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Abstract. Nonlinear vibrations of free-edge shallow spherical shells with
large amplitudes are investigated, with the aim of predicting the type of
nonlinearity (hardening/softening behaviour) for each mode of the shell,
as a function of the radius R of curvature of the shell, from the plate
case (R → ∞) to the limit of non-shallow shell. Two different models
(based on von Kármán’s assumptions or on full numerical finite element
approach), and two different methods (normal form and modal deriva-
tives) are contrasted.

Keywords: Reduced-order model, hardening/softening behaviour, non-
linear normal form, modal derivatives

1 Introduction

Reduced-order modelling (ROM) strategies dealing with geometrically nonlinear
structures attract attention for a long time and a number of methods have been
proposed in the literature. In the recent years, a special emphasis has been put
toward applications to finite-element (FE) based models in order to extend the
range of application to engineering structures with complex geometries. Also,
numerous developments take into account both the non-intrusive characteristic
of the method, that can be used with a standard (commercial) FE code without
the need of entering inside the programs at the elementary level, and also on
simulation-free methods, that can be used without the need of a priori, offline
computations [4, 3].

The aim of this paper is to compare two different methods, namely the
quadratic manifold (QM) built from modal derivatives (MD) [2, 5] and the di-
rect normal form approach [7, 11], on a shell example. More particularly, the
ability of the two methods in the prediction of the type of nonlinearity (harden-
ing/softening behaviour), is investigated. In nonlinear vibrations, predicting the
correct type of nonlinearity is the first characteristics that needs to be correctly
given by a ROM since being a fundamental property of the nonlinear oscillations.
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The normal form approach, based on the invariant manifold theory, allows such
a correct prediction [9]. On the other hand, QM does not rely on invariance
property, and it has been shown recently that if a slow/fast assumption is not
at hand, incorrect prediction can be formulated [10]. This general result is here
illustrated on the specific case of a shallow spherical shell with increasing curva-
ture. For that purpose, the von Kármán model, assuming shallowness, neglecting
in-plane and rotary inertia and using an Airy stress function, is used [6].

In a second part, the validity of the von Kármán assumptions are verified
by comparing the type of nonlinearity computed from a FE model. For that
purpose, the direct normal form approach developed in [11] is used to get a
direct access to the hardening/softening behaviour from the FE mesh.

2 Modelling

2.1 Analytical von Kármán Model for Shallow Spherical Shell

A free-edge spherical shell, made of a homogeneous isotropic material of density
ρ, Poisson’s ratio ν and Youngs modulus E is considered, with the dimension
of thickness h, radius of curvature R and outer diameter 2a (see Fig. 1). Large
transverse deflections and moderate rotations are considered, so that the model is
a generalization of von Kármán’s theory for large deflection of plates. The shell is
assumed to be thin so that h/a� 1 and h/R� 1, and shallow: a/R� 1. Since
we are interested in predicting the type of nonlinearity, damping and forcing are
not considered. The equations of motion read [6]:

D∆∆w +
1

R
∆F + ρhẅ = L(w,F ), (1a)

∆∆F − Eh

R
∆w = −Eh

2
L(w,w), (1b)

where w is the displacement, F the the Airy stress function, ∆ the Laplacian, L
is a quadratic bi-linear operator and D = Eh3/12(1− v2) is the flexural rigidity.

The problem is made nondimensional by introducing r = ar̄, t = a2
√

ρh
D t̄,

w = hw̄, and F = Eh3F̄ . Thus, substituting the above definitions in equations
of motion, Eq. (1), and dropping the overbars in the results, one obtains:

∆∆w + εq∆F + ẅ = εcL(w,F ), (2a)

∆∆F −
√
κ∆w = −1

2
L(w,w). (2b)

where the two nondimensional coefficients are εq = 12(1 − v2)
√
κ, and εc =

12(1− v2), making also appear the aspect ratio κ of the shell as κ = a4

R2h2 .
The complete linear analysis has been tackled in [6]. As an important re-

sult, the behaviour of the eigenfrequencies with respect to the aspect ratio κ is
shown in Fig. 2. One can observe in particular that purely asymmetric modes
(k, 0), with k nodal diameters and no nodal circle, show a very slight dependence
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Fig. 1: Geometry of the free-edge shallow spherical shell.

upon κ. On the other hand, axisymmetric modes (0, n) without nodal diameters,
as well as mixed mode (k, n) with both k 6= 0 and n 6= 0, show a huge depen-
dence on curvature. These results are important in order to analyze the type of
nonlinearity, depending on the mode considered.

In order to predict the type of nonlinearity, Eqs. (2)) are projected onto the
natural basis of the eigenmodes. After projection, the semi-discretized equations
of motion read [6]:

Ẍp + ω2
pXp +

+∞∑
i=1

+∞∑
j=1

gpijXiXj +

+∞∑
i=1

+∞∑
j=1

+∞∑
k=1

hpijkXiXjXk = 0, (3)

where Xp refers to the modal amplitude of the pth transverse mode, and ωp its
radian eigenfrequency. The nonlinear coupling coefficients write:

gpij = −εq
∫∫

ϕ⊥

φpL(φi, ψj)dS −
εq
2

+∞∑
b=1

1

ξ4b

∫∫
ϕ⊥

L(φi, φj)ΥbdS

∫∫
ϕ⊥

φp∆ΥbdS,

(4a)

hpijk = εc

+∞∑
b=1

1

ξ4b

∫∫
ϕ⊥

L(φi, φj)ΥbdS

∫∫
ϕ⊥

φiL(φk, Υb)dS. (4b)

φi refers to transverse eigenmodes while ψj are obtained from the diagonaliza-
tion of the Airy stress function. ξn and eigenfunction Υn are zeros from the
eigenproblem, the interested reader can find their detailed expression in [6]. ϕ⊥
is the domain defined by (r, θ) ∈ [0 1] × [0 2π]. Eqs. (3) describe the dynamics
of the shell and the trend of nonlinearity can be inferred from these equations.

2.2 Numerical Finite Element Model

In addition to the von Kármán model developed in the previous section, a FE
procedure is also undertaken in order to analyze the type of nonlinearity of
shallow spherical shells. For that purpose, the open source software code aster

[1] is used, and free-edge shallow shells have been meshed with both 2D shell
elements and 3D brick elements. These meshes will be used in order to highlight
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Fig. 2: Dimensionless natural frequencies ωkn of the shell as a function of the
aspect ratio κ (figure reprinted from [8]). κ = 0 corresponds to the flat plate
case.

the validity of von Kármán’s assumption in order to predict hardening/softening
behaviour.

For the geometrically nonlinear structures, the equations of motion stemming
from the FE discretization write:

MẌ + KX + G(X,X) + H(X,X,X) = 0, (5)

where X is the vector of generalized displacements at the nodes, M is the mass
matrix, K is the tangent stiffness matrix, and finally, G(X,X) and H(X,X,X)
represents quadratic and cubic nonlinear couplings.

3 Analytical Prediction of the Type of Nonlinearity

3.1 Analytical Results from the Three Reduction Methods

We first compare the prediction of the type of nonlinearity using the semi-
analytical derivation obtained from von Kármán model. Three different pre-
dictions are contrasted. The first one is given by the normal form approach, and
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has already been reported in [8]. As known from theoretical results [9], this pre-
diction is correct thanks to the invariance property of nonlinear normal modes
(NNMs). Two other solutions are compared to this reference solution, both ob-
tained from the QM approach developed in [2, 5], the first one using full MD,
and the second one static modal derivatives (SMD).

In each case, the dynamics is reduced to a single-degree of freedom equation
from which one can infer the hardening/softening behaviour. Let p be the master
mode of interest. Following [10], one can show that the reduced dynamics given
by the three methods writes:

R̈+ ω2
pRp +C1R

2
p +C2

Ṙ2
p

ω2
p

+C3
R̈pRp
ω2
p

+C4R
3
p +C5

Ṙ2
pRp

ω2
p

+C6

R̈pR
2
p

ω2
p

= 0, (6)

where the expression of C1 to C6 are different depending on the method, and
are recalled in Tab. 1.

C1 C2 C3 C4 C5 C6

MD gppp 0 0 hp
ppp −

∑n
s=1
s 6=p

2(gspp)
2(ω2

s−2ω2
p)

(ω2
s−ω2

p)
2

∑n
s=1
s 6=p

4(gspp)
2ω2

p

(ω2
s−ω2

p)
2

∑n
s=1
s 6=p

4(gspp)
2ω2

p

(ω2
s−ω2

p)
2

SMD −2gppp −2gppp −4gppp hp
ppp −

∑n
s=1

2(gspp)
2

ω2
s

∑n
s=1

4(gspp)
2ω2

p

ω4
s

∑n
s=1

4(gspp)
2ω2

p

ω4
s

NF 0 0 0 hp
ppp −

∑n
s=1

2(gspp)
2(ω2

s−2ω2
p)

ω2
s(ω

2
s−4ω2

p)
2

∑n
s=1

4(gspp)
2ω2

p

ω2
s(ω

2
s−4ω2

p)
2 0

Table 1: Table of coefficients of the reduced dynamics given by the three selected
methods: MD for modal derivatives, SMD for static modal derivatives and NF
for normal form.

A first-order perturbative development allows definition of the angular fre-
quency of free oscillations ωNL , connected to the natural frequency ωp, as
ωNL = ωp(1 + Tpa

2), where a is the amplitude of the response of the pth master
coordinate and Tp the coefficient governing the type of non-linearity. Tp > 0 in-
dicates the hardening behaviour while Tp < 0 implies softening behaviour. The
general expression for Tp with all the Ci coefficients read as:

Tp = − 1

24ω4
p

(10C2
1+10C1C2+4C2

2−7C2C3+C2
3−11C1C3)+

1

8ω2
p

(3C4+C5−3C6).

(7)
As theoretically shown in [10], the MD and SMD method are awaited to give
correct results only if a slow/fast assumption between master and slave coordi-
nates is at hand. This slow/fast assumption has been quantified in [10]. Let ρ
be the ratio between the smallest eigenfrequency of the slave modes and that of
the master one labelled p. If ρ > 4, the slow/fast (S/F) assumption is fulfilled,
while ρ < 3 means that QM method will probably fail. In order to analyze the
fulfilment of this S/F, let us introduce ρp for spherical shells as:

ρp = min
n∈Es

(
ωn
ωp

), (8)
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where Es is the set of all the slave modes, i.e. all the modes except the master
coordinate p.

3.2 Numerical Results on the Shallow Spherical Shell
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Fig. 3: Type of nonlinearity for 6 modes of the shell: modes (2,0), (3,0), (4,0),
(0,1), (0,2), (2,1).
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The results are shown for 6 different master modes in Fig. 3. The first three
cases are purely asymmetric modes, (2,0), (3,0) and (4,0); then the first two
axisymmetric modes are considered, and finally a mixed mode (2,1) is selected.
In the figures, the reference solution is given by the normal form approach (NNM)
in magenta. The prediction given by QM MD is in red and QM SMD in yellow.
The figures have two y-axis allowing to also report the variations of ρp for the
mode of interest, as function of κ.

For mode (2,0), one can observe that MD and SMD methods fail to recover
the 1:2 resonance leading to a change of behaviour of the type of nonlinearity.
On the other hand, when κ is larger than 20, then ρp increases and is close to
4, the S/F assumption is retrieved and the three methods give the same results.
Modes (3,0) and (4,0) show another important feature, already noted in [10]:
the MD method has a divergence in the case of 1:1 resonance, which has no
physical explanation and is interpreted as a failure of the method. For purely
asymmetric modes, since they show a very slight dependence on curvature, this
means that all the slave modes have strongly increasing eigenfrequencies with κ.
Consequently for all these modes the S/F assumption is always finally retrieved,
but sometimes at large values of curvature.

Mode (0,1) has the particularity to be very well predicted by using a single
linear mode, as shown in [8]. Consequently the three methods behave correctly,
even though ρ is decreasing with κ so that S/F does not hold. As a matter
of fact, for all axisymmetric and mixed modes, the behaviour of their eigenfre-
quencies shown in Fig. 2 underlines that S/F assumption will never been met.
Consequently the prediction of the type of nonlinearity given by MD and SMD
method completely fails.

4 FE Prediction of the Type of Nonlinearity

This section is devoted to compute the type of nonlinearity from FE models. For
that purpose, one has first to select a number of specific cases of curvature since
continuous increasing of κ is out of reach. Tab. 2 summarizes the selected case,
where a constant value of radius a=0.15m has been retained. Varying the radius
of curvature R and the thickness h gives rise to a number of κ values that can
be directly compared with the predictions obtained in the previous section.

In the FE model, the material properties of the shell are the following: ρ =
4400kg/m3, E = 1.04e + 11Pa, ν = 0.3. Two types of elements are used in
the analysis. In the first case, DKT shell/plate element are used and a mesh
composed of 12000 degrees of freedom (dofs), has been built, with three different
thicknesses: 1mm, 3mm and 5mm. In the second case, quadratic 3D element are
selected and a mesh composed of approximately 50000 dofs, with the thickness
3mm, has been created. A careful convergence study has underlined that the
eigenfrequencies need to be finely computed in order to obtain a reliable result
for the type of nonlinearity.
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a(m) 0.15

R(m) 3.5 2.5 1.5 0.9 0.8 0.7 0.6 0.5 0.4 0.3

κ(h = 0.001m) 41.3 81.0 225.0 625 791 1033.16 1406.25 2025 3164.06 5625

κ(h = 0.003m) 4.59 9 25 69.44 87.89 114.80 156.25 225 351.56 625.00

κ(h = 0.005m) 1.65 3.24 9 25 31.64 41.32 56.25 81 126.56 225.00

Table 2: Dimensions of the selected shells for the FE analysis with the corre-
sponding κ values.

4.1 Direct Normal Form Approach

In order to predict the hardening/softening behaviour for the FE shell models,
the direct normal form (DNF) introduced in [11] is used. The type of nonlinearity
can be computed from T̂p that reads in this case:

T̂p =
1

8ω̂2
p

[3(Âpppp + ĥpppp) + ω̂2
pB̂

p
ppp]. (9)

In this equation, ĥpppp is the nonlinear cubic coefficient that can be directly

computed with a single STEP operation [4]. The other correcting terms Âpppp and

B̂pppp can be directly computed from the FE model thanks to the DNF approach,
that allows to go directly from the physical space (nodes of the FE mesh) to
the invariant-based span of the phase space, thanks to the nonlinear mapping
given by the normal form approach. The complete expressions for leading these
computations are explicit in [11], here we simply recall the values of the needed
coefficients as given by:

Âpppp = 2φTp G(φp, āpp), B̂pppp = 2φTp G(φp, b̄pp), (10)

where the expression of āpp, b̄pp can be found in [11].
In order to draw out the comparison with the results obtained in the pre-

vious sections (von Kármán model) where a nondimensionalisation was carried
out, the relationship between the coefficient computed from FE model T̂p and

dimensionless Tp is explicit as: Tp = T̂ph
2v2, where v is the mode shape scaling

factor, which is chosen to obtain the same maximal amplitude for the analytical
and FE mode shapes, i.e. φ̂p = φpv, with φp normalized by

∫∫
ϕ⊥

φ2pdS = 1 in
analytical von Kármán model.

4.2 Results

Figure 4 compares the analytical result given by von Kármán model and normal
form onto the analytical coefficients, to those obtained from the direct com-
putation on the FE model, where again two different types of elements (DKT
shell/plate element and 3D elements) have been used. The same mode as in Fig. 3
are used. A perfect matching is obtained between the two methods, underlining



Reduced-order Models for Free-edge Shallow Spherical Shells 9

that the von Kármán model, even though relying on numerous assumptions, is
sufficient in order to correctly predict the type of nonlinearity of shallow spher-
ical shell. The results also underlines the efficiency of the DNF approach for
computing accurate ROMs for shell models.
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Fig. 4: Type of nonlinearity for 6 modes of the shell: modes (2,0), (3,0), (4,0),
(0,1), (0,2), (2,1). Comparison of analytical results from von Kármán model
(continuous lines) to numerical predictions obtained by combining FE procedure
with DNF.

5 Conclusion

The type of non-linearity for free-edge shallow spherical shells has been stud-
ied with a special emphasis on comparing different models and methods. Two
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methods have been contrasted in their ability to correctly predict the type of
nonlinearity: the normal form approach and the QM method based on modal
derivatives. In that case, the von Kármán model has been used to illustrate how
the two reduction methods can give different predictions. The results underline
that modal derivatives approaches need a slow/fast assumption in order to yield
a correct prediction. For numerous modes of the shallow spherical shell, the S/F
assumption is never met so that both methods (using either MD or SMD) com-
pletely fail in predicting correctly the hardening/softening behaviour, whereas
the normal form always gives the correct prediction. The second comparison is
between the results given by von Kármán model and a finite element procedure.
For that purpose, the DNF approach has been used, allowing to directly compute
and predict the type of nonlinearity from FE models. Both models have been
found to give the same predictions, underlining that the assumptions of the von
Kármán model are well fulfilled so that the predictions given are correct.
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7. Touzé, C. and Amabili, M.: Non-linear normal modes for damped geometrically
non-linear systems: application to reduced-order modeling of harmonically forced
structures, J. Sound Vib., 298(4-5), 958-981 (2006).
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