ≈ ωm, this case is called
main resonant excitation. As it is hereafter discussed, this condition yields two different cases according
to the force distribution acting on the body. One is the primary resonance, which is more familiar in the
mechanical context and is observed when the master modal force is not zero. On the other hand, a different
case is exhibited when the forcing acts on coupled slave modes, and is thus perfectly orthogonal to the
master one, which in turn yields conditions for isolated solutions.

To give a physical explanation, let us first restrict ourselves to the case of a graph style or a real normal
form style parametrisation, since the consequences are easier to understand. The case of the complex
normal form style will be commented later. Focusing on the zero-order terms of the non-autonomous part,
the associated homological equation can be rewritten from Eq. (53) as:(

λ̂2
±M+ λ̂±C+K

)
Ψ̂

(0)
± + (λ̂± − λ1∗)MΦmf̂

(0)
±,1 + (λ̂± − λ1)MΦmf̂

(0)
±,1∗ = F̂±. (79)

This equation differs from that obtained with a complex normal form style parametrisation since λ̂ cannot
be resonant with both λ1 and λ̄1, but only with one of them. As explained in Section 3.3, Eq. (79) must
be complemented with proper orthogonality conditions. Since both graph style and real normal form style

parametrisations imposes θ̂
(0)
±,1 = θ̂

(0)
±,1∗ = 0 if λ̂± = ±ωm, from Eq. (58) the resulting relations are obtained:

(
λ̂± − λ1∗

)
ΦT

mMΨ̂
(0)
±,I + f̂

(0)
±,1 + f̂

(0)
±,1∗ = 0, (80a)(

λ̂± − λ1

)
ΦT

mMΨ̂
(0)
±,I + f̂

(0)
±,1 + f̂

(0)
±,1∗ = 0. (80b)

By taking the difference between the two equations one has that ΦT
mMΨ̂(0) = 0. As a consequence:

f̂
(0)
±,1 + f̂

(0)
±,1∗ = 0. (81)

Finally, using this last conditions and by projecting Eq. (79) onto the modal subspace, the following
expressions are obtained:

2iIm[λ1]f̂
(0)
±,1 = ΦT

mF̂±, 2iIm[λ1∗ ]f̂
(0)
±,1∗ = ΦT

mF̂±. (82)

The resulting mass-orthogonality between zero-order mapping and master linear subspace is meaningful
from a physical standpoint. In the case where the forcing has a spatial dependence that is purely co-linear

with Φm, the resulting mapping Ψ̂
(0)
± vanishes. This explains for instance the excellent accuracy of the

numerical results reported in past works that adopted such parametrisation styles to obtain ROMs from
the autonomous problem only [22,32,33,35]. A necessary remark is that in the special case of complex
normal form styles, as for instance the one adopted in [36], the physical interpretation of the results is less
obvious from a physical standpoint since also part of the forcing co-linear with Φm is embedded within

Ψ̂
(0)
± . This implies that the computed whisker exhibits modulations in time along the plane associate to

the master mode as the one depicted in Fig. 2a.
The terms of the reduced dynamics for the non-autonomous part at order zero, as shown in Eq. (82),

are directly proportional to the projection of the external force onto Φm. In mechanical systems, the most
common case is to have ΦT

mF̂± ̸= 0, which in turn yields zero-order resonant terms in the reduced dynam-
ics. This condition is hereafter labelled primary resonance. Furthermore, higher order resonance conditions
given by σ̂±I ≈ λ yield terms in the reduced dynamics that account for the change in configuration of the
system during motion. This last result has special relevance for structures excited at large vibration ampli-
tudes. Numerical examples illustrating the benefits of introducing high order terms in the non-autonomous
developments are reported in Section 6.1.

A different resonance phenomenon is met in the peculiar case of a forcing orthogonal to the master
linear subspace, i.e. such that ΦT

mF̂± = 0. This condition is provided for instance by a forcing co-linear
with a slave mode, hence zero-order terms of the non-autonomous reduced dynamics are zero as evidenced
by Eq. (82). If the slave mode is coupled to the master mode, then high order non-autonomous terms
appear in the reduced dynamics. As underlined in previous Sections, for γ = 1 only even order resonances
are observed in the asymptotic development, consequently the terms introduced in the reduced dynamics by
the non-autonomous part are at least O(∥z2∥). The outcome is that the origin z of the system in presence
of damping is an asymptotically stable fixed point and non trivial solutions are necessarily detached from
it, i.e. isolated solutions may appear. This very specific case will be illustrated in Section 6.2. One can
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however note that practical conditions that yield isolated solutions in mechanical systems are rare when
a single master mode is involved since in general the forcing is never perfectly orthogonal to the master
mode and even a little amount of modal contribution to the master mode is sufficient to merge the isolated
solutions with the main branch.

4.3 Secondary resonance with γ = 2 and parametric excitation

We now focus on the solution given by the reduction procedure when γ = 2, i.e. when the excitation
frequency is twice the natural frequency of the master mode. Since resonance effects appear already at
order γ−1 for the non-autonomous part, the first consequences have to be analyzed at the first order of the

development. Zero-order terms showing no resonance, the simplest choice thus consists in setting f̂
(0)
±,rI = 0,

which in turn implies that the resulting non-autonomous mapping Ψ̂
(0)
± is provided by Eq. (72).

Since γ = 2 the monomials associated to this case are of second order with a product of a term involving
the forcing, and a term involving the normal coordinate z. More specifically, if Ω ≈ 2ωm then the associated
trivial resonance conditions are:

σ̂+,1 = λ̂+ + λ1∗ = +iΩ + λ1∗ ≈ λ1, (83a)

σ̂−,1 = λ̂− + λ1 = −iΩ + λ1 ≈ λ1∗ . (83b)

In the case where a complex normal form is selected (recalling that this style of parametrisation give rise
to the simplest possible formulation for the reduced dynamics), the following first-order non-autonomous
reduced dynamics is obtained:

f̂ (1)(z, Ω, t) =

[
f̂
(1)
+,1{1∗}

0

]
z1∗ eλ̂+t +

[
0

f̂
(1)
−,1∗{1}

]
z1 e

λ̂−t. (84)

where the analytical expression of the f̂ (1) terms is provided in Appendix E and detailed treatment of
their analytical expressions is provided in Section 6. As a main consequence, the reduced dynamics in this
case makes appear terms that are the drivers for a parametric instability since being directly proportional
to the forcing. Indeed, the product between the normal coordinates and the external forcing are typical
of Mathieu-like equations, and induce parametric resonance when the excitation frequency is twice the
eigenfrequency. This situation will be further analyzed in Section 6.3. In particular, the case of an axially
loaded beam will be studied, and we will show that the ROM includes some terms in the non-autonomous
part of the reduced dynamics, that are capable of reproducing the parametric instability.

To conclude this Section, let us remark that higher order resonance conditions are also met for γ > 2.
For increasing values of γ, the effects of such resonances appear from order γ − 1 in the reduced dynamics
of the non-autonomous part, meaning that their occurrence is somehow limited to larger amplitudes and
more extreme excitation cases. As a general statement, this will give rise in the reduced dynamics to terms
with product of the forcing associated to a higher order of the power of the normal coordinate z, a situation
that is prone to the emergence of isolated solutions to the system, detached from the fixed point z = 0. A
more complete analysis is left for future works.

5 Realification

In vibratory systems the eigenspectrum of the first-order formulation given in Eq. (17) is characterised
by pairs of complex conjugate eigenvalues. As a consequence, adopting a diagonalised formulation for the
linear part of the reduced dynamics enforces the complexification of the problem [28], hence making the
resulting mappings and reduced dynamics complex-valued.

However, one can recover the real-valued nature of the original system. This operation, called realifica-
tion, is thus the flip side of the complexification, and already attracted general comments and solutions, see
e.g. [28]. For vibratory systems, realification is based on the introduction of a linear transformation acting
on the normal coordinates which preserves the mapped displacement U and velocity V fields. For instance
one can set:

a = Rz, (85)

with a the real-valued normal coordinates. The linear operator R is defined as in [35]:

R =

[
−iI iI
I I

]
. (86)
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This is based on the simple observation that normal coordinates zj and zj∗ are respectively complex
conjugate and, as a result, real-valued mappings and reduced dynamics can be obtained by simply choosing
as new coordinates real and imaginary parts of the complex normal coordinates:

aj = zj + zj+n = 2Re[zj ], (87a)

aj+n =
zj − zj+n

i
= 2Im[zj ]. (87b)

The realification procedure needs to the applied to both mappings and reduced dynamics resulting from
the DPIM for all orders of expansion. This in turn provides the following relations between complex and
real mappings:

∑
I

Ψ̊
(p)
j Iπ

(p)
I =

∑
I

˜̊
Ψ

(p)

j I π̃
(p)
I , (88a)

∑
I

Υ̊
(p)
j Iπ

(p)
I =

∑
I

˜̊
Υ

(p)

j I π̃
(p)
I , (88b)

where (̃·) denotes realified quantities, and the (̊·) notation is used again to refer simultaneously to au-
tonomous and non-autonomous quantities. Similar relations hold for the reduced dynamics with the same

approach presented in [35]. The new monomials π̃
(p)
I have the same structure as the complex ones:

π̃
(p)
I = ai1ai2 ...aip , I = {i1i2...ip}. (89)

Regarding the non-autonomous part, a further step is required to realify the system. Indeed, to uncouple
harmonics during the solution to the homological equations, Euler relations are exploited to complexify
the time dependence of the mapping. The inverse relation is then used to fully realify non-autonomous
mappings and reduced dynamics via cos (Ωt) = (e+iΩt + e−iΩt)/2 and sin (Ωt) = (e+iΩt − e−iΩt)/2i. An

important remark regarding this last step is that, since the applied forcing is real-valued, i.e.
¯̂
F = F̂, the

following conditions hold:
¯̂
F+ = F̂− (90)

As a consequence we have that:

Ψ̂
(p)
j,I = conj[Ψ̂

(p)
j∗,I∗ ], Υ̂

(p)
j,I = conj[Υ̂

(p)
j∗,I∗ ], f̂

(p)
j,s I = conj[f̂

(p)
j∗,s∗ I∗ ]. (91)

This last result is remarkably important from a computational standpoint. Indeed, for each excitation
frequency, there is an associated pair of complex conjugate eigenvalues +iΩ and −iΩ. However, from
Eq. (91) it is possible to perform the complete parametrisation procedure for a single forcing eigenvalue, and
then exploit the symmetry relations to derive mappings and reduced dynamics of the complex conjugate
eigenvalue. This is in turn a natural consequence of the redundancy of one of the auxiliary variables â
introduced in Eq. (24), since only one of them can be used by introducing the phase Θ = ωt instead of the
trigonometric functions.

The resulting real-valued mappings and reduced dynamics are finally expressed as:

˜̂
Ψ(a,Ω, t) =

∑
Ωi∈Ω

˜̂
ΨΩi,c(a) cos (Ωit) +

˜̂
ΨΩi,s(a) sin (Ωit), (92a)

˜̂
Υ (a,Ω, t) =

∑
Ωi∈Ω

˜̂
ΥΩi,c(a) cos (Ωit) +

˜̂
ΥΩi,s(a) sin (Ωit), (92b)

˜̂
f(a,Ω, t) =

∑
Ωi∈Ω

˜̂
fΩi,c(a) cos (Ωit) +

˜̂
fΩi,s(a) sin (Ωit). (92c)

A last remark concerns the choice of the transformation exploited to realify the system. Indeed, this
choice is not unique. For instance in [33] the following transformation was applied:

R =

[
−iΩ∗ iΩ∗

I I

]
, (93)

with Ω∗ a diagonal matrix that stores the master modes eigenfrequencies. This last transformation has the
benefit of yielding two sets of real-valued normal coordinates r and s, which can be directly related to the
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real normal variables used in [13]. Alternatively, a polar representation as the one adopted by Haller et
al. [29,34] can be adopted:

aj = ρj cosαj , (94a)

aj+n = ρj sinαj , (94b)

with ρj amplitude, and αj phase. This last transformation is particularly helpful when deriving analytic
expressions for backbones, isolas, and frequency response curves in the case of single master mode reduction.
However, as evidenced in [36], it yields a reduced dynamics that diverges in the limit of vanishing amplitudes
when ρj → 0, hence making it of little use when multiple master modes are involved e.g., in presence of
internal resonances.

6 Numerical results

In this Section, several examples are detailed, covering applications of both academic and industrial interest.
We follow the order of the discussion proposed in Section 4 and illustrate the different scenarios with the
appearance of resonances for increasing values of γ. The industrial example is a MEMS resonator with
complex geometry. All the analyses are validated with full-order simulations realised with an harmonic
balance technique directly implemented on the finite element model, and denoted in the remainder as
HBFEM solutions [62]. Numerical integration of the ROMs is performed using the continuation packages
MatCont [63], ManLab [64], and BifurcationKit [65].

We recall that, according to the conventions set in Eq. (22) and Section 4, the normal variables vector has
two entries that are indexed with 1 and 2 = 1∗ and that λ1 = Λm, λ1∗ = Λ̄m, ϕϕϕ1 = ϕϕϕ1∗ = Φm. Moreover,
in all the examples, the ROM is computed for a single excitation frequency Ω, which is selected as the
eigenfrequency of the master mode ωm for all cases, except for the parametric resonance in Section 6.3,
where it has been set at Ω = 2ωm. Finally, instead of using the abstract label m to denote the master
mode, different indices will be used in most cases, in order to better stress the physical interpretation of
the mode.

All the examples are selected in order to underline that the final intent of the method is to derive efficient
ROMs able to compute rapidly frequency-response curve of complex structures, and to that purpose, a single
reduction calculation is processed for a single excitation frequency, and then used with varying excitation
frequency in the vicinity.

6.1 Large amplitude vibrations of a forced cantilever beam

Fig. 3 (a) Cantilever geometry. The structure has a length L equal to 1 m, a width W equal to 0.05 m, and a thickness T
equal to 0.02 m. Pictures (b), (c), and (d) depict the displacement fields associated to the first bending mode ΦB1

, the first
axial mode ΦA1

(which is mode number 10 in the order of increasing frequencies for this specific beam), and the second
bending mode ΦB2

, respectively. Displacement magnitude is scaled to improve the readability of the images.
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The first case under study is a cantilever beam, shown in Fig. 3(a), of length 1 m, width 0.05 m, and
thickness 0.02 m. Homogeneous Dirichlet conditions on the displacement are imposed on the left end of the
beam. Adopted material properties are those of titanium, i.e. isotropic behaviour with Young’s modulus
104 GPa, Poisson’s ratio 0.3, and density 4400 kg/m3. The structure is excited with an harmonic body
force proportional to the first bending mode. The model associated to the structure under consideration is
therefore formulated as:∫

B

ρ ü ·w dB+

∫
B

P : ∇Tw dB = κ

[∫
B

ρΦB1
·w dB

]
cos (Ωt), ∀w ∈ C(0), (95)

where ΦB1
stands for the first bending mode, κ is a load multiplier, and Ω the forcing frequency. In this

Section, bending modes will be denoted with the subscript B and a subscript corresponding to their order
with respect to increasing frequencies, while axial modes will be denoted with the subscript A. Fig. 3(b-d)
respectively shows the mode shapes corresponding to ΦB1

, ΦA1
and ΦB2

. The geometry is discretised using
27-nodes quadratic hexahedral elements for a total of 2295 degrees of freedom and the following discrete
system is obtained, where the cosine is decomposed in its imaginary exponential parts:

MÜ+CU̇+KU+G(U,U) +H (U,U,U) =
1

2
κMΦB1

(e+iΩt + e−iΩt). (96)

A mass-proportional damping withC = (ωB1
/1000)M has been added. The forcing frequency being selected

in the vicinity of the fundamental eigenfrequency, Ω ≃ ωB1
, hence this case illustrates the theoretical results

reported in Section 4.2, with γ = 1.
The analysis shown in this Section complements the one reported in [35] by taking into account forcing

and damping, and thus enabling the computation of frequency-response curve (FRC). In the undamped sce-
nario, an important quadratic coupling between ΦB1

and ΦA1
induces a folding of the manifold associated

with the first bending mode. A consequence, shown in [35], is that only a normal form style parametrisation
is able to retrieve the backbone of the first mode up to very large amplitudes. Since no internal resonance
exists between the fundamental frequencies, we will formulate a ROM with a single master mode, i.e. the
fundamental bending mode which is directly excited by the load.

In order to obtain a versatile ROM that can be used for parametric variations of the forcing (amplitude
and excitation frequency to compute the FRC), the reduction is performed for a single excitation frequency,
as discussed in Section 3.1. In this case, the selected forcing frequency used to compute the ROM isΩ = ωB1

.
Numerical simulations are repeated for κ values equal to 1, 2, 3, 4, and 5 m/s2, in order to monitor the
evolution of the computed amplitude response for increasing amplitudes. An order 7 Fourier expansion is
used in the HBFEM.
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Fig. 4 Cantilever beam. (a) Comparison between full-order HBFEM simulations and the reduced model obtained with
the DPIM method with order 9 parametrisation of the autonomous problem and an order 8 parametrisation of the non-
autonomous part. (b) Comparison between order 8 and order 0 parametrisation of the non-autonomous part, keeping
the parametrisation order of the autonomous part equal to 9. Tags denote the values of the load multiplier κ [m/s2]. In
increasing order, the dimensionless loading multiplier κ̌ as defined in Eq. (103) is equal to 9.72 ·10−5, 1.94 ·10−4, 2.92 ·10−4,
3.88 · 10−4, and 4.86 · 10−4.
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A complex normal form style is used for all the calculations. The autonomous mappings and reduced
dynamics are first expanded up to order 9, thus guaranteeing convergence, as discussed next. On the con-
trary, the parametrisation order of the non-autonomous part is taken either equal to zero or 8. Selecting a
zero-order for the time-dependent part leads to the same results previously obtained with the direct normal
form (DNF) [32,33], but also with the cases shown in [34] where a complex-valued normal form is used. The
aim of this first example is to underline the importance of the higher-order terms of the non-autonomous
part to retrieve a perfect accuracy on the FRC with large amplitudes.

The results are collected in Fig. 4, where the modal amplitude uB1
of the first mode, normalized by the

length of the beam, is reported. Fig. 4(a) compares the results of the ROM with orders O(9,8) (using a
notation that will be used in the remainder of the paper, the first integer refers to the autonomous develop-
ment and the second to the non-autonomous part) to the full-order solutions, showing a perfect agreement
up to very large oscillation amplitudes reaching almost half the length of the beam. This result underlines
that efficient parametric ROMs can be obtained using a single excitation frequency in the parametrization
procedure. Furthermore, computational performance are excellent. Indeed, while HBFEM simulations re-
quired a total of 8 hours to retrieve the nonlinear dynamic response of the structure, the reduced model
required less than 15 minutes in total.

Fig. 4(b), by comparing orders O(9,0) and O(9,8), shows the importance of taking into account the non-
autonomous part in order to obtain a correct result. The information added by the non-autonomous part
is of crucial importance to recover the correct amplitude and in particular the maximum of the FRC which
is close to the saddle-node bifurcation point. As awaited, the discrepancy increases with the oscillation
amplitude, and the O(9,0) solution importantly overestimates the peak of the FRC. This also complements
the analysis already shown in [22], where the effect of the damping on such FRC was documented. Here,
the results clearly underline that not only an incorrect approximation of the damping might explain an
incorrect estimation at resonance, but also how the forcing is treated.

Since the difference between high and low-order parametrisations involves both the location in amplitude
and frequency of the maximum point of the FRC, let us investigate more closely how the forcing affects the
reduced dynamics. Indeed, while the predicted amplitudes are strongly connected to the mappings Ψ(z) and
Ψ̂(z), the frequency of the saddle-node points is only controlled by the reduced dynamics. The eigenvalues of

the master mode write λ1 = ΛB1
= −ξB1

ωB1
+ iωB1

√
1− ξ2B1

and λ1∗ = Λ̄B1
= −ξB1

ωB1
− iωB1

√
1− ξ2B1

,

while those of the forcing are λ̂± = ±iωB1
. Since we are in the case γ = 1, see Section 4.2, resonances are

possible only for even parametrisation orders. By restricting the derivation here to ε1 homological equations,
we have the following trivial resonance conditions at order zero:

λ̂+ ≈ λ1, (97a)

λ̂− ≈ λ1∗ . (97b)

At order one, no trivial resonances are observed, hence f̂ (1) = 0. At order two instead, new trivial resonance
conditions are satisfied, as:

λ̂+ + λ1 + λ1∗ ≈λ1, (98a)

λ̂+ + λ1∗ + λ1∗ ≈λ1∗ , (98b)

λ̂− + λ1 + λ1∗ ≈λ1∗ , (98c)

λ̂− + λ1 + λ1 ≈λ1. (98d)

The presence of these trivial resonance relationships, here detailed for the non-autonomous part, leads to a
reduced dynamics which, by taking into account the first two meaningful orders for the terms introduced
by the forcing, reads:[
ż1
ż1∗

]
= f(z)+κ

([
f̂
(0)
+,1

0

]
e+iΩt +

[
0

f̂
(0)
−,1∗

]
e−iΩt

)
+ κ

([
f̂
(2)
−,1{11}
0

]
e−iΩt

)
z21 + κ

([
0

f̂
(2)
+,1∗{1∗1∗}

]
e+iΩt

)
z21∗

+ κ

([
f̂
(2)
+,1{11∗} + f̂

(2)
+,1{1∗1}

0

]
e+iΩt +

[
0

f̂
(2)
−,1∗{11∗} + f̂

(2)
−,1∗{1∗1}

]
e−iΩt

)
z1z1∗ +O(∥z3∥),

(99)
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hence highlighting the appearance of higher-order terms in z.
In order to get a complete picture of the terms that arise from the non-autonomous part, it is worth

inspecting the coefficients f̂ (0) and f̂ (2). From Appendix E one obtains:

f̂
(0)
+,1 =

ΦT
B1

λ1 − λ1∗
F̂+, (100a)

f̂
(0)
−,1∗ =

ΦT
B1

λ1∗ − λ1
F̂−, (100b)

where λ1 − λ1∗ = 2Im[λ1] = 2iωB1

√
1− ξ2B1

and λ1∗ − λ1 = 2Im[λ1∗ ] = −2iωB1

√
1− ξ2B1

. Expressions of

f̂ (2) coefficients are much longer and are reported in Appendix E. They all share the same shape so that
only one of them is reported here for the sake of brevity:

f̂
(2)
−,1{11} =

ΦT
B1

λ1 − λ1∗

[
−M

[
Υ

(3)
{1∗11}f̂

(0)
−,1∗ +Υ

(3)
{11∗1}f̂

(0)
−,1∗ +Υ

(3)
{111∗}f̂

(0)
−,1∗

]
,

+ 2G(Ψ
(2)
{11}, Ψ̂

(0)
− ) + 2G(ΦB1

, Ψ̂
(1)
−,{1}) + 3H (ΦB1

,ΦB1
, Ψ̂

(0)
− )

]
+

λ1∗ΦT
B1

λ1 − λ1∗

[
−M

[
Ψ

(3)
{1∗11}f̂

(0)
−,1∗ +Ψ

(3)
{11∗1}f̂

(0)
−,1∗ +Ψ

(3)
{111∗}f̂

(0)
−,1∗

] ]
, (101)

One can note in particular that f̂ (0) coefficients are directly proportional to the forcing. For f̂ (2) coefficients,
the forcing terms also appears through the presence of f̂ (0) in their expressions, together with quadratic
and cubic terms G and H, mixing the lower order mappings where the forcing is also present. For the
cantilever beam, both quadratic and cubic terms play an important role and convey the lower order terms
through the products. For instance, since Ψ̂(0) is directly proportional to ΦB1

(see Section 4.2), one has

that ΦT
B1

G(Ψ
(2)
{11}, Ψ̂

(0)
− ) is proportional to ΦT

B1
G(Ψ

(2)
{11},ΦB1

). Moreover, Ψ
(2)
{11} embeds the contribution

of the axial mode ΦA1
, so that ΦT

B1
G(Ψ

(2)
{11}, Ψ̂

(0)
− ) is finally directly proportional to ΦT

B1
G(ΦA1

,ΦB1
).

Interestingly, this last coefficient corresponds to the quadratic modal coupling coefficient appearing natu-
rally in the equations of motion of flat symmetric structures and it is known to have a very large value, see
e.g. [8]. Similarly, we have that:

ΦT
B1

H (ΦB1
,ΦB1

, Ψ̂
(0)
− ) ∝ ΦT

B1
H (ΦB1

,ΦB1
,ΦB1

). (102)

This last term corresponds to the cubic modal coefficient of the first bending mode, which is simply derived
when using a Galerkin projection onto the linear modes. This term is also very large for such structure,
hence explaining the large effect provided by second-order non-autonomous coefficients on the expected
FRC of the system. This is reflected for instance in Fig. 4(b), where the amplitude of the response is
severely influenced by these new terms.

The convergence of the ROM with respect to increasing the order of the expansions is now illustrated.
Fig. 5(a) first reports the convergence of the autonomous part, by increasing it from 3 to 7, while keeping the
time-dependent terms at order 2. We consider only odd values for the ε0 terms, since the trivial resonances
appear only at odd orders. On the other hand, the new trivial resonances due to the forcing appear at
even orders and thus only even orders are considered in the convergence study of the non-autonomous part.
The load multiplier κ is here selected as κ = 5 m/s2 in order to study the convergence for the maximum
vibration amplitude tested, corresponding to almost half the length of the beam. Fig. 5(a) clearly shows
that increasing the order of the autonomous part allows retrieving the correct type of nonlinearity, in line
with the backbone curve computed and shown in [35]. The convergence is rather fast, as minimal differences
are observed above order 5.

Let us now comment the convergence of the non-autonomous part, by setting the autonomous expansion
to order 9, where convergence is guaranteed. Results for order 0 of the time-dependent terms have already
been shown in Fig. 4(b), underlining that this was clearly insufficient. Fig. 5(b) shows that the convergence
is also fast for this part, the order 2 already showing a good accuracy, while perfect match with the full-
order solution is obtained starting with an order 4. Indeed, the FRC with order 6, not reported in the figure
for the sake of clarity, is perfectly superimposed to order 4. All in all, order O(7,4) already gives excellent
results and the expansion used in the previous analysis, i.e. O(9,8), clearly referred to a converged result.

At last, let us introduce a new quantity κ̌ that will allow quantifying the validity of the small forcing
assumption throughout this Section. The forcing parameter κ can be normalised as:

κ̌ =
Max[Φm]

ω2
ms

κ, (103)
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Fig. 5 Cantilever beam. DPIM convergence by: (a) changing the expansion order of the autonomous part, and (b) changing
the order of the non-autonomous part.

with Max[Φm] the maximum amplitude value of the master mode shape, ωm the angular frequency of the
master mode, and s a characteristic displacement of the structure. Since this characteristic displacement is
introduced to quantify the amount of forcing needed to excite the geometric nonlinearity, in this cantilever
example it has been selected as the length L. For the beam under study, Max[ΦB1

] = 0.954, and the
eigenfrequency of the first mode is 99.08 rad/s. Hence κ̌ = 4.86 · 10−4 ≪ 1, which is consistent with the
assumption of small forcing.

Overall, this Section has been devoted to the analysis of the forced-damped response of a cantilever up to
very large amplitudes, with a ROM containing a single master coordinate, illustrating the primary resonance
scenario highlighted in Section 4.2 with γ = 1. The results underline that a zero-order parametrisation of
the non-autonomous part of the forced system is not sufficient to get a perfectly converged solution for the
FRC at this range of amplitudes, and a second-order development is required. However, once this main
effect captured, the ROM shows then fast convergence to the exact, full-order solution. We now turn to the
particular case analysed in Section 4.2 of a main resonance without excitation term on the master mode, a
case prone to see the birth of isolated solutions.

6.2 Isolated solutions bifurcating from the main branch

In this Section we consider the specific loading scenario where the excitation force is spatially orthogonal
to the eigenmode that has the same frequency as the forcing. As detailed in Section 4.2, zero and first
order non-autonomous terms of the reduced dynamics vanish in such loading scenario, and as a result only
isolated solutions might appear.

The system under investigation is the same cantilever beam introduced in Section 6.1, the only difference
being the excitation force which is now assumed to have the shape of the second bending mode ΦB2

, whose
displacement field is shown in Fig. 3(d). The model thus reads as:∫

B

ρ ü ·w dB+

∫
B

P : ∇Tw dB = κ

[∫
B

ρΦB2
·w dB

]
cos (Ωt), ∀w ∈ C(0). (104)

The system is still driven in the vicinity of the eigenfrequency of the fundamental mode: Ω ≈ ωB1
. The

resulting system of differential equations obtained by discretising the system with finite elements is:

MÜ+CU̇+KU+G(U,U) +H (U,U,U) =
1

2
κMΦB2

(e+iΩt + e−iΩt). (105)

where the damping matrix has been selected in this example as C = αM+βK with α = 5·10−4 s−1 and
β = 10−9 s. The system is simulated for five values of the load multiplier κ: 250, 275, 300, 325, and 350 m/s2.
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The reduced dynamics is derived by selecting the fundamental bending mode as master, and the complex
normal form style is used. The ROM is computed for a single value of the forcing frequency, selected here
as Ω = ωB1

. The first terms of the reduced dynamics can be made explicit as:

[
ż1
ż1∗

]
= f(z)+κ

([
f̂
(2)
−,1{11}
0

]
e−iΩt

)
z21 + κ

([
0

f̂
(2)
+,1∗{1∗1∗}

]
e+iΩt

)
z21∗

+ κ

([
f̂
(2)
+,1{11∗} + f̂

(2)
+,1{1∗1}

0

]
e+iΩt +

[
0

f̂
(2)
−,1∗{11∗} + f̂

(2)
−,1∗{1∗1}

]
e−iΩt

)
z1z1∗ +O(∥z3∥),

(106)

where the expansion has been limited to the first non-autonomous terms for the present discussion. As
announced, zero-order terms are not present since the projection of the forcing onto the master mode ΦB1

is zero. Since non-autonomous terms are at least O(∥z2∥), the origin z = 0 is an asymptotically stable fixed
point as eigenvalues all have a negative real part. Consequently non-vanishing stationary solutions must
necessarily be detached and appear as isolated branches.

The comparison between the single-mode ROM and full-order HBFEM solution, using a Fourier expan-
sion of order 5, is reported in Fig. 6(a). The case corresponding to the highest value of κ is also reported in a
separate chart in Fig. 6(b) focusing on the low amplitude region. The first remark is the perfect agreement
between full order solutions and reduced model at any forcing value. Furthermore, the expected isolated
solutions predicted from theory are recovered in both reduced and full model. Only a very small discrepancy
between full order and reduced model is observed for κ = 350 m/s2. With respect to the nondimensional
quantity, this leads to κ̌ = 0.034: a larger value as compared to the one reached in the previous loading
scenario, meaning that order ε2 terms can still be safely neglected. Regarding computational performance,
they are here identical to those obtained in the previous example, which is logical, being the amplitude of
the response comparable and the total number of computed FRCs identical.
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Fig. 6 Cantilever beam and isolated frequency response curves obtained by forcing at Ω equal to the frequency of the
first bending mode and with a force field distribution proportional to the second bending mode. (a) shows the comparison
between reduced model and HBFEM simulations for five different load multiplier values. κ values are reported as tags in the
chart. In increasing order, the dimensionless loading multiplier κ̌ as defined in Eq. (103) is equal to 2.43 · 10−2, 2.67 · 10−2,
2.91 · 10−2, 3.16 · 10−2, and 3.40 · 10−2. (b) zoomed details the FRC obtained for the highest forcing value, i.e. for κ = 350
m/s2. The backbone curve of the system is also reported to highlight that the predicted isola bifurcates from it.

As a final remark, let us underline that the existence of these isolas is directly determined by the dis-
tribution of the forcing field. Indeed, in this example strong modal coupling is present between first and
second bending modes, the latter corresponding to the distribution of the forcing acting on the system. This
strong cubic coupling is reflected by the second-order non-autonomous coefficients retrieved in the reduced
dynamics, which in turn provide the driving force for the appearance of isolated solutions in the frequency
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response curves. From the generic expressions reported in Appendix E, second-order non-autonomous re-
duced dynamics coefficients have the following expression, here reported for a single monomial:

f̂
(2)
+,1{11∗} =

ΦT
B1

λ1 − λ1∗

[
2G(Ψ

(2)
{11∗}, Ψ̂

(0)
+ ) + 2G(ΦB1

, Ψ̂
(1)
+,{1∗}) + 3H (ΦB1

,ΦB1
, Ψ̂

(0)
+ )

]
, (107)

where the dominant contribution is expressed by the cubic coupling between the first and second bending
modes:

ΦT
B1

H (ΦB1
,ΦB1

, Ψ̂
(0)
+ ) ∝ ΦT

B1
H (ΦB1

,ΦB1
,ΦB2

). (108)

We now turn to the case of an excitation frequency which is in the vicinity of twice the eigenfrequency
of a mode, following the discussion led in Section 4, and more specifically to the case γ = 2 addressed in
Section 4.3.

6.3 Parametric instability of a cantilever beam

Systems are said to be parametrically excited if the excitation induces the appearance of time-varying
coefficients in the equations of motion. Examples of parametric resonance date to the work by Faraday [66]
and the first model was introduced by Mathieu [67]. In structural mechanics, several vibratory systems
exhibit parametric excitation, as shown by the large amount of works devoted to the topic, see e.g. [68,56,
69,70] to cite only a few. One of the most typical examples is represented by axially loaded structures (rods
or plates). Inspired by this case, we here report the analysis of a parametrically excited cantilever beam
and we provide insight into how parametric excitation is embedded within the presented methodology.

To this purpose, the same cantilever beam addressed in Section 6.1 is considered. Parametric excitation
from experiments is observed when the structure is axially excited with a forcing frequency that is twice
the natural frequency of the driven mode. Following this condition, we here propose the following idealized
model: ∫

B

ρ ü ·w dB+

∫
B

P : ∇Tw dB = κ

[∫
B

ρΦA1
·w dB

]
cos (Ωt), ∀w ∈ C(0). (109)

The forcing is now assumed to have a spatial dependence corresponding to the first axial mode of the
beam which is here denoted ΦA1

and is illustrated in Fig. 3(c). Note that for practical applications, a
pointwise forcing in the axial direction is generally considered. This more realistic case however shares with
our loading scenario the assumption of having a spatial dependence orthogonal to the driven mode. Upon
discretisation of Eq. (109), the following problem is obtained:

MÜ+CU̇+KU+G(U,U) +H (U,U,U) =
1

2
κMΦA1

(
e+iΩt + e−iΩt

)
, (110)

where the excitation frequency is selected as Ω ≈ 2ωB1
, i.e. in the vicinity of twice the fundamental eigen-

frequency.

Following the analysis of Section 4.3 on the new trivial resonances that have to be considered when
Ω ≈ 2ωB1

, i.e. γ = 2, the reduced dynamics is now inspected in order to understand how the parametric
resonance is correctly handled by the ROM. By focusing on the terms brought by the non-autonomous
part only, and using a complex normal form style, the only monomials arising in the reduced dynamics are
those associated to the new trivial resonances:

λ̂+ + λ1∗ ≈ λ1, (111a)

λ̂− + λ1 ≈ λ1∗ , (111b)

using the usual notation λ̂+ = +iΩ, λ̂− = −iΩ for the forcing; and λ1 ≈ iωB1
, λ1∗ ≈ −iωB1

(under the
assumption of small damping). As a consequence, the reduced dynamics along the embedding then reads:[

ż1
ż1∗

]
= f(z)+κ

([
f̂
(1)
+,1{1∗}
0

]
e+iΩtz1∗ +

[
0

f̂
(1)
−,1∗{1}

]
e−iΩtz1

)
+O(∥z2∥). (112)

which highlights that the new trivial resonance conditions provide first-order terms in the non-autonomous
part of the reduced dynamics, having the structure required to convey the parametric excitation. In order
to push further the analysis, let us make explicit how the different orders are connected both to the forcing
and to the quadratic nonlinearity. In particular, the coefficients f̂ (1) need to be more detailed and related
to the structural characteristics. Also, the strong quadratic coupling existing between axial and flexural
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modes in planar structures is key to allow activation of the trivial resonance, as it will be associated to the
resonant monomial.

From the perspective of the invariance equation, for Ω ≈ 2ωB1
, no resonance conditions are observed

at order zero. Therefore, the zero-order non-autonomous homological equations read:

[λ̂2
+M+ λ̂+C+K]Ψ̂

(0)
+ = F̂+ = κ

1

2
MΦA1

, (113a)

[λ̂2
−M+ λ̂−C+K]Ψ̂

(0)
− = F̂− = κ

1

2
MΦA1

. (113b)

Recalling that κMΦA1
is the forcing vector, see Eq. (110), one observes that the zero-order non-autonomous

mapping corresponds to the linear response of the system, a result which is here equivalent to the one already
analyzed in Section 4.1, see e.g. Eq. (72).

Moving to the first order non-autonomous homological equations, we now have the resonance conditions
introduced by Eq. (111). To avoid singularity of the resulting homological equations we need to impose
proper orthogonality conditions, leading to:

[
(λ̂+ + λ1)

2M+ (λ̂+ + λ1)C+K
]
Ψ̂

(1)
+,{1} = −2G(ΦB1

, Ψ̂
(0)
+ ), (114a)[

(λ̂+ + λ1∗)2M+ (λ̂+ + λ1∗)C+K
]
Ψ̂

(1)
+,{1∗} + (λ̂+ + λ1∗)MΦB1

f̂
(1)
+,1 {1∗} = −2G(ΦB1

, Ψ̂
(0)
+ ), (114b)[

(λ̂− + λ1)
2M+ (λ̂− + λ1)C+K

]
Ψ̂

(1)
−,{1} + (λ̂− + λ1)MΦB1

f̂
(1)
−,1∗{1} = −2G(ΦB1

, Ψ̂
(0)
− ), (114c)[

(λ̂− + λ1∗)2M+ (λ̂− + λ1∗)C+K
]
Ψ̂

(1)
−,{1∗} = −2G(ΦB1

, Ψ̂
(0)
− ), (114d)

and as a consequence, following the derivation reported in Appendix E, the reduced dynamics coefficients
for a complex normal form style parametrisation read:

f̂
(1)
+,1{1∗} =

ΦT
B1

λ1 − λ1∗

[
−2G(ΦB1

, Ψ̂
(0)
+ )
]
, (115)

f̂
(1)
−,1∗{1} =

ΦT
B1

λ1∗ − λ1

[
−2G(ΦB1

, Ψ̂
(0)
− )
]
. (116)

The above equations highlight how the reduced dynamics coefficients that induce parametric excitation
are proportional to the quadratic coupling between the master modal coordinate ΦB1

and the zero-order
non-autonomous mapping, as expressed by the right-hand sides of Eqs. (114). As evidenced by Eqs. (113),
zero-order non-autonomous mappings are linearly proportional to the applied forcing, i.e. it is proportional
to ΦA1

. As a consequence the following proportionality holds:

ΦT
B1

G(ΦB1
, Ψ̂

(0)
± ) ∝ ΦT

B1
G(ΦB1

,ΦA1
). (117)

Again, the modal quadratic coupling coefficient ΦT
B1

G(ΦB1
,ΦA1

) appears, a term that is known to have
large values for such beam, see e.g. [71,8]. Consequently a forcing with high modal projection value onto
the axial mode would prove excellent to parametrically excite the system.

All in all, the coefficient of the reduced dynamics f̂ (1), that drives the solutions through trivially resonant
monomials, appears thus as a product, through the quadratic nonlinearity G, of forcing and master mode.
In the present example, i.e. a flat cantilever, a forcing proportional to the master mode would not be
able to parametrically excite the system, since the equations of the bending modes are free of quadratic
nonlinearity (planar symmetric beam) and G(ΦB1

,ΦB1
) vanishes.

Let us now illustrate how these theoretical findings translate in the numerical results. For this example,
the Rayleigh damping is selected as stiffness proportional with C = ωB1

/(2.5 · 1010)K. This choice has
been used mainly because stiffness proportional damping heavily dampens the high-frequency slave modes,
hence their effect is observed only in the nonlinear terms of the reduced dynamics. The structure is ex-
cited at Ω ≈ 2ωB1

for κ values equal to 10, 15, 20, 25, and 30 m/s2. Validation is again performed with
HBFEM simulations on the complete structure. The Fourier expansion of full-order simulations is chosen
equal to 7. The ROM is obtained by parametrising the system motion along the first bending mode with
an asymptotic expansion of order 9 for the autonomous part and of order 8 for the non-autonomous part in
complex normal form style. The ROM has been computed for a single excitation frequency, here selected
as Ω = 2ωB1

.

The comparison between full-order and reduced-order model solutions is reported in Fig. 7, where a
perfect agreement is observed. The perfect agreement is further justified by the small value of κ̌, which is
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Fig. 7 Cantilever beam and parametric excitation. Comparison between HBFEM simulations and DPIM reduced model
obtained with order 9 expansion of the autonomous part and order 8 expansion of the non-autonomous part. Parametrization
is performed in complex normal form style. Values of the load multiplier κ [m/s2] values are reported as tags in the chart.
In increasing order, the dimensionless loading multiplier κ̌ is equal to 9.33 · 10−4, 1.4 · 10−3, 1.87 · 10−3, 2.33 · 10−3, and
2.8 · 10−3. The backbone of the system is reported as a function of the continuation parameter Ω. The backbone describes
an oscillatory motion with period equal to twice that of the continuation parameter.

equal to 2.8 · 10−3 at most. The computational performance obtained for the present example are identical
to those reported in Section 6.1 since the system is identical in terms of number of degrees of freedom
and vibrations amplitudes. The results highlight the main features of the parametric instability [68,56].
Bifurcated branches with non-zero amplitudes appear at period doubling bifurcation points. As expected
for nonlinear parametrically excited systems, the frequency range enclosed between the two period doubling
bifurcations increases with the forcing amplitude. An important remark is that the zero amplitude of the
modal amplitude uB1

outside the region of parametric instability is observed only because the forcing is
orthogonal to the linear master subspace, hence zero order mappings are orthogonal as well. The reduction
method can however deal with more complex scenarios where for example primary resonance might be
entangled with parametric instability, but this is left for future works.

In this Section we showed how the presented approach can be exploited to model parametrically excited
systems and we applied it to model a cantilever beam subjected to axial loading. Results highlighted that
the predictions offered by this technique do not only provide qualitative estimations of nonlinear dynamics
phenomena of structures, but also excellent quantitative agreement.

6.4 Shallow arch subjected to a generic force

In Sections 6.1, 6.2, and 6.3 we applied the proposed method to model systems excited at their main
resonance and to parametrically excited systems. The applied loads were ideal, and in general realistic
forcing acting on the system will not be co-linear with any of the modes of the structure. While an industrial
application of the presented method is left to Section 6.5, here we consider an intermediate case, that
is a structure subjected to a forcing obtained as a linear combination of two modes. This serves as a
guided example towards more realistic applications, since in a general setting we can split the forcing in its
contributions to the master and to the slave coordinates, respectively.

The structure under consideration is the clamped-clamped arch reported in Fig. 8(a). It is a sine-arched
structure with a length of 640 µm, rise height of 3.84 µm, thickness of 6.4 µm, and width of 32 µm. Material
properties are those of polycrystalline silicon, which is modeled as isotropic with a Young’s modulus of 160
GPa, Poisson’s ratio of 0.22, and a density of 2320 kg/m3. The structure is actuated near the frequency
of its first symmetric bending mode ΦB1

, i.e. 1.03 rad/µs. The displacement field associated to this mode
is depicted in Fig. 8(b). The forcing has a spatial distribution proportional to a linear combination of this
mode and of the second symmetric bending mode ΦB3

associated to the displacement field reported in
Fig. 8(c). The corresponding weak formulation of the problem is:
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Fig. 8 Shallow arch. (a) Geometrical parameters: L = 640 µm, R = 3.84 µm, W = 32 µm, T = 6.4 µm. (b) Displacement
field ΦB1

of the first bending mode; (c) Displacement field ΦB3
of the third bending mode;
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Fig. 9 Shallow arch. (a) Comparison between FRCs obtained from the reduced model and FRCs computed from HBFEM
simulations. The autonomous part is expanded to order 15, and the non-autonomous part to order 14. κ1 value is constant
and equal to 0.03 µm/µs2. κ2 values, reported as tags in the chart, are -10, -5, 0, 5, 10 µm/µs2. They correspond to
dimensionless κ̌ values of -0.135, -0.0677, 0, 0.0677, and 0.135, respectively. (b) Failure of the method for high forcing
values. Full order solutions progressively differ from reduced model solutions upon an increase of the κ2 value. In this
chart, the κ̌ value computed for κ2 imposed as 0, 10, and 20 µm/µs2 is equal to 0, 0.135, and 2.271.

∫
B

ρ ü ·w dB+

∫
B

P : ∇Tw dB =

[∫
B

ρ (κ1ΦB1
+ κ2ΦB3

) ·w dB

]
cos (Ωt), ∀w ∈ C(0), (118)

where κ1 and κ2 are scalar load multipliers and Ω ≈ ωB1
. Mode ΦB3

is nonlinearly coupled to mode
ΦB1

since they are both bending symmetric modes. The eigenfrequency of mode ΦB3
is 4.59 rad/µs, thus

no internal resonance is at hand with mode ΦB1
and the ROM can be constructed with a single master

mode assumption, selecting mode 1 as master. The choice on the forcing is made to ensure that part of the
forcing acting on the structure excites a mode that is nonlinearly coupled to the master, such that both the
autonomous and non-autonomous parts of the reduced dynamics will be altered. The ROM is computed
for the excitation frequency Ω = ωB1

. The full system is built upon addition of damping and finite element
discretisation of the arch using 15-nodes quadratic wedge elements, yielding a system of 3483 degrees of
freedom. The semi-discrete governing equation reads:

MÜ+CU̇+KU+G(U,U) +H (U,U,U) =
1

2
(κ1MΦB1

+ κ2MΦB3
)
(
e+iΩt + e−iΩt

)
, (119)

where C is taken equal to (ωB1
/500)M. The system response is analysed by varying κ1 and κ2 parameters.

Importantly, only κ1 intervenes in the non-autonomous part of the reduced dynamics of the system at
order 0. Indeed, as shown in the previous Sections, at this order only the portion of the forcing which
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Fig. 10 Shallow arch. FRCs for the displacement node highlighted in the chart for different values of the load multiplier κ2,
i.e. the harmonic force contribution proportional to a slave mode. κ1 is fixed at 0.03 µm/µs2, while κ2 is taken equal to +10
and -10 µm/µs2, respectively. Data obtained from the reduced model are compared with full order HBFEM simulations.

is co-linear with the master modal subspace affects the reduced dynamics. Therefore, by truncating the
asymptotic expansion of the non-autonomous part at order 0, one would not observe any dependence of
the reduced dynamics f̂(z,Ω, t) on κ2.

The system response is first studied for a fixed value of κ1, and by varying κ2. In this analysis κ1 is
set to 0.03 µm/µs2, while κ2 spans the values -10, -5, 0, 5, 10, and 20 µm/µs2. The choice of using both
negative and positive values is dictated by the cubic coupling between the two symmetric modes, which is
therefore sensitive to the phase of the applied forcing. As for the previous examples, results are compared
with HBFEM simulations of the full-order model using a Fourier expansion order equal to 7. A converged
ROM, obtained with an asymptotic expansion of the autonomous part of order 15, and an asymptotic
expansion of the non autonomous part of order 14, is compared to the reference. A noteworthy comment on
this analysis is that the forcing has a modal participation factor highly unbalanced towards the slave mode,
with κ2 ≫ κ1. However, even with such difference, the choice of the master mode for the reduction step is
dictated by the resonance conditions between the eigenvalues of the forcing and those of the autonomous
system, which are verified for the fundamental mode ΦB1

.

Numerical results obtained for these load multipliers are reported in Fig. 9. First of all, we stress the
remarkable agreement between full-order and reduced-order model simulations, which is the main feature
of the presented approach, together with remarkable speed ups. Indeed the HBFEM analyses for the full
order problem required 1 hour for each FRC, while the same curve is obtained in less than 5 minutes
from the ROM. Moving to more technical details of the reported data, we highlight that changing the
forcing value acting on a slave mode has profound consequences on the nonlinear dynamical response of
the structure both in terms of folding frequency and maximum oscillation amplitudes. This effect does
not scale linearly with the load multiplier acting on the slave mode, underlining that a parametric-like
amplification of the structure is developing due to the presence of high order non-autonomous coefficients
in the reduced dynamics. The accuracy of the ROM degrades by increasing the forcing amplitude. This is
obvious in Fig. 9(b), which reports a departure from full-order simulations when the κ2 value approaches
the value of 20 µm/µs2. The failure is caused by the violation of the assumption of small forcing. Indeed,
the load multipliers can be rescaled according to the main parameters of the model as provided by Eq.
(103). Being Max[ΦB1

] = 0.090, and by considering in this case as characteristic displacement the thickness
T of the arch, the resulting value of κ̌ is 0.271, which is now closer to unity. Note that κ̌ has been computed
for κ2 only, since it is orders of magnitude larger than κ1. It is worth underlining that the ROM solutions
have been here computed with a high order accuracy, since orders O(15,14) have been selected. It has
been verified that the solution is indeed converged at this order, consequently the discrepancy cannot be
attributed to the order used for the expansions, but rather to the fact that ε2 terms begin to have a non-
negligible importance in the dynamics. Moreover, the discrepancy cannot be attributed to the fact that the
system has been parametrised for a single frequency value. Indeed, the departure between the two solutions
has the same magnitude at Ω = ωB1

for κ2 = 20 µm/s2, i.e. exactly at the point where the parametrisation
is computed.
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Fig. 11 Shallow arch: graphical representation of the whisker. The whisker is depicted for different phase values Θ = Ωt
along the subspace defined by modal displacement and velocity of master mode ΦB1 , and modal displacement of mode
ΦB3

. Since its motion is periodic, oscillations for half a period only are shown. All charts are obtained for κ1 = 0.03 µm/µs2.
Chart (a) is obtained for κ2 = 10 µm/µs2, while (b) reports data obtained for κ2 = −10 µm/µs2. Colors correspond to
the phase chosen to represent the whisker. ( ),( ),( ),( ),( ) colors correspond to a phase equal to 0, π/4, π/2, 3π/4, and
π, respectively. We highlight that the time-modulations of the whisker are dominated by zero-order oscillations.
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Fig. 12 Shallow arch. Contributions of the first four orders of the non-autonomous nonlinear mapping to the third bending
mode ΦB3 , versus the master mode displacement and velocity. Results are reported for κ1 = +0.03 and κ2 = +10.0. The
charts are computed by summing the contributions of all combinations I of a given order p of the non-autonomous expansion
as also done for the schematic representation reported in Fig. 2. The deformations of the whisker during the oscillation is
evidenced by filtering out the main contribution given by order zero. The order p represented in the charts is equal to 0
(a), 1 (b), 2 (c), and 3 (c). Functions are represented for different values of the phase Θ = Ωt. ( ),( ),( ),( ),( ) colors
correspond to phases 0, π/4, π/2, 3π/4, and π, respectively.



6.5 Modeling of a comb-driven MEMS resonator 35

Fig. 10 shows the FRCs in the physical space, by selecting a reference node in the center of the beam to
show the displacement versus the frequency. In order to reconstruct the physical displacement, the nonlinear
mappings need to be computed, consequently representing this quantity embeds both effects of reduced
dynamics and mappings. As highlighted in Fig. 9, a high-order expansion of the non-autonomous part is
necessary to obtain converged result, otherwise the ROM would predict almost the same response at any
κ2 value, i.e. the response obtained for κ2 = 0 µm/µs2. This is again clearly evidenced in Fig. 10 where the
zero-order solution for the non-autonomous part provides very inaccurate results.

Let us now illustrate how the time-dependent invariant manifold is oscillating in the phase space for this
specific example. Fig. 11 shows snapshots of the whisker, at different phase values Θ = Ωt. In Fig. 11(a), the
time-dependent manifold computed for κ1 = 0.03 µm/µs2 and κ2 = 10 µm/µs2 is shown, while Fig. 11(a)
reports the same case but with κ2 = −10 µm/µs2. The figures clearly underline that the zero-order oscil-
lations dominate the time-dependence of the whisker, and that a change in the forcing sign along a given
slave mode reverses the phase associated to the oscillations.

In order to get more insight and highlight the deformations of the whisker, Fig. 12 illustrates the
contributions of the first four orders of expansions of the non-autonomous mapping along the third bending
mode ΦB3

. More specifically, let us introduce the following decomposition of the modal displacement:

ui =
o∑

p=1

u
(p)
i + ε

o−1∑
p=0

û
(p)
i , (120)

where a generic term ů
(p)
i collects the contributions of all mappings for a given order p:

ů
(p)
i = ΦT

i M
∑
I

Ψ̊
(p)
I πI . (121)

Consequently, Fig. 12 refers to the contributions to the modal displacement u3 provided by the first four
orders of the ε1-homological equations. Fig. 12(a) shows again that the main time dependence of the whisker
is dominated by the up and down oscillation slaved to the external forcing and conveyed by the zero-order
term. Higher order terms have smaller amplitudes, but are not zero, underlining that the whisker indeed
experiences deformations. The presence of both quadratic and cubic coupling terms in arched structures is
obvious from the amplitudes of the oscillations, which are of comparable magnitude at both even and odd
terms of the expansion.

6.5 Modeling of a comb-driven MEMS resonator

In this last Section, the reduction method is applied to the analysis of a structure of industrial interest,
that is a MEMS resonator [1]. This class of devices serves a wealth of electronic systems since they can be
exploited for sensing [72], filtering [2], and timing [73] applications. Furthermore, these systems appear to be
a fertile field of application for the presented approach since fast and accurate predictions of the nonlinear
dynamic response of the system are compulsory even during early design stages in order to control or exploit
frequency deviations [74,75].

The structure under consideration is the MEMS resonator depicted in Fig. 13(a). The structure is a
rework of the design initially developed by Shaw and coworkers in [76,77]. In particular, geometrical changes
are introduced to avoid internal resonances between modes, which is out of the scope of the analysis shown
in this contribution.

The system consists of a clamped-clamped beam resonator actuated with comb-drive electrodes. The
beam resonator is depicted in grey in Fig. 13(a) and the two sets of electrodes required to actuate the
structure are reported in blue and red colours. Actuation is provided by setting the voltage of the resonator
to a constant bias VDC and by applying time-dependent voltage laws to the two sets of drive electrodes
with the configuration reported in Fig. 13(b):

V1(t) = +VAC cos (Ωt), V2(t) = −VAC cos (Ωt), (122)

where VAC is the amplitude of a sinusoidal voltage applied to harmonically excite the system.
For comb-finger actuation, as the one reported in Fig. 13(a), border effects are negligible and analytic

approximations for the force acting on the structure are available. In particular, the force exerted on a
finger head can be expressed as

te =
ϵ0ϵrB

d
(∆V (t))2n, (123)
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V2(t)

Fig. 13 (a) Geometry of the MEMS resonator. (b) Voltage bias configuration for MEMS resonator (grey), and drive
electrodes (red and blue). (c) Displacement field associated to the first symmetric bending mode of the structure.

Table 1 Geometrical parameters of the MEMS resonator

Label Value [µm]
L 500
t 7
d 5
S 9
P 36
J 25
H 20
W 5
g 2.5

with ∆V (t) potential difference between shuttle and a given drive electrode. As a result, the force per unit
normal exerted on the tips of the two sets of comb fingers of the resonator are:

te1 =
ϵ0ϵrB

d
(VDC + VAC cos (Ωt))2 n ≃ ϵ0ϵrB

d

(
V 2
DC + 2VDCVAC cos (Ωt)

)
n, (124a)

te2 =
ϵ0ϵrB

d
(VDC − VAC cos (Ωt))2 n ≃ ϵ0ϵrB

d

(
V 2
DC − 2VDCVAC cos (Ωt)

)
n, (124b)

where the terms in V 2
AC are neglected since, as typical of these structures, VAC ≪ VDC . The term pro-

portional to V 2
DC yields forces of opposite direction on the two set of combs and hence cancels out in the

overall resultant. We can therefore introduce an equivalent traction vector acting on the head of the comb:

t̃e = 2VDC
ϵ0ϵr
Wd

n, (125)

where W is the width of the comb. The traction is equal to the amplitude of the sinusoidal force provided by
Eq. (123) normalised by the VAC component and by the area of the comb. The resulting weak formulation
of the problem is then given as:∫

B

ρ ü ·w dB+

∫
B

P : ∇Tw dB = VAC

(∫
Γ1

t̃e1 ·w dΓ −
∫
Γ2

t̃e2 ·w dΓ

)
cos (Ωt), (126)

with Γ1 (resp. Γ2) the set of comb tips exposed to the stator that is subjected to the voltage law V1(t)
(resp. V2(t)). VAC replaces the nonphysical κ used in previous results. Equation (126) is discretised using a
finite element formulation with quadratic 27-nodes hexahedral elements. The resulting system is equal to:

MÜ+CU̇+KU+G(U,U) +H (U,U,U) = VAC
F̂

2

(
e+iΩt + e−iΩt

)
, (127)
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The damping matrix is selected as C = (ωB1
/104)M. The MEMS is excited at its first resonant mode,

corresponding to a symmetric bending mode, hence Ω ≈ ωB1
. The associated displacement field is reported

in Fig. 13. To model the presented device we parametrise the system motion adopting ΦB1
, i.e. the first

symmetric bending mode, as master mode. Parametrisation is performed with complex normal form style
and an expansion of order 15 for the autonomous part and order 14 for the non-autonomous part. From
a mathematical point of view, the problem resembles the most practical case of the previous example, i.e.
a structure subjected to main resonance excitation with a forcing that is neither perfectly co-linear nor
orthogonal to the master mode. The main difference is that the loading scenario is here more physical, i.e.
the modal participation factor of the force along the master mode is larger compared to that along the
slave modes.
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Fig. 14 Comb finger MEMS resonator. Predicted FRCs for different amplitudes of the electrical potential. Results provided
by the DPIM are compared with full order HBFEM simulations. DPIM-O(15,14) is perfectly overlapped with HBFEM
simulations, while DPIM-O(15,0) overestimates the folding frequency. The folding frequencies of HBFEM and DPIM-
O(15,0) are marked with a vertical dashed line. Displacements are normalised by the thickness t of the resonator.

Simulations are run setting VDC = 50.0 V and spanning three different values of VAC : 0.35, 0.50,
and 0.65 V, corresponding to typical voltage amplitudes applied in the MEMS industry. The results are
compared with those of the full order HBFEM with a Fourier expansion of order 5. Fig. 14 compares the
obtained results for increasing values of VAC . One can note in particular the perfect agreement between the
full-order and ROM simulations, underlining how the DPIM proves efficient for modeling complex struc-
tures as the ones required by the semiconductor industry. A comparison is also drawn out between the
converged O(15,14) ROM and the O(15,0) solution, in order to highlight the gain in using also a high-order
parametrisation for the non-autonomous part. The difference is clearly visible on the maximum point of
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the FRCs, and tends to increase with the amplitude.

The computational performance represents a major asset for the method. Indeed, the original full order
model features 4833 degrees of freedom and the total computational time required to extract the three FRCs
was close to 32 hours. On the other hand, the solution to the reduced model takes less than 10 minutes
including the reduction time, thus guaranteeing an impressive speed-up. Although the targeted application
is a simplified idealization of realistic MEMS, it clearly evidences the potentialities of the approach, as
the cost of full order simulations would explode with larger FEM structures, while that of the reduction
technique scales almost linearly [33].

7 Conclusion

This work complements the results provided in [35] for the direct parametrisation of invariant manifolds in
large dimensional nonlinear systems, with application to finite element models of structures subjected to
geometric nonlinearities. While the autonomous part is detailed with a generic order development in [35],
this paper focuses on handling the problem raised by adding an external forcing to the initial problem.
Explicit algebraic expressions for the computation of the non-autonomous part of the reduced dynamics
and tensors, that map nodal degrees of freedom of the model to an invariant based time-dependent span of
the phase space, have been provided. The similarity of the structure of the homological equations in both
cases has been underlined, opening the door to a fast and efficient coding elaborated from the autonomous
solution. The three different parametrisation styles have also been reported for implementation in a direct
computational framework.

The DPIM has been here applied to tackle problems including geometric nonlinearities, and a Rayleigh
damping formulation has been adopted in order to cover most engineering applications. Also, it has been
demonstrated that efficient ROMs can be obtained by computing the non-autonomous terms for a single,
fixed external frequency, hence avoiding the computation of the non-autonomous part of the system at
each frequency. This allows preserving the computational performance obtained for autonomous systems
in [35], hence making the presented approach efficient and scalable to large dimensional non-autonomous
dynamical systems.

On the theoretical point of view, the new trivial resonances arising from the non-autonomous part have
been analyzed with a single master mode assumption. In the case of main resonance, the effect of the new
terms due to forcing have been shown important, and a specific case of a forcing that is orthogonal to
the master mode has been used to illustrate how the method can handle the birth of isolated solutions.
Also, parametric resonance can be analyzed in the present setting and the key to its observation, through a
computed ROM predicting such instability, has been derived and illustrated. All these features have been
illustrated on dedicated examples, underlining the capacity of the method to handle very different contexts
of increasing complexity, while always offering a converged and excellent prediction for a very low compu-
tational effort. At last, the method has been applied to the analysis of a MEMS resonator subjected to
comb-drive actuation. This example of remarkable industrial interest evidences the impact of the presented
methodology on fields that rely on resonant mechanical systems as the semiconductor industry.

Some important comments are worth stressing. The first one concerns possible guidelines concerning
the selection of the parameterisation style. While generally normal form styles have better theoretical prop-
erties, with for example no restriction related to manifold foldings, graph style might have an advantage
in case of structures featuring numerous internal resonances. Also, in order to catch high order resonances
the normal form style needs to be pushed at least to the order of the resonance. As observed with the
second-order DNF in [32], the graph style, while keeping more non-resonant low order monomials, might
show an advantage in such a case. However, this point deserves further investigation.

The second point is related to the simplification of using a single, fixed forcing frequency, in order to
derive the ROM. The examples shown in this paper, and especially the last MEMS resonator, which shows
a very important hardening effect, underline that the ROMs do not lose any accuracy in their predictive
capabilities with such assumption. As compared to the gains obtained (versatile and efficient ROM), it is
thus advised to operate in this framework, and further numerical studies might be necessary in order to
well ascertain the validity limit of this assumption.

The last comment concerns the limitations of the treatment of the forcing as a perturbation, with de-
velopments up to leading order in ε. In this work, the validity of this assumption has been quantified by
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introducing a nondimensional parameter κ̌ related to the forcing amplitude. In the reported examples, it
has been shown that whenever this parameter is much smaller than unity, the leading order treatment
of the forcing at ε1 produces extremely accurate results when coupled with higher order expansions in z;
while slight departure begins to be observed for values of κ̌ larger than 1/10. Higher-order developments in
terms of ε should resolve the problem, which would also make possible to study superharmonic resonances,
that are not contained in the present developments. In fact, an m : 1 superharmonic resonance can only
be predicted by an εm expansion, which will produce resonance conditions that contain m multiples of the
forcing eigenvalue. Automated expansion up to a generic order in ε are not treated here but, given the
common structure of the ε0 and ε1 problem discussed in the main text, such a development of the method
is surely possible and will be considered in future investigations.
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form for reduced-order models of finite element nonlinear structures. Computer Methods in Applied Mechanics and
Engineering, 384:113957, 2021.
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67. É. Mathieu. Mémoire sur le mouvement vibratoire d’une membrane de forme elliptique. J. Math., 2(13):137–203, 1968.
68. A. H. Nayfeh and D. T. Mook. Nonlinear oscillations. John Wiley & sons, New-York, 1979.
69. L. D. Zavodney and A. H. Nayfeh. The non-linear response of a slender beam carrying a lumped mass to a principal

parametric excitation: theory and experiment. International journal of non-linear mechanics, 24(2):105–125, 1989.
70. W. Lacarbonara, H. Yabuno, and K. Hayashi. Non-linear cancellation of the parametric resonance in elastic beams:

theory and experiment. International Journal of Solids and Structures, 44(7-8):2209–2224, 2007.
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A Weak formulation of the invariance equations

As remarked in Section 3, an alternative representation of the nonlinear change of coordinates is obtained by defining
the nonlinear mappings between the normal coordinates and the continuous fields (here displacements and velocities),
rather than operating from the nodal values from the FE discretisation. This alternative formulation will thus provide a
more general setting, where one could for example use another numerical method for the space discretisation of the problem.

For the purpose of deriving this generalization, let us first restart from the finite element approximation, which expressed
the involved fields as a linear combination of a finite set of basis functions:

uh =

N∑
i=1

liUi, wh =

N∑
i=1

liWi, (128)

with li nodal shape functions. For the present treatment the same shape functions are used to interpolate both
displacement and test fields. This choice is adopted only to simplify the presentation. We can then introduce a coordinate
change between normal coordinates and continuous fields of the type:

uh = Ψh(z), (129)

with:

Ψh(z) =

o∑
p=0

[Ψh,I(z)]p. (130)

We can therefore expand each tensor order as:

[Ψh(z)]p =
∑
I

Ψ
(p)
h,Iπ

(p)
I , (131)



42 B MULTIVARIATE TENSOR NOTATION

within this setting, each mapping field Ψ
(p)
h,I is a continuous field since it is defined pointwise over the entire domain B. We

can then express each mapping field using a finite element approximation identical to that used for the displacement field
itself:

Ψ
(p)
h,I =

N∑
i=1

Ψ
(p)
h,I,ili, (132)

where Ψ
(p)
h,I,i corresponds to the nodal values of the mappings. We remark that these nodal values are mathematically

equivalent to the entries of the mapping vectors used on the discretised problem presented in the work. This representation
is exploited for the computation of the left-hand sides of the homological equations, without the need to compute the
complete nonlinearity tensors, which is faster and more memory efficient. To better appreciate it, let us report the weak
form associated to the first order autonomous problem:

∫
B
ρ v̇h ·wh dB+

∫
B
ε(uh) : A : ε(wh) dB

+

∫
B

1

2
γ(uh,uh) : A : ε(wh) + ε(uh) : A : γ(uh,wh) dB

+

∫
B

1

2
γ(uh,uh) : A : γ(uh,wh) dB = 0 ∀wh ∈ Ch(0). (133a)∫

B
ρ u̇h ·wh dB =

∫
B
ρ vh ·wh ∀whdB ∈ Ch(0). (133b)

where the finite-dimensional velocity field u̇h = vh has been introduced. Time derivatives are taken exactly as for the
discrete problem:

u̇h = ∇zΨh(z)f(z), v̇h = ∇zΥh(z)f(z), (134)

And upon substitution of mapping fields and their time derivatives into Eq. (133) we retrieve again the invariance
equations, which are now formulated at the level of the weak form of the partial differential equation:

∫
B
ρ∇zΥh(z)f(z) ·wh dB+

∫
B
ε(Ψh(z)) : A : ε(wh) dB

+

∫
B

1

2
γ(Ψh(z),Ψh(z)) : A : ε(wh) + ε(Ψh(z)) : A : γ(Ψh(z),wh) dB

+

∫
B

1

2
γ(Ψh(z),Ψh(z)) : A : γ(Ψh(z),wh) dB = 0 ∀wh ∈ Ch(0). (135a)∫

B
ρ∇zΨh(z)f(z) ·wh dB =

∫
B
ρΥh(z) ·whdB ∀wh ∈ Ch(0). (135b)

These two invariance equations are completely equivalent to Eq. (29), if the finite element approximation is identical
and if the same integration rules are used. The interesting feature of Eq. (135) is that it represents, for each monomial of
the asymptotic expansion, a linear elliptic partial differential equation, already discretised in a finite dimensional space. As
a result, all matrices and left-hand sides can be computed from the integration of Eq. (135) without the need to export
the full nonlinearity tensor of the system. Also, Eq. (135) can be used in a more general setting and one could enlarge the
scope and select another numerical method than the finite element procedure to solve out the elliptic PDEs. Furthermore,
no constraint on the finite element scheme is required, hence any Galerkin method can be applied.

B Multivariate tensor notation

Most quantities adopted in the present work are coefficients of multivariate polynomials. In this Section we recall the
tensorial representation introduced in [35] to derive such quantities.
A generic vector of multivariate polynomials a(z) can be expressed as a summation of terms of increasing order from zero,
up to the maximum order of the expansion o:

a(z) =

o∑
p=0

[a(z)]p. (136)

for each expansion order, polynomial terms are explicitly defined as:

[a(z)]p =
n∑

i1=1

n∑
i2=1

...
n∑

ip=1

a
(p)
{i1i2...ip}

zi1zi2 ...zip , (137)

with n the number of variables of the polynomial expansion. Alternatively, the following expansion can be used:

[a(z)]p =
∑
I

a
(p)
I π

(p)
I , (138)

where indexes and variables products are collected with the following notation:

I = {i1i2...ip}, π
(p)
I = zi1zi2 ...zip . (139)
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For a given polynomial with order p, there exist a finite number of indexes combinations I corresponding to the expansion
monomials. Such combinations are collected in sets H(p).

As a natural consequence of the above notation, vectors belonging to an asymptotic expansion are in general expressed
as:

a
(p)
I = a

(p)
{i1i2...ip}

, (140)

or alternatively, instead of writing vectors using the compact bold-typed notation, it is possible to express vector components
using the following notation:

a
(p)
sI = a

(p)
s{i1i2...ip}

, (141)

where the first subscript s stands for the s-th vector entry. If multiple vectors are present for a given monomial and order,
as for instance when multiple forcing eigenvalues are present, a further index may be needed. Expansion are in general
expressed as:

a
(p)
j,I = a

(p)
j,{i1i2...ip}

, (142a)

a
(p)
j,sI = a

(p)
j,s{i1i2...ip}

, (142b)

where index j refers to the j-th forcing eigenvalue.

C Nonlinearity tensors computation

An important remark on dynamical systems stemming from partial differential equations is that their discretised algebraic
formulation is equivalent to their finite dimensional weak formulation up to numerical integration errors. This has already
been underlined in Appendix A, where a finite-dimensional weak form for the invariance equation is derived. The natural
result is that nonlinearities can be computed through integration over the domain. Let us consider the expressions reported in
Eqs. (38d)-(38e). The most efficient technique to compute such term is simply to derive them through numerical integration
of their associated weak formulation. Regarding the quadratic operator, its assemblage is performed as:

G
(p)
I =

p−1∑
k=1

G
(
Ψ

(k)
{i1...ik}

,Ψ
(p−k)
{ik+1...ip}

)
=

p−1∑
k=1

1

2

∫
B
γ
(
Ψ

(k)
h,{i1...ik}

,Ψ
(p−k)
h,{ik+1...ip}

)
: A : ε(wh)

+ ε
(
Ψ

(k)
h,{i1...ik}

)
: A : γ

(
Ψ

(p−k)
h,{ik+1...ip}

,wh

)
+ ε

(
Ψ

(p−k)
h,{ik+1...ip}

)
: A : γ

(
Ψ

(k)
h,{i1...ik}

,wh

)
dB, (143)

where the G(U,U) operator has been recasted in symmetric form. Similar treatment is performed for the H (U,U,U)
operator:

H
(p)
I =

p−2∑
k=1

p−k−1∑
l=1

H (Ψ
(k)
{i1...ik}

,Ψ
(l)
{ik+1...ik+l}

,Ψ
(p−k−l)
{ik+l+1...ip}

) =

p−2∑
k=1

p−k−1∑
l=1

1

6

∫
B
γ
(
Ψ

(k)
h,{i1...ik}

,Ψ
(l)
h,{ik+1...ik+l}

)
: A : γ

(
Ψ

(p−k−l)
h,{ik+l+1...ip}

,wh

)
+ γ

(
Ψ

(p−k−l)
h,{ik+l+1...ip}

,Ψ
(k)
h,{i1...ik}

)
: A : γ

(
Ψ

(l)
h,{ik+1...ik+l}

,wh

)
+ γ

(
Ψ

(l)
h,{ik+1...ik+l}

,Ψ
(p−k−l)
h,{ik+l+1...ip}

)
: A : γ

(
Ψ

(k)
h,{i1...ik}

,wh

)
dB, (144)

D Non-autonomous gradients

In Eq. (32), terms involving a gradient with respect to the normal coordinate require a dedicated treatment. In particular,
two new terms depending on such gradient are involved. The first involves the gradient of the non-autonomous mappings:

[
∇zΨ̂(z)f(z)

]
p
=

 2n∑
s=1

∂[Ψ̂(z)]> 1
< p

∂zs
+

∂[Ψ̂(z)]p

∂zs

 (λszs + [fs(z)]> 1
< p

])


p

, (145a)

[
∇zΥ̂ (z)f(z)

]
p
=

 2n∑
s=1

∂[Υ̂ (z)]> 1
< p

∂zs
+

∂[Υ̂ (z)]p

∂zs

 (λszs + [fs(z)]> 1
< p

])


p

, (145b)
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where the shortcut notation [.]> 1
< p

has been introduced to refer to a term with order strictly larger than one and smaller

than p. Expanding the product in the right-hand side, one can rewrite:

[
∇zΨ̂(z)f(z)

]
p
=

2n∑
s=1

∂[Ψ̂(z)]p

∂zs
λszs +

∂[Ψ̂(z)]> 1
< p

∂zs
[fs(z)]> 1

< p


 , (146a)

[
∇zΥ̂ (z)f(z)

]
p
=

2n∑
s=1

∂[Υ̂ (z)]p

∂zs
λszs +

∂[Υ̂ (z)]> 1
< p

∂zs
[fs(z)]> 1

< p


 . (146b)

The second term at the right-hand side of Eq. (146) can be explicitly rewritten as:

2n∑
s=1


∂
[
Ψ̂(z)

]
> 1
< p

∂zs
[fs(z)]> 1

< p


p

=

2n∑
s=1

p∑
k=2

∂
[
Ψ̂(z)

]
p−k+1

∂zs
[fs(z)]k =

∑
I

(
µ̄
(p)
I

)
π
(p)
I , (147a)

2n∑
s=1


∂
[
Υ̂ (z)

]
> 1
< p

∂zs
[fs(z)]> 1

< p


p

=

2n∑
s=1

p∑
k=2

∂
[
Υ̂ (z)

]
p−k+1

∂zs
[fs(z)]k =

∑
I

(
ν̄
(p)
I

)
π
(p)
I , (147b)

where all the terms have been grouped and expanded onto the monomials π
(p)
I , thus making appear new coefficients µ̄

(p)
I

and ν̄
(p)
I , the full expressions of which can be written as:

µ̄
(p)
I =

2n∑
s=1

p∑
k=2

p−k∑
l=0

Ψ̂
(p−k+1)
{i1...il s il+k+1...ip}

f
(k)
s{il+1...il+k}

, (148a)

ν̄
(p)
I =

2n∑
s=1

p∑
k=2

p−k∑
l=0

Υ̂
(p−k+1)
{i1...il s il+k+1...ip}

f
(k)
s{il+1...il+k}

. (148b)

These new terms have exactly the same structure as those appearing in Eqs. (38b)-(38c) computed for the autonomous part,
where one just need to replace the terms of the nonlinear mapping, which has important consequence at the computational
level and ease the writing.

The second term involving a gradient and needing a dedicated development involves the gradient of the known au-
tonomous mappings with respect to the normal coordinates, now multiplied with the reduced dynamics of the unknown
time-dependent part. It can be expressed as:

[
∇zΨ(z)f̂(z)

]
=

 2n∑
s=1

ϕϕϕs +

∂[Ψ(z)]> 1
≤ p

∂zs

([f̂s(z)]≥ 0
< p

+ [f̂s(z)]p

)
p

, (149a)

[
∇zΥ (z)f̂(z)

]
=

 2n∑
s=1

ϕϕϕsλs +

∂[Υ (z)]> 1
≤ p

∂zs

([f̂s(z)]≥ 0
< p

+ [f̂s(z)]p

)
p

. (149b)

which in turn can be rewritten as:

[
∇zΨ(z)f̂(z)

]
=

2n∑
s=1

ϕϕϕsλs[f̂s(z)]p +

∂[Ψ(z)]> 1
≤ p

∂zs
[f̂s(z)]≥ 0

< p


p

 , (150a)

[
∇zΥ (z)f̂(z)

]
=

2n∑
s=1

ϕϕϕsλs[f̂s(z)]p +

∂[Υ (z)]> 1
≤ p

∂zs
[f̂s(z)]≥ 0

< p


p

 . (150b)

The second term on the right-hand side can be explicitly defined as:

2n∑
s=1

∂[Ψ(z)]> 1
≤ p

∂zs
[f̂s(z)]≥ 0

< p


p

=

2n∑
s=1

p−1∑
k=0

∂[Ψ(z)]p−k+1

∂zs
[f̂s(z)] =

∑
I

¯̄µ
(p)
I π

(p)
I , (151a)

2n∑
s=1

∂[Υ (z)]> 1
≤ p

∂zs
[f̂s(z)]≥ 0

< p


p

=
2n∑
s=1

p−1∑
k=0

∂[Υ (z)]p−k+1

∂zs
[f̂s(z)] =

∑
I

¯̄ν
(p)
I π

(p)
I . (151b)

which provides the following compact expression for Eq. (150):

[
∇zΨ(z)f̂(z)

]
=
∑
I

(
2n∑
s=1

(ϕϕϕsf̂
(p)
sI ) + ¯̄µ

(p)
I

)
π
(p)
I , (152a)

[
∇zΥ (z)f̂(z)

]
=
∑
I

(
2n∑
s=1

(ϕϕϕsλsf̂
(p)
sI ) + ¯̄ν

(p)
I

)
π
(p)
I , (152b)
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where the new terms provided by the above developments are explicitly computed as:

¯̄µ
(p)
I =

2n∑
s=1

p−1∑
k=0

p−k∑
l=0

Ψ
(p−k+1)
{i1...il s il+k+1...ip}

f̂
(k)
s{il+1...il+k}

, (153a)

¯̄ν
(p)
I =

2n∑
s=1

p−1∑
k=0

p−k∑
l=0

Υ
(p−k+1)
{i1...il s il+k+1...ip}

f̂
(k)
s{il+1...il+k}

. (153b)

Again, these coefficients can be directly compared to those reported in Eqs. (38b)-(38c) and in Eqs. (148), since sharing
exactly the same structure, where now the non-autonomous part (tilde terms) is on the reduced dynamics coefficients. At
the computational level, this symmetric structure can be used to compute easily these new terms.

E Explicit expressions for the RHS of low order ε1-homological equations and reduced
dynamics coefficients

In the present Section we report explicit expressions of the right-hand sides Ê
(p)
I for low order developments. This serves

the purpose of highlighting how different terms in the reduced dynamics are obtained and how they are affected by the
forcing and the geometrical parameters of the structure.

For the zero-order homological equations, Ê(0) is simply given by the applied forcing:

Ê(0) = F̂, (154a)

µ̂(0) =0. (154b)

Furthermore, since µ̂(0) = 0, the resulting mapping is co-linear with the applied forcing F̂ and reduced dynamics coefficients
F̂0 are proportional to the projection of the forcing vector onto the master modal subspace, as detailed in Section 4. This
conclusion is obtained by considering that the reduced dynamics coefficient can be computed from the relation:

f̂
(p)
j I = XT

j

[
Ê

(p)
I

−Mµ̂
(p)
I

]
=

ϕϕϕT
j

λj − λ̄j
Ê

(p)
I +

λ̄jϕϕϕ
T
j

λj − λ̄j
Mµ̂

(p)
I , (155)

which for the zero-order development yields:

f̂
(0)
j =

ϕϕϕT
j

λj − λ̄j
F̂. (156)

The first-order non-autonomous asymptotic development yields:

Ê
(1)
I = Ê

(1)
{i1}

= −M

2n∑
s=1

[
Υ̂

(2)
{s i1}

f̂
(0)
s + Υ̂

(2)
{i1s}

f̂
(0)
s

]
− 2G(Ψ

(1)
{i1}

, Ψ̂(0)), (157a)

µ̂
(1)
{i1}

=
2n∑
s=1

[
Ψ̂

(2)
{s i1}

f̂
(0)
s + Ψ̂

(2)
{i1s}

f̂
(0)
s

]
, (157b)

thus providing an explicit expression for the reduced dynamics coefficients:

f̂
(1)
j{i1}

=
ϕϕϕT
j

λj − λ̄j

[
−M

2n∑
s=1

[
Υ̂

(2)
{s i1}

f̂
(0)
s + Υ̂

(2)
{i1s}

f̂
(0)
s

]
− 2G(Ψ

(1)
{i1}

, Ψ̂(0))

]
+

λ̄jϕϕϕ
T
j

λj − λ̄j

[
2n∑
s=1

M
[
Ψ̂

(2)
{s i1}

f̂
(0)
s + Ψ̂

(2)
{i1s}

f̂
(0)
s

]]
,

(158)

which highlights how the reduced dynamics coefficients at first-order are heavily affected by the G(Ψ
(1)
i1

, Ψ̂(0)) vector.

Finally, the second-order expansions yields:

Ê
(2)
I = Ê

(2)
{i1i2}

= −M

2n∑
s=1

[
Υ

(3)
{s i1i2}

f̂
(0)
s +Υ

(3)
{i1s i2}

f̂
(0)
s +Υ

(3)
{i1i2s}

f̂
(0)
s

]

−M
2n∑
s=1

[
Υ

(2)
{i1s}

f̂
(1)
s {i2}

+Υ
(2)
{s i2}

f̂
(1)
s{i1}

]
−M

2n∑
s=1

[
Υ̂

(1)
{s}f

(2)
s{i1i2}

]
+ 2G(Ψ

(2)
{i1i2}

, Ψ̂(0)) + 2G(Ψ
(1)
{i1}

, Ψ̂
(1)
{i2}

) + 3H (Ψ
(1)
{i1}

,Ψ
(1)
{i2}

, Ψ̂(0)) , (159a)

µ̂
(2)
{i1i2}

= −
2n∑
s=1

[
Ψ

(3)
{s i1i2}

f̂
(0)
s +Ψ

(3)
{i1s i2}

f̂
(0)
s +Ψ

(3)
{i1i2s}

f̂
(0)
s

]

−
2n∑
s=1

[
Ψ

(2)
{i1s}

f̂
(1)
s{i2}

+Ψ
(2)
{s i2}

f̂
(1)
s{i1}

]
−

2n∑
s=1

[
Ψ̂

(1)
{s}f

(2)
s {i1i2}

]
, (159b)
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and the second-order reduced dynamics coefficients:

f̂
(2)
j {i1i2}

=
ϕϕϕT
j

λj − λ̄j

[
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