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Abstract

This paper presents a novel derivation of the direct parametrisation method for invariant manifolds
able to build simulation-free reduced-order models for nonlinear piezoelectric structures, with a partic-
ular emphasis on applications to Micro-Electro-Mechanical-Systems. The constitutive model adopted
accounts for the hysteretic and electrostrictive response of the piezoelectric material by resorting to the
Landau-Devonshire theory of ferroelectrics. Results are validated with full-order simulations operated
with a harmonic balance finite element method to highlight the reliability of the proposed reduction
procedure. Numerical results show a remarkable gain in terms of computing time as a result of the
dimensionality reduction process over low dimensional invariant sets. Results are also compared with
experimental data to highlight the remarkable benefits of the proposed model order reduction technique.

1 Introduction

Piezoelectric Micro Electro Mechanical Systems (MEMS) represent nowadays an important class of devices
for both actuation and sensing [1] that are often preferred to their capacitive and magnetic counterparts. In
particular, piezoactuation is a key enabling technology for the next generation of micromirrors, loudspeak-
ers, piezoelectric ultrasonic transducers [2, 3, 4, 5, 6, 7]. For these applications, every source of nonlinear
behaviour must be predicted and controlled, since the frequency drift of the resonant mode with increasing
actuation voltage can be disruptive for the correct functioning of the device. For instance, structural and
piezoelectric material nonlinearities are excited when considering large amplitude vibrations that are rou-
tinely reached within the operating range of these devices. Generally, the growing importance of nonlinear
effects in MEMS is stimulating intensive research as recently reported in e.g. [8, 9, 10, 11]. The main aim
of this work is thus to consider the derivation of fast and accurate reduced models (ROMs) for nonlinear
structures subjected to piezoelectric actuation, with application to MEMS devices. To that purpose, the
direct parametrisation method for invariant manifolds will be used and extended in order to properly take
into account the new effects provided by the piezoeletric coupling.

Nonlinear model order reduction techniques have been used for decades for geometrically nonlinear struc-
tures, as surveyed for example in [12]. They rely on a different approach compared to linear projection meth-
ods, like e.g. modal decomposition, Proper Orthogonal Decomposition (POD) [13, 14, 15], or techniques as
the Proper Generalized Decomposition (PGD) [16]. In this respect, nonlinear normal modes (NNMs) defined
as invariant manifolds attached at a fixed point to their linear counterpart, are a powerful tool introduced in
the seminal work by Shaw and Pierre [17]. While the first methods to compute these invariant sets applied
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either the center manifold theory [18] or the normal form approach [19, 20], an important step forward has
been provided by the parametrisation method of invariant manifolds [21, 22], since the two techniques can
be embedded in the same framework.

In recent years two important obstacles hindering the use of nonlinear reduction methods based on in-
variant manifold theory to large scale systems have been overcome. The first one is the direct calculation,
allowing one to go from the physical space (FE degrees-of freedoms, dofs) to a reduced subspace spanned by
invariant manifolds. This has been achieved with a normal form approach [23, 24] and with the parametri-
sation method [25]. This step represents a very important achievement since previous methods, e.g. the
ones presented in [26, 20, 27], need to express the dynamics in the full modal basis as a starting point,
which impedes the applicability of the method to large-scale FE problems. The second important achieve-
ment is related to the use of arbitrary order expansions, allowing one to offer automated algorithms with
the required accuracy that guarantees convergence. This has been first realized using the parametrisation
method from the modal space [28, 29], and has been pushed forward and implemented through a direct
approach in [25, 30, 31]. In particular, non-autonomous generic forcing terms can be directly treated in the
parametrisation procedure as in [31]. Whereas the simple solution of directly adding the modal forcing to
the reduced dynamics, as used for instance in [20, 23, 30, 25], gives accurate results when the loading is
colinear with the master mode itself, higher-orders on the forcing appear to be of prime importance in other
cases [31] such as non-modal forcing, forcing orthogonal to the master mode, parametric excitation, and the
computation of isolated solutions arising in such cases.

Considering applications to MEMS which address different physics such as piezomechanical coupling, the
generation of Reduced Order Models is a complex task in itself as classical linear reduction approaches [5, 32]
cannot include the effects of geometric nonlinearities. These have been addressed in [33, 34, 35], where a ROM
for coupled piezoelectricity was developed using structural theories of beams and shells and a linear modal
basis. However, similar techniques encounter severe difficulties when using general 3D elements, see e.g. [36,
37, 38]. For instance, the approach based on Implicit Condensation [39], as for instance proposed in [40, 41],
that has been tailored to resonant microdevices like gyroscopes or accelerometers in small transformations,
fails when applied to micromirrors undergoing large rotations [24]. Similar difficulties are experienced with
the quadratic manifold technique built from modal derivatives [42, 43, 12]. Preliminary successful tests
with the DPIM have been reported in [24, 30] using as actuation a fictitious modal forcing. The aim of
this investigation is on the contrary to develop a reduction procedure for the Full Order Model accounting
exactly for the piezo forcing. While we are not addressing here a fully coupled multiphysics problem, this
work is however intended as a first step in this direction and represents a major achievement in itself as it
provides the ideal simulation tool for a whole class of high-impact technological applications.

In the developments reported herein, the focus is set on piezo-MEMS actuators fabricated using Lead
Zirconate Titanate (PZT), which is deposited in the form of a thin film sol-gel on bulk silicon. The resulting
PZT is a random solid solution between PbTiO3 and PbZrO3 and is widely used due to its excellent proper-
ties, such as high relative dielectric constants, high remnant polarisation and large piezoelectric coefficients.
In the applications targeted herein typical PZT thin films have the thickness of few microns and are actuated
with voltage biases in the order of tens of Volts generating oscillating electric fields with maximum values
often larger than 107 V/m, which unavoidably exceed the linear range of piezoelectric materials. There-
fore, models that predict the effects of nonlinearities are a necessary tool for the design and simulation of
this class of devices, and reduction methods accounting for these effects are a key tool at the design stage.
Although research is rapidly progressing, an ab-initio accurate numerical computation of macroscopic hys-
teresis loops is still beyond current capabilities as it is strongly influenced by microstructural defects arising
from fabrication processes [44, 45]. For these reasons we adopt herein a pragmatic approach based on direct
measurements of the polarisation through experiments, as proposed in [46] where the time evolution of the
average polarisation field within the piezoelectric material was measured using a standard Sawyer-Tower
circuit for each value of the voltage applied. The polarisation induces, through the converse piezoelectric
effect, inelastic strains and stresses that actuate the device according to the fundamental elements of the
Landau-Devonshire theory of ferroelectric materials [47]. These assumptions have been tested and validated
with experiments on micromirrors in [48] and following this approach a similar method has been implemented
in commercial codes like Comsol Multiphysics® [49].

The paper is organized as follows. After setting in Section 2.1 the equilibrium and constitutive equations
with the associated spectral properties, the DPIM theory is briefly recalled in Section 3.1, with specific
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emphasis on new features with respect to known developments. Finally, in Section 4 two different examples
are discussed, starting with an academic benchmark on a doubly clamped beam. Two MEMS micromirrors
are then addressed, for which also experimental data are available. All the numerical examples are validated
against an Harmonic Balance approach for the full-order model. Additional numerical results on the academic
case of a cantilever beam are also collected in Appendix D for the sake of completeness.

2 Piezoelectric MEMS modelling

This section is devoted to detailing the governing equations used to model a nonlinear structure actuated
with piezoelectric effect considered in this study. The equations will be written starting from the strong
form and then addressing the derivation of the weak form and the semi-discrete equations using a classical
FE procedure. As a consequence of the piezoelectric forces, the static position of the structure at rest
is modified. Hence a first necessary step consists in computing this static position, before analyzing the
nonlinear vibrations.

2.1 Governing equations

Piezoelectric materials like PZT are characterized by a strong electrostrictive response. The polarisation
field induces inelastic strains ep so that the assumed Kirchhoff-like constitutive equation, which holds under
the classical assumption of large transformations and small strains, reads:

S = A : e− Sp, with Sp := A : ep, (1)

where S is the second Piola-Kirchhoff stress tensor, Sp are inelastic stresses, e is the total Green Lagrange
strain tensor and A is the fourth order elasticity tensor.

According to the theory of electrostrictive materials introduced by Landau-Devonshire [47], inelastic
strains depend on the polarisation as follows:

ep = Q : (p⊗ p), epij =
∑
k,ℓ

Qijkℓpkpℓ. (2)

Here p denotes the polarisation back-rotated in the reference configuration and Q is the electrostrictive
coefficients tensor.

It is worth stressing that in this work the polarisation history at every point of the piezo patches is
measured experimentally and is treated as a known periodic function of time. In particular, we assume that
the polarisation is not affected by the deformation of the device which is a simplifying assumption holding
anyway with very good accuracy for actuators undergoing moderate transformations. The dynamic response
of the structure is hence entirely defined by the conservation of linear momentum, the latter expressed in
the reference configuration B:

ρü−∇ · P = ρB, in B × t ∈ (t0, Te], (3)

with ρ density, u displacement field, P first Piola-Kirchhoff stress tensor, ∇ gradient operator, (̈·) second
partial derivative with respect to time, B body forces per unit mass. For the sake of simplicity we will neglect
in the following every external action in the form of body or surface forces, as well as non-homogeneous
kinematic boundary conditions, the only actuation being provided by the imposed polarisation through the
electrostrictive effect. If needed, these could be easily included in the formulation. All quantities are defined
in the reference configuration B and over the time span from t0 and Te. Boundary and initial conditions for
Eq. (3) are given as:

P · n = 0, on ∂BN × t ∈ (t0, Te], (4a)

u = 0, on ∂BD × t ∈ (t0, Te], (4b)

u = u0, inB × t = t0, (4c)

u̇ = u̇0, inB × t = t0, (4d)
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Equation (3) is recast into a weak formulation upon introduction of a test function fieldw which is defined
over the space of admissible functions that vanish on the portion of the boundary where Dirichlet boundary
conditions on u are prescribed, i.e. C(0). Projecting the governing equation onto the test functions, the
following weak formulation is obtained for the problem at hand:

∫
B

ρ ü ·w dB +

∫
B

e : A : δedB =

∫
Bp

Sp : δe dB, ∀w ∈ C(0), (5)

The inelastic stresses Sp are integrated only over Bp, defined as the collection of piezoelectric patches.
Since Sp are given periodic functions of time providing the actuation mechanism, they are accordingly
collected at the right-hand side of Eq. (5). The Green-Lagrange strain tensor e and its first variation δe are
defined as:

e =sym(∇u) +
1

2
∇Tu · ∇u, (6a)

δe =sym(∇w) + sym(∇Tw · ∇u). (6b)

It is worth stressing that Eq. (5) treats geometric nonlinearities exactly and its validity is only limited
by the small strain assumption of the Kirchhoff constitutive law (1).

All nonlinear terms are polynomial and the resulting expression upon explicit decomposition of such term
is given as:

∫
B

ρ ü ·w dB +

∫
B

sym(∇u) : A : sym(∇w) dB+∫
B

sym(∇u) : A : sym(∇Tw · ∇u) dB +
1

2

∫
B

sym(∇w) : A : sym(∇Tu · ∇u) dB+

1

2

∫
B

sym(∇Tu · ∇u) : A : sym(∇Tw · ∇u) dB =∫
B

Sp : sym(∇w) dB +

∫
B

Sp : sym(∇Tu · ∇w) dB. (7)

Equation (7) can be discretised using for instance the finite element method with nodal shape functions.
Detailed derivation of the discretisation scheme of all quantities is reported in Appendix A. Upon addition
of linear damping the following system of time-dependent differential equations is derived:

MÜ+CU̇+KU+G(U,U) +H (U,U,U) = FP (t) +KP (t)U, (8)

where M,C,K are respectively the mass, damping and stiffness matrices, G and H represent the
quadratic and cubic nonlinearity tensors, FP represents the time-dependent piezoelectric force, while KP

stands for the time-dependent piezoelectric stiffness. The right-hand side of Eq. (8) stems from the discreti-
sation of the contribution due to inelastic stresses induced by the polarisation. Equation (8) represents a
non-autonomous dynamical system with nonlinear terms up to cubic order. Piezoelectric forcing yields stiff-
ness terms that alter the eigenspectrum of the system and need to be properly treated during the reduction
procedure.

2.2 Computation of the static equilibrium position

The piezoelectric forces in Eq. (8) contain constant terms, which in turn create a new static position at rest
for the structure. In order to compute the nonlinear vibration around this static position, one needs to split
all time-dependent terms into their mean value over time and their time-dependent component. For the rest
of the paper, it is assumed that the external excitation is periodic with period T . The decomposition of
piezoelectric force and stiffness writes:
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FP (t) =F̂
(0)
P + F̂P (t), (9a)

KP (t) =K
(0)
P + K̃P (t), (9b)

where the average value of the excitation is computed as:

F̂
(0)
P =

1

T

∫ T

0

FP dt, (10a)

K
(0)
P =

1

T

∫ T

0

KP dt. (10b)

As a result, one can clearly distinguish the autonomous terms from the non-autonomous ones, and collect
the non-autonomous terms on the right-hand side of the equations. The final expression for the semi-discrete
equations of motion is then expressed as:

MÜ+CU̇+ (K−K
(0)
P )U+G(U,U) +H (U,U,U)− F̂

(0)
P = ε(F̂P + K̃PU). (11)

In this equation, a book-keeping parameter ε is added to make it compatible with the DPIM procedure
for non-autonomous systems, as detailed in [31].

The constant forcing terms in the left-hand side of Eq. (11) needs to be first balanced in order to obtain
the new static position of the structure at rest. Let us denote as U0 this deformed static configuration. Since
one is interested in computing the nonlinear vibrations around this static position, the nodal displacement
vector is expanded along:

U(t) = U0 + Ũ(t), (12)

where Ũ(t) is the time-dependent part of the displacement field. Plugging this ansatz into Eq. (11), one
first obtains a static problem that needs to be solved for U0, which reads:

(K−K
(0)
P )U0 +G(U0,U0) +H (U0,U0,U0)− F̂

(0)
P = 0. (13)

The solution of this nonlinear static problem is obtained classically thanks to a Newton-Raphson pro-
cedure. In particular, an explicit analytical decomposition of the internal power into polynomial terms is
not required for this step since the linearisation of the internal power can be performed directly through
computation of the material stiffness and geometrical stiffness [50] as reported in Appendix B.

Upon substitution of Eq. (12) into Eq. (11), all static terms simplify and one finally obtains the dynamical
equations governing the nonlinear vibrations around the static position as:

M ¨̃U+C ˙̃U+
[
(K−K

(0)
P )Ũ+ 2G(Ũ,U0) + 3H (Ũ,U0,U0)

]
+[

G(Ũ, Ũ) + 3H (Ũ, Ũ,U0)
]
+H (Ũ, Ũ, Ũ) = ε(F̂P + K̃PU0 + K̃P Ũ). (14)

the following auxiliary quantities can now be introduced:

K̃Ũ =(K−K
(0)
P )Ũ+ 2G(Ũ,U0) + 3H (Ũ,U0,U0), (15a)

G̃(Ũ, Ũ) =G(Ũ, Ũ) + 3H (Ũ, Ũ,U0), (15b)

F̃P =F̂P + K̃PU0, (15c)

that allows rewriting Eq. (11) in more compact form as:

M ¨̃U+C ˙̃U+ K̃Ũ+ G̃(Ũ, Ũ) +H (Ũ, Ũ, Ũ) = ε(F̃P + K̃P Ũ). (16)
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The reduction method based on the direct parametrisation of invariant manifold will be used to analyze
the nonlinear vibrations displayed by Eq. (16). The autonomous part in the left-hand side contains quadratic
and cubic nonlinearities, fitting with the generic framework given in [30]. The non-autonomous terms in the
right-hand side differ from those treated in [31] by a term that is linear with respect to the displacement
and needs a dedicated development. In particular, this term has a direct influence on the eigenfrequencies of
the system, nevertheless it is treated as a small excitation term in the DPIM procedure, which is computed
for the eigenvalues corresponding to the autonomous terms on the left-hand side. This assumption will be
shown to give effective results, provided that the perturbation on the eigenfrequencies is small. This will be
verified quantitatively in the numerical examples.

All the spectral properties of the mechanical system detailed in [30, 31] also apply here, the only difference
being that the spectrum of the system is computed at the new fixed point, as also recently processed for
rotating structures in [51]. The resulting orthogonality properties of the system are expressed with respect
to the tangent stiffness K̃ since it corresponds to the linear stiffness operator at the configuration where
the system is linearised. In order to properly derive the ROM, Eq. (16) is first rewritten as a first-order
dynamical system

M ˙̃V +CṼ + K̃Ũ+ G̃(Ũ, Ũ) +H (Ũ, Ũ, Ũ) = ε(F̃P + K̃P Ũ), (17a)

M ˙̃U = MṼ, (17b)

where the velocity Ṽ associated to Ũ is identical to the physical velocity since U̇0 = 0.

2.3 Spectral properties

Let us introduce the eigenfunctions Φ end eigenfrequencies ωj as the solution of the following problem:(
−ω2

jM+ K̃
)
Φj = 0. (18)

The tangent stiffness operator is symmetric, hence eigenfunctions and eigenvalues are real valued. Here-
after, we assume that the tangent-operator remains positive-definite (instabilities like buckling are not con-
sidered). The left and right eigenfunctions, denoted as Xj and Yj , together with the eigenvalues Λj of the
first-order problem, are defined as the solutions of the following systems:(

Λs

[
M 0
0 M

]
+

[
C K̃

−M 0

])
Ys = 0, XT

s

(
Λs

[
M 0
0 M

]
+

[
C K̃

−M 0

])
= 0, (19)

where properties and explicit definitions for right and left eigenvalues are detailed in [30, 31]. Let us now
define the set of master modes on which the reduction method will rely. Assuming that n master modes are
selected for the ROM, we introduce the following matrices related to the master linear subspace:

X =
[
Xm1

Xm2
. . . Xmn

X̄m1
X̄m2

. . . X̄mn

]
, (20a)

Y =
[
Ym1

Ym2
. . . Ymn

Ȳm1
Ȳm2

. . . Ȳmn

]
, (20b)

λ =diag[Λm1
, Λm2

, . . . , Λmn
Λ̄m1

, Λ̄m2
, . . . , Λ̄mn

], (20c)

ϕϕϕ =
[
Φm1

Φm2
. . . Φmn

Φm1
Φm2

. . . Φmn

]
, (20d)

with X and Y the 2N × 2n matrices of left and right master eigenvectors, λ the 2n × 2n matrix of
complex master eigenvalues, and ϕϕϕ the N ×2n matrix of master modes. It follows that the newly introduced
matrices can be also written as:

X =
[
X1 X2 . . . Xn X̄1 X̄2 . . . X̄n

]
, (21a)

Y =
[
Y1 Y2 . . . Yn Ȳ1 Ȳ2 . . . Ȳn

]
, (21b)

λ =diag[λ1, λ2, . . . , λn, λ̄1, λ̄2, . . . , λ̄n], (21c)

ϕϕϕ =
[
ϕϕϕ1 ϕϕϕ2 . . . ϕϕϕn ϕϕϕ1 ϕϕϕ2 . . . ϕϕϕn

]
, (21d)
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which makes clear that in the sorting of the master quantities, the j-th master index corresponds to the
mj-th index in the sorting of the original system and the (j + n)-th to the (mj +N)-th, with j ∈ (1, n).

3 Reduced-order modelling strategy

In this Section, the main equations needed to derive the ROM, are detailed. The method relies on the
computation of a nonlinear mapping and the reduced dynamics, both being computed with polynomial
expansions at arbitrary order. The complete derivation of the method is developed in [30, 31] and only the
main points are here briefly recalled by underlining the additional steps needed to tackle the peculiarity of
the problem at hand.

3.1 Direct parametrisation of invariant manifold

The direct parametrisation method relies on the introduction of nonlinear mappings relating initial nodal
displacement and velocity vectors Ũ and Ṽ in physical space, to newly introduced normal coordinate z,
describing the motions on the invariant manifold associated to the selected master coordinates. Since the
problem at hand is non-autonomous, one can use the nonlinear mappings introduced in [31], which read:

Ũ = Ψ(z,Ω, t) = Ψ(z) + εΨ̂(z,Ω, t) +O(ε2), (22a)

Ṽ = Υ(z,Ω, t) = Υ(z) + εΥ̂(z,Ω, t) +O(ε2). (22b)

Importantly, the change of coordinates are composed of two different terms, the first one at order ε0 being
related to the autonomous problem, while the second one at order ε1 is concerned with the non-autonomous
forcing terms. For the last term, one can note the dependence upon time t and upon the excitation frequencies
Ω. The reduced dynamics along the embedding can be also be decomposed as:

ż = f (z,Ω, t) = f (z) + εf̂ (z,Ω, t) +O(ε2), (23)

where the corresponding splitting pertaining to autonomous and non-autonomous terms is used accord-
ingly. As a consequence, the reduced dynamics depends explicitly on time and on parameters as the excitation
frequencies Ω as well. The reduced dynamics and the mappings depend also on implicit parameters such
as geometry and material parameters, which affect the resulting values of the coefficients of the vector field
f (z,Ω, t).

In order to compute the unknown mappings and reduced dynamics, the starting point consists in deriving
the invariance equation [21, 22], which is found by eliminating time. This equation embeds the invariance
property of the searched manifolds where the reduced dynamics will lie. It is simply found by differentiating
Eq. (22) with respect to time, substitute into (17) and use (23). In the non-autonomous case, terms of
like-powers of ε are also collected, such that two different invariance equations are written [31]. At order ε0,
the invariance equation for the autonomous terms writes:

M∇zΥ(z)f (z) +CΥ(z) + K̃Ψ(z) + G̃(Ψ(z),Ψ(z)) +H (Ψ(z),Ψ(z),Ψ(z)) = 0, (24a)

M∇zΨ(z)f (z)−MΥ(z) = 0. (24b)

One can note in particular that Eq. (24) is identical to the one handled in [30], hence the same algorithm
can be adopted. A different result is observed for the ε1-invariance equation due to the extra term in the
right-hand side of (17) which is proportional to the displacement, yielding:

M
(
˙̂
Υ(z,Ω, t) +∇zΥ(z)f̂ (z,Ω, t) +∇zΥ̂(z,Ω, t)f (z)

)
+CΥ̂(z,Ω, t) + K̃Ψ̂(z,Ω, t)

+ 2G̃(Ψ(z), Ψ̂(z,Ω, t)) + 3H (Ψ(z),Ψ(z), Ψ̂(z,Ω, t)) = F̃P + K̃PΨ(z), (25a)

M
(
˙̂
Ψ(z,Ω, t) +∇zΨ(z)f̂ (z,Ω, t) +∇zΨ̂(z,Ω, t)f (z)

)
−MΥ̂(z,Ω, t) = 0. (25b)

7



Contrary to the developments reported in [31], an additional term K̃PΨ(z) is present in the right-hand
side of Eq. (25a), as a consequence of the time-dependent piezoelectric stiffness. Equation (25) represents a
system of linear differential equations and can be solved using Fourier analysis. To this aim, let us decompose
the external excitation terms in its Fourier components:

F̃P =

2n̂∑
j=1

F̃Pj
eλ̂jt, (26a)

K̃P =

2n̂∑
j=1

K̃Pj
eλ̂jt, (26b)

where λ̂j represents either +iΩj or −iΩj . In practice, if no internal resonances are experienced by the
structure, only the first harmonic component is necessary to derive an accurate reduced model. Equa-
tions (25) is linear with respect to the non-autonomous mappings and reduced dynamics, hence the resulting
quantities will have the same frequency content:

Ψ̂(z,Ω, t) =

2n̂∑
j=1

Ψ̂ j(z)e
λ̂jt, Υ̂(z,Ω, t) =

2n̂∑
j=1

Υ̂ j(z)e
λ̂jt, f̂ (z,Ω, t) =

2n̂∑
j=1

f̂ j(z)e
λ̂jt, (27)

where Υ̂ j(z), Ψ̂ j(z) and f̂ j(z) are coefficients of the Fourier expansion. We highlight that the coefficients
are neither function of time nor of the frequency. Upon substitution of these expansions in Eq. (25) we can
then project the system onto Fourier basis, hence providing the following representation for the ε1-invariance
equation:

∀ j = 1, ..., 2n̂,

λ̂jMΥ̂ j(z) +M∇zΥ̂ j(z)f (z) +M∇zΥ(z)f̂ j(z) +CΥ̂ j(z)

+ K̃Ψ̂j(z) + 2G̃(Ψ̂ j(z),Ψ(z)) + 3H (Ψ̂ j(z),Ψ(z),Ψ(z)) = F̃Pj
+ K̃Pj

Ψ(z), (28a)

λ̂jMΨ̂ j(z) +M∇zΨ̂ j(z)f (z) +M∇zΨ(z)f̂ j(z)−MΥ̂ j(z) = 0, (28b)

which can be solved recursively to compute the Fourier coefficients associated to mappings Υ̂ j(z), Ψ̂ j(z)

and to the reduced dynamics f̂ j(z). One can remark that, following the projection onto Fourier basis
of the different harmonic components, the invariance property is correctly recovered for the ε1 problem
describing the non-autonomous part, which does not depend on time anymore. An important aspect of
novelty as compared to past developments is that the ε1-invariance equation in presence of a time-dependent
modulation of the stiffness features an additional term on its right-hand side: K̃Pj

Ψ(z). This last term
is provided by the time-dependent part of the piezoelectric stiffness. We finally remark that the computed
mappings and reduced dynamics coefficients show a dependence on the value of the excitation frequency
since Eq. (28) is obtained by projecting the system onto a proper Fourier basis. This dependence is mild
and it can be neglected if the system is excited at resonance, as also highlighted in [31]. Indeed, in the
present developments we will show that highly accurate reduced models can be obtained by parametrising
the system for a single excitation frequency value and then exploit the reduced model to compute the entire
Frequency Response Curve (FRC) of the system.

3.2 Solution scheme

The solutions to Eqs. (24) and (28) are found expressing the unknown z with arbitrary order polynomial
expansions. This choice is mainly guided by the fact that recursive solutions, order by order, are possible and
offer an accurate solution scheme. The invariance equations are indeed rewritten order by order, leading to
the so-called homological equations. For the autonomous mappings, the expansions are searched for according
to:
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Ψ(z) =ϕϕϕz+

o∑
p=2

[Ψ(z)]p, (29a)

Υ(z) =ϕϕϕλz+

o∑
p=2

[Υ(z)]p, (29b)

where o stands for the maximum order of the selected expansion, and the shortcut notation [·]p indicates
a generic term of order p. Importantly, the first linear term of these expansions underline that the mappings
are identity-tangent to the master eigenmodes, for small vibration amplitudes, which is in line with the
notion of a Nonlinear normal mode (NNM) defined as an invariant manifold tangent at origin to the master
vibration modes. For the Fourier coefficients of the non-autonomous mappings, the following expansions are
introduced, where the dependence on time is not present and the dependence on the excitation frequency is
implicit, hence neither of them are reported:

Ψ̂ j(z) = Ψ̂(z) =

q∑
p=0

[Ψ̂(z)]p, (30a)

Υ̂ j(z) = Υ̂(z) =

q∑
p=0

[Υ̂(z)]p. (30b)

In these equations, the subscript j, referring to one of the excitation frequency Ωj has been dropped for
simplicity, since the same independent computation needs to be tackled for each of the driving frequencies.
The order of the development of the non-autonomous mappings is q < o [31]. Note also that the series
expansion starts at order 0 for the non-autonomous part, corresponding to the simplest approximation that
can be used to deal with the forcing, see discussions in e.g. [20, 52, 53, 31]. Together with the mappings,
arbitrary order Taylor expansions are also used to represent the reduced dynamics along the embedding:

f (z) =λz+

o∑
p=2

[f (z)]p, (31a)

f̂ j(z) = f̂ (z) =

q∑
p=0

[f̂ (z)]p. (31b)

The next step consists in plugging these ansatz into the two invariance equations (24) and (28), for
ε0 and ε1 orders. The remainder of this detailed calculation is reported in Appendix C for the sake of
brevity, since it follows the main guidelines provided in [30, 31]. A special emphasis is put on processing
the new terms appearing in the present problem. Identification of like-power terms leads to write an order-p
homological equation, which is also specifically written at the level of an arbitrary monomial present in the
polynomial expansions, and in such a way that direct computation from the physical space is possible. A
key feature of these homological equations lies in the fact that they are underdetermined and ill-conditioned.
The ill-conditioning is intimately linked to the notion of resonance [22, 54, 27]. In the context of the direct
calculation, this issue is solved by using a bordering technique [30]. The under-determinacy leads to an
infinity of solutions, framed by the two most opposite styles given respectively by the graph style and the
normal form style, see e.g. [22, 30, 31, 12, 25, 55] for discussions. In the context of the present work,
simulation results are presented using the complex normal form style.

The outcome of the whole reduction process can be summarized as follows. First, the addition of the
piezoelectric force to the governing equations creates a static equilibrium position that has to be computed.
Then the nonlinear vibrations around this deformed state are computed thanks to the DPIM, using an
arbitrary order expansion of order o for the autonomous part, and order q < o for the non-autonomous
part. In the remainder of the paper, the notation DPIM-O(o, q) will be used to denote the orders retained.
The reduced dynamics is given by a polynomial expansion of order o, and the complex normal form is used.
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The ROM equations are solved with numerical continuation, and the equations are realified following the
procedure explained in [30, 31]. In all the examples shown below, reduction to a single NNM is also used by
keeping a single master coordinate.

4 Applications

In the present Section, the DPIM is first applied to an academic example represented by a doubly clamped
beam and then to real MEMS micromirrors developed by STMicroelectronics™. Additional results concerning
a cantilever beam are collected in Appendix D. In what follows the results obtained with the proposed DPIM
are validated against a full-order large-scale Harmonic Balance approach (HBFEM) that has been developed
and discussed in [56]. The HBFEM is considered the reference tool for these applications as far as the
accuracy is concerned, even if its high computational cost hinders its applicability for the design of new
devices and their optimization. On the contrary, the response of the reduced order models provided by the
DPIM is computed applying numerical continuation of periodic orbits with the MATCONT package [57].

The bulk structure of the devices analysed is made either of polysilicon or of single crystal silicon and
their properties will be defined case by case. On the contrary, specific care has to be devoted to the treatment
of the polarisation field in the piezo patches.

4.1 Polarisation field

The application of the proposed formulation requires the knowledge of the periodic polarisation field at every
point of the piezo patches and for every time instant of the period. In what follows we briefly explain the
pragmatic though accurate approach that is followed in this investigation in order to compute the right-hand
side in Eq. (8).

0.0 5.0 10.0 15.0 20.0 25.0 30.0
0.00
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Figure 1: Polarisation curves measured for different potential values on two MEMS micromirrors that are
fully described in Section 4.3 and are labelled as (a): Mirror A (a) and (b): Mirror B; see also Fig. 8 for their
representations. The loops run in the counter-clockwise direction. These curves are generated by unipolar
(i.e. always positive) voltage histories to avoid continuous switching of the polarisation domains in the piezo
patch.

During production, the piezo patches are deposited on top of the bulk of the solid on a plane of unit
normal e3. Their thickness h is very small as compared to the in-plane dimensions and are enclosed within
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Figure 2: Polarisation curves modified to enhance the frequency shift effect for different potential values.
The three figures refer to 10,15, and 20V respectively.

upper and lower electrodes on which given voltage histories are imposed, generating a voltage bias V (t). As
a consequence, the electric field in the piezo patches is almost exactly aligned with the x3 direction and has
intensity V/h. Even if this does not imply that the polarisation itself is uniform within the films, the total
force can be computed with very good accuracy by assuming that the field can be homogenised within a
patch and that it has the form:

p = P (t)e3, (32)

with P a scalar value. All these assumptions have been validated through an extensive experimental campaign
in [46, 58] where it has also been evidenced that, for the working frequencies of interest, the polarisation
history is frequency-independent, thus further reducing the experimental overhead required to initiate the
simulation. As an example, Fig. 1 reports the measured polarisation history P (t) for two different types of
PZT mixtures utilized in the micromirrors discussed in Section 4.3. The curves, which run in the counter-
clockwise direction, highlight the typical pattern of polarisation in piezoelectric materials subjected to strong
electric field values, i.e. strong hysteretic behaviour with lack of reversibility and voltage dependence. An
important remark is that the polarisation measurements were performed in unipolar conditions, i.e. imposing
a positive voltage bias of the type

V (t) =
V0

2
(1 + cos (Ωt)), (33)

to avoid fatigue phenomena in the piezoelectric film associated to continuous polarisation switching.
However, the proposed procedure could be applied to arbitrary polarisation cycles. In all the applications
discussed in the following sections, the PZT patches are divided in two sets labeled PZT-A and PZT-B,
respectively. In the figures showing the geometries and the locations of these patches, PZT-A are displayed
with red colour patches while PZT-B with yellow patches, see e.g. Figs. 3 and 8. These are subjected to
unipolar potential histories of the type of Eq.(33) with phase shift:

VA =
V0

2
(1 + cos (Ωt)), VB =

V0

2
(1− cos (Ωt)), (34)

to maximise actuation. In order to highlight some important effects of the piezoelectric actuating forces,
we will also consider modified fictitious versions of the polarisation curves of Fig. 1. These new curves are
tailored to enhance the frequency shift introduced by the piezoelectric forcing, which cannot be modelled
with simplified techniques. The resulting hysteresis loops, corresponding to 10, 15 and 20V, are plotted in
Fig.2 (a)-(c).

As a result, the piezoelectric strains and stresses defined in Eqs.(1)-(2) can be expressed everywhere in
the PZT in an explicit manner and in terms of the known polarisation history. Indeed, assuming transverse
isotropy for the electrostrictive response of the thin film, the only non-zero components of the inelastic strains
are:
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ep11 = ep22 = Q1133P
2, ep33 = Q3333P

2, (35)

where electrostrictive coefficients are taken from [59] for a mole fraction x = 0.5 of PbTiO3.
Finally, the inelastic stress to be inserted in Eq. (7) follows from the Kirchhof-Love assumptions as:

Sp
11 = Sp

22 = A1111e
p
11 +A1122e

p
22 +A1133e

p
33 = α1P

2,

Sp
33 = A3333e

p
33 + 2A1133e

p
11 = α3P

2. (36)

Very limited data are available concerning the elastic constants in Eq. (36) for the type of PZT employed
herein, but a good agreement with experiments can be achieved with an assumption of isotropic material
behaviour. Starting from Eq. (36) and applying standard FEM discretisation techniques, vector Fp and
matrix Kp in Eq. (8) can be readily computed for every time instant t, and next decomposed in harmonic
contributions according to Eq. (26) in order to feed the reduction procedure detailed in Section 3.1.

4.2 Doubly clamped beam

The first validation is performed on the clamped-clamped beam illustrated in Figure 3a, where L1 = 100µm
is the total length of the beam, L2 = 7.5µm is the length of the four piezo patches. T1 = 1µm denotes the
thickness of the silicon body of the beam, while T2 = 0.01µm is the piezo thickness.

U=0

U=0

Figure 3: (a) Geometry of the tested clamped-clamped beam. T1 = 1µm, T2 = 0.01µm, L1 = 100µm,
L2 = 7.5µm, W = 2.2µm. (b) Shape of the first bending mode ΦB . Dirichlet homogeneous boundary
conditions are imposed at the beam extremities.

The material properties are detailed in Table 1. In this academic test, both PZT and silicon have an
isotropic mechanical behaviour. Patches of type A are placed on the upper surface, while patches of type
B, not visible in the Figure, are deposited on the lower surface of the beam. The two patches are actuated
according to Eq.(34) and set in resonant motion the first bending mode illustrated in Figure 3b. A mass-
proportional Rayleigh damping model is considered with a quality factor Q = 100. The eigenfrequency of
the first bending mode is ω0 = 5.399 rad/µs.

The aim of this application is twofold. First, demonstrate the accuracy of the proposed DPIM formulation
and, second, discuss important effects of the piezoelectric forcing terms that cannot be accounted for by earlier
simplified formulations [31]. To demonstrate the former we will consider the polarisation curves reported in
Fig. 1a). The latter will be highlighted using the modified polarisation curves illustrated in Fig. 2.

12



PZT
Coefficient Value Unit

Q3333 0.097 m4/C2

Q1133 -0.046 m4/C2

E 70000 MPa
ν 0.33 -

Silicon
Coefficient Value Unit

E 160000 MPa
ν 0.22 -

Table 1: Constitutive parameters of PZT and silicon for the clamped-clamped and cantilever beam examples.
Isotropic mechanical behaviour for both materials is assumed.

Figure 4: e1 displacement field component associated to the fixed point of the clamped-clamped beam for
V0 = 20 V. The static load introduces an axial pre-stress which shifts the eigenfrequency.

The imposed polarisation oscillates around an average value that generates a static force component. This
effect can be appreciated by inspecting Fig. 4 which reports the static displacement field along the beam axis
in the new fixed point. This induces an axial stress which stiffens the beam and shifts the eigenfrequency
upwards.

Figure 5 collects the results of the simulations performed considering the polarisation curves reported in
Fig. 1 a) for three different voltage bias equal to 10, 15, and 20 V, and put in evidence the expected strong
hardening behaviour of the beam. The DPIM simulations using orders 7 and 6 for the autonomous and
non-autonomous parts, respectively, are benchmarked in Figure 5a against the full order HBFEM results
with 7 harmonics, showing a perfect agreement. The parametrisation of the non-autonomous part has
been performed around the master mode eigenfrequency corresponding to the new fixed point i.e. Ω =
5.399 rad/µs. An important remark is that the reduced model is obtained by considering only the lowest
harmonic component of the forcing that resonates with the driven mode (see Eq. (26)). It is anyway
worth stressing that in specific applications higher-order harmonics of the forcing might induce parametric
excitations that can be accounted for by the present formulation [35, 34, 37]. The backbone curves, also
reported in Fig. 5(a), show a marginal shift with increasing forcing amplitudes, as a consequence of the static
deflection created by the non-zero mean value of the piezo actuation and illustrated in Fig. 4. Even though
the frequency shift is tiny and almost negligible, as expected from the small static displacements of Fig. 4,
nevertheless it is taken into account in the procedure.

Concerning the numerical performance of the proposed formulation, we report that each FRC computed
with the HBFEM takes around 12 hours on a standard workstation (Intel Xeon Gold 6140, 2.3 GHz, 128
GB RAM), while the DPIM approach takes 3 minutes to compute the parametrisation and few seconds to
compute each frequency response curve using numerical continuation of periodic orbits with the MATCONT
package [57].

Figure 5(b) compares the outcomes of the complete DPIM procedure developed here (and hereafter
labeled as DPIM-P for “present formulation”), to a simplified one where two important assumptions routinely
used in simulations have been considered. In this simplified version, denoted as DPIM-A for ”approximate”,
the first assumption consists in taking into account the non-autonomous terms in a simplified manner, by
simply projecting the piezo forces on the modal master modes. This assumption corresponds to a DPIM-
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Figure 5: (a) Comparison between full order HBFEM simulations and DPIM reduced-order model computed
for 10, 15, and 20 V. Backbone curves are reported to highlight the effect of the mean value of the piezoelectric
excitation on the conservative-unforced system dynamics. The tags in the charts report the actuation
voltages. (b) Comparison between the frequency response curve estimated with the present formulation
(DPIM-P) and that predicted by simply projecting the piezoelectric force on the linear modal subspace
obtained without taking into account the new static position (DPIM-A).

O(p, 0), i.e. an order 0 treatment of the external forcing, as commented for example in [31], and used for
instance in [20, 23, 30]. The second assumption used in DPIM-A consists in using the master eigenvectors
of the unforced problem to perform the projection of the forcing, i.e. without taking into account the new
static position and the shift of the eigenfrequency created by the constant forcing terms of the piezo. Saying
things differently, one uses in DPIM-A the eigenvectors provided by the traditional stiffness matrix and
not the tangent one K̃, shown in Eq. (15a), since U0 is not considered. This assumption has been used
in numerous examples in the past, see e.g. [48, 60, 61]. For this specific example of the clamped-clamped
beam with the selected polarisation, one can observe in Fig. 5(b) a very slight difference between the two
approaches, mainly due to the fact that the shift of the static position is negligible in the present case. This
illustrates that simplified solutions can give, in many cases, correct results.

However, the difference between the two formulations becomes much more evident and important when
considering the modified polarisation curves reported in Fig. 2 to provide the actuation. These hysteresis
loops are tailored to enhance the frequency shift introduced by the average piezoelectric forcing. The
DPIM-P formulation yield an excellent match with HBFEM solutions plotted in Fig.6(a), recovering the
essential features of the FRCs up to large amplitudes: eigenfrequency shift, hardening behaviour and maximal
amplitudes being fairly well reproduced. Furthermore, the DPIM accuracy increases consistently with the
expansion order, as underlined in the zoom Fig.6(b), where one can observe the slight increase in accuracy
obtained when moving from order O(7, 6) to O(9, 8). A small discrepancy at the very top of the FRC peak is
nevertheless observed, pointing out that with this amplitude one starts to reach the accuracy limits provided
by using a first-order approximation of the non-autonomous terms, see related discussions in [31]. The
proposed model reproduces properly both the nonlinearity content and the piezoelectric-induced frequency
shift as compared to the simplified formulation DPIM-A that only projects the piezoelectric force on the
master mode and neglects the fixed point update, as illustrated in Fig.6c). In that case, the change in the
static position and in the linear eigenfrequency is too important, such that the two simplifying assumptions
retained to build the model provided with DPIM-A do not hold anymore.

To conclude the analysis of this academic example, the assumption that the added non-autonomous linear
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Figure 6: FRCs corresponding to different DPIM models. (a) Comparison between the FRC estimated with
the present formulation using two different approximation order ′(7, 6) and ′(9, 8). (b) Enlarged view of the
FRC peak. (c) Comparison between the FRC estimated with the presented formulation (DPIM-P) and the
one predicted by simply projecting the piezoelectric force on the linear modal subspace with no shift of the
fixed point (DPIM-A).
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Figure 7: Visual representation of the influence of K̃P on the first 15 eigenmodes. Fig. a),b) and c) refer
to the voltage levels 10V, 15V and 20V corresponding to the polarisation curves of Fig. 2. Each coloured
dot in the matrices represents |ΦT

j K̃PΦi|/(ωiωj)
.

term on the right-hand side of Eq. (16), brings about negligible modifications to the eigenvalues, is verified.
Indeed, the matrix K̃P is expected to modulate in time the eigenvalues and eigenmodes of the system used to
compute the parametrisation of master invariant manifolds. Consequently, this modulation needs to be small
to avoid revising the whole computational scheme. Considering the first 15 eigenmodes, the K̃P effect can
be estimated by projecting the matrix onto the modal space. In particular, let us introduce the normalised
projection of K̃P onto the eigenvectors defined as |ΦT

j K̃PΦi|/(ωiωj). The resulting values are collected in

the matrices depicted in Fig. 7. This representation highlights that the K̃P introduces minor cross-couplings
between some of the system modes as a consequence of the fact that the K̃P matrix is not orthogonal to the
eigenbases. In particular, the master mode couplings, i.e. the first row and column in each figure, have a
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relative magnitude in the order of 10−8 at most. This is reasonable and expected since the results are very
accurate even with only one master mode. Furthermore, also the other cross-coupling terms are small with
respect to the system stiffness, the largest terms having a relative magnitude of 10−5. This means that the
change of non-autonomous eigenfrequencies is negligible, consistently with what remarked in [31].

The results on this academic example show a very good performance of the DPIM approach to offer
predictive and accurate ROMs for a clamped-clamped beam actuated with different polarisation histories.
Note that in Appendix D, the case of a cantilever beam is analyzed. This benchmark is known to be more
challenging for reduction methods mainly because of the folding of the invariant manifold corresponding to
the fundamental bending mode at large amplitudes [30]. Anyway, results collected in Appendix D show
similarly an excellent behaviour of the DPIM.

4.3 Micromirrors

In the present Section we apply the reduction method to MEMS micromirrors, a case of remarkable industrial
interest as they are key enabling components of many high-end industrial applications. The simulation of
piezo micromirrors is a challenging task as even small nonlinearities in the Frequency Response Curves
can degrade their optical performance significantly. The analysis of their behaviour has recently stimulated
intensive research [24, 31, 48, 56], highlighting the difficulty of generating accurate predictions in the presence
of large rotations. Actually, given the high dimensionality of finite element models of MEMS structures, the
DPIM can be considered as the only available technique capable of exactly predicting the nonlinear dynamic
response of MEMS components within time spans compatible with the design and optimization of MEMS
devices.

Figure 8: (a) Optical microscope image of Mirror A. (b) Geometry of the modeled device. Colors are used
to distinguish the silicon structure of the device from the actuation patches, the latter being organised in
groups A and B.

The first mirror under consideration, hereafter labelled as Mirror A, is depicted in Fig. 8(a) and has been
fabricated through the PεTra Thin-Film-Piezoelectric technology developed by STMicroelectronics. The
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yellow central circle is the reflective surface, with a diameter of approximately 3000 µm and a thickness of
20 µm, reinforced with a curvilinear beam in order to minimize the dynamic deformation. This surface is
connected to the substrate via a pair of torsional springs. The actuation is provided by PZT patches of
thickness 2 µm, visible in light orange, deposited on top of the four trapezoidal beams. The polarisation
histories for mirror A are plotted in Figure 1a). Due to the electrostrictive effect these bend activating the
mirror rotation. The actuation force is transmitted to the reflective surface through sets of folded springs.
As a first approximation the rotation axis of this mirror can be considered fixed, which allowed to derive a
simple ROM in [56] in terms of the rotation angle.

The micromirror is made of monocrystalline silicon with the [110] orientation aligned with the torsional
springs. The materials properties are reported in Table 2. The resonance frequency of this device is ap-
proximately 1950 Hz, up to imperfections in the fabrication process and the torsional mode has the lowest
frequency in the spectrum.

PZT
Coefficient Value Unit

Q3333 0.097 m4/C2

Q1133 -0.046 m4/C2

E 70000 MPa
ν 0.33 -

Silicon
Coefficient Value Unit

A1111 194250 MPa
A1122 35776 MPa
A2222 194250 MPa
A1133 64422 MPa
A2233 64422 MPa
A3333 165605 MPa
A2323 50591 MPa
A3131 79237 MPa
A1212 79237 MPa

Table 2: Constitutive parameters for PZT and silicon for the micromirrors examples. Single crystal silicon
has an orthotropic mechanical behaviour, while PZT is considered isotropic.

The second micromirror, hereafter labelled Mirror B, features a different geometry. It is made of a
reflective surface having a diameter of approximately 2000 µm and a thickness of 150 µm. This surface is
connected to a gimbal structure as shown in Figure 8c. The gimbal is in turn anchored to ground. The
resonance frequency of this device is approximately 25000 Hz. Actuation is obtained by means of eight
PZT patches evidenced in Fig. 8d, organised in two groups and actuated with the same voltage laws given
in Eq. (34). The polarisation histories for mirror B are plotted in Figure 1b). Material properties and
orientation are the same as for Mirror A (Table 2). The simulation of this latter mirror poses important
challenges, as the torsional mode is only the fourth in the spectrum and is not well separated from other
modes. Globally, mirror B has a softening behaviour and it displays more clearly the classical unstable
branch between the two saddle-node points at any excitation voltage, whereas mirror A displays hardening
behaviour and a very short appearance of the unstable part for the largest amplitude tested. The axis of
rotation is not clearly defined and the bulky reinforcement induces a coupling with translational motions,
thus reducing the apparent stiffness.

As highlighted in the previous example, the applied piezoelectric voltage bias induces initial stresses in
the structure that alter the fixed point and the corresponding eigenfrequencies of the system. The static
displacement fields associated with the maximum bias for the two micromirrors are reported in Fig. 9. Since
inelastic strains are acting on portions of the structures that can freely displace, no relevant changes of the
torsional mode of the devices are expected, as also highlighted in the upcoming results.

Preliminary analyses in [24, 30] have shown that a high order DPIM expansion is required in this spe-
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Figure 9: Displacement field components associated to the fixed point of the two micromirrors. In Figs. a),
b) and c) are reported the static positions of Micromirror A for V0 = 20 V e1,e2,e3 components respectively.
In Figs. d), e) and f) are reported the static positions of Micromirror B for V0 = 30 V e1,e2,e3 components
respectively.

cific application. The first validation of the method is performed by comparing the results of the reduced
model with the HBFEM simulations implementing the same formulation. Results are reported for voltage
amplitudes equal to 10, 15, and 20 V for Mirror A, and 20, 25, and 30 V for Mirror B. These values are
comparable with those applied during the real functioning of the device.

While the devices analysed in [56] are exactly those presented in this work, a coarser finite element
discretisation is here adopted to reduce the computational burden for full order simulations. The mesh for
Mirror A consists of 15341 nodes and the Fourier expansion used to approximate the sinusoidal motion of
the device is taken of order 5, i.e. the resulting number of degrees of freedom in Fourier domain is equal to
506253. For Mirror B, a discretisation based on 21260 nodes is used with a Fourier expansion of order 7 that
results in 956700 degrees of freedom in the Fourier domain.

A comparison between full order HBFEM simulations and the reduced model obtained from the direct
parametrisation method for invariant manifolds is reported for both devices in Fig. 10, where Rayleigh
damping parameters are set as α = ωt/100 and β = 0 for Mirror A and α = ωt/1000 and β = 0 for Mirror
B, with ωt frequency of the torsional mode. These α values yield quality factors compatible with those
extracted from experimental data using the relations provided by Davis for cubic oscillators [62]. We remark
that damping models for MEMS systems operating at high amplitudes are often nonlinear as a result of
convective effects [63]. However, parameter identification for nonlinear models is often impractical and often
unnecessary given uncertainties in the measurement setups, so a linear model is often preferred.

The charts highlight a perfect agreement between the two numerical models both in terms of nonlinearity
of the curves and maximum amplitude. A further remark on Fig. 10 is the difference in expansion order
adopted for the two devices. Mirror A achieves convergence already at order 5 of the asymptotic expansion.
This has already been evidenced in [24], where a low order direct normal form approach was used and excellent
results in terms of nonlinearity have been obtained. This is consistent with the structure geometry. Indeed,
Mirror A features a small reinforcement beneath its reflective surface that does not alter the kinematics of
the structure. As a result, its behaviour is similar to that of a flat structure as a cantilever, with a mild
hardening response. This implies that a low order parametrisation procedure that accounts for non-resonant
stretching modes is sufficient to correctly predict the nonlinear dynamic response of the structure. On the
other hand, Mirror B features a bulky support beneath the reflective surface. This introduces eccentricity
in the structure and as a result strong quadratic coupling between the out-of-plane mode and the torsional
mode of the structure. The consequence is that the order of expansion of the method to achieve the
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1

1

Figure 10: Comparison between numerical results computed from the direct parametrisation method for
invariant manifolds and full order HBFEM simulations. (a) reports the results computed for Mirror A, while
(b) reports the results computed for Mirror B. In both charts the corresponding voltage amplitudes V0 are
reported as tags, and the same is done for the maximum rotation amplitude reached by the two devices.

correct nonlinearity trend increases. As already evidenced in [30], for the same device geometry, an order
7 asymptotic expansion is necessary to correctly catch the nonlinear response of the device. Morevover, in
the present work an order 9 expansion of the ε0-invariance equation is proposed and the correct nonlinearity
type is predicted as highlighted in Fig. 10(b).

A further check is the convergence of the method with the expansion order of the ε1 terms. Results are
reported in Fig. 11, where comparisons between reduced models obtained with either high order or zero
order expansion of the non-autonomous invariance, are given. Results highlight the necessity to adopt a
high order parametrisation order for both autonomous and non-autonomous invariance equations to achieve
the same results predicted by full order HBFEM simulations. In particular, we highlight that a high order
expansion of the ε1-invariance is necessary in presence of strong changes in configuration. Indeed, as it can
be appreciated in Fig. 10, Mirror A is subjected to rotations up to 20◦. On the other hand, Mirror B is
subjected to rotations only up to 12◦ hence, as shown in Fig. 11, the advantage of adopting a high order
parametrisation for the non-autonomous part is less evident.

Finally, an experimental validation of the predictions given by the model is reported in Fig. 12. Exper-
imental data are identical to those detailed in [56], where the setup and device characterisation procedures
are discussed. Experiments have been conducted in frequency control, hence no information regarding un-
stable branches is available. Overall, the accuracy of the method is good in terms of both nonlinearity of the
predicted response and absolute value of the oscillation amplitude, hence highlighting the valuable predictive
capabilities of the method. The discrepancies observed on mirror A at high voltages and large apertures can
be ascribed to the complex flow patterns that develop around the mirror at large amplitude thus inducing
strongly nonlinear damping. Here, on the contrary, a linear Rayleigh damping model has been assumed with
a constant value of the α coefficient for all the analyses run on a given mirror, coherently with the results
reported in Figures 10. It is worth mentioning that in [56] a better agreement has been obtained by using
different values of the quality factor for each voltage value, calibrated from experiments and ad-hoc formulas
[62]. This could have been reproduced here to show the best possible fitting, nevertheless the focus has been
set on showing the numerical predictions given by the ROM for a single set of parameters that are not fitted
when changing the excitation frequency or amplitude.

Concerning the numerical performance of the proposed formulation, the DPIM approach takes 2 minutes
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Figure 12: Comparison between experimental and numerical FRCs for Mirror A (a) and Mirror B (b).

for micromirror 1, and 8 minutes for micromirror 2 to compute the whole parametrisation, on the other hand
an HBFEM simulation requires at least 12 hours to compute only 20 pints of the FRFs on a workstation
with Intel Xeon Gold 6140, 2.3 GHz, 128 GB RAM.

5 Conclusions

The Direct Parametrisation for Invariant Manifolds (DPIM) approach has been extended to piezo micro
actuators, accounting for the specificities introduced by the piezo forcing. This investigation thus brings this
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recently developed powerful technique to a new level of maturity and practical utility.
Assuming that the polarisation history is known from experimental measurements, the proposed approach

accounts exactly for geometrical, inertia and material nonlinearities induced by the Landau-Devonshire con-
stitutive modelling of electrostrictive effects in ferroelectrics. The inclusion of time dependent and configu-
ration dependent piezo forcing has required to modify the DPIM procedures recently published, which were
limited to deformation independent forcings. Both the treatment of the autonomous and non-autonomous
parts have been detailed exploiting the similarities with previous developments and permitting efficient cod-
ing. It has also been shown that an accurate ROM can be obtained by deriving the non-autonomous terms
for a single, fixed external frequency, thus importantly reducing the computational burden.

This simulation tool developed represents a major achievement, as it provides ideal simulation capabilities
for a whole class of applications involving piezo actuators. Starting from the full 3D FEMmodel of the device,
we have shown how to compute at the same time both the non-linear mappings for displacement and velocity
nodal values and the reduced dynamics. This is a major benefit of the proposed approach as modern MEMS
often cannot be efficiently described resorting to simplified structural theories.

Even if the focus has been set on piezo-MEMS actuators fabricated using Lead Zirconate Titanate (PZT),
which is deposited in the form of a thin film sol-gel on bulk silicon, the proposed approach can be easily
extended to other piezo materials. The tool has been benchmarked on academic and industrial applications,
both against an accurate full-order Harmonic Balance Method and experiments, thus validating the whole
set of underlying assumptions.

Even if we have not addressed here a fully coupled multi-physics problem, this investigation represents a
first step in this direction and opens a fascinating challenge in the field of reduced order modelling.
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[24] A. Opreni, A. Vizzaccaro, A. Frangi, and C. Touzé. Model order reduction based on direct normal form:
application to large finite element MEMS structures featuring internal resonance. Nonlinear Dynamics,
105:1237–1272, 2021.

[25] S. Jain and G. Haller. How to Compute Invariant Manifolds and their Reduced Dynamics in High-
Dimensional Finite-Element Models? Nonlinear Dynamics, 107:1417–1450, 2022.

[26] E. Pesheck, C. Pierre, and S. Shaw. A new Galerkin-based approach for accurate non-linear normal
modes through invariant manifolds. Journal of Sound and Vibration, 249(5):971–993, 2002.

[27] G. Haller and S. Ponsioen. Nonlinear normal modes and spectral submanifolds: existence, uniqueness
and use in model reduction. Nonlinear Dynamics, 86(3):1493–1534, 2016.

[28] S. Ponsioen, T. Pedergnana, and G. Haller. Automated computation of autonomous spectral submani-
folds for nonlinear modal analysis. Journal of Sound and Vibration, 420:269 – 295, 2018.

[29] S. Ponsioen, S. Jain, and G. Haller. Model reduction to spectral submanifolds and forced-response
calculation in high-dimensional mechanical systems. Journal of Sound and Vibration, 488:115640, 2020.

[30] A. Vizzaccaro, A. Opreni, L. Salles, A. Frangi, and C. Touzé. High order direct parametrisation of
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A Finite element discretisation of the governing equations

In the present work Eq. (7) is numerically discretised using a Bubnov-Galerkin finite element formulation.
To thos aim, let us introduce a finite element discretisation of the type:

u ≈ uh =

N∑
i=1

liUi, w ≈ wh =

N∑
i=1

liWi, (37)

with li nodal basis functions and Ui, Wi nodal values of displacement field and test function, respectively.
Upon substitution of the finite element discretised field in Eq. (7), we can derive the following discretised
quantities:
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∫
B

ρ üh ·wh dB =

N∑
i,j=1

Wi

∫
B

ρ lj · li dB Üj = WTMÜ, (38a)

∫
B

sym(∇uh) : A : sym(∇wh) dB =

N∑
i,j=1

Wi

∫
B

sym(∇lj) : A : sym(∇li) dB Uj = WTKU, (38b)∫
B

sym(∇uh) : A : sym(∇Twh · ∇uh) dB +
1

2

∫
B

sym(∇wh) : A : sym(∇Tuh · ∇uh) dB =

N∑
i,j,k=1

Wi

∫
B

sym(∇lj) : A : sym(∇T li · ∇lk) dB +
1

2

∫
B

sym(∇li) : A : sym(∇T lj · ∇lk) dB UjUk = WTG(U,U),

(38c)

1

2

∫
B

sym(∇Tuh · ∇uh) : A : sym(∇Twh · ∇uh) dB =

N∑
i,j,k,l=1

1

2
Wi

∫
B

sym(∇T lj · ∇lk) : A : sym(∇T li · ∇ll) dB UjUkUl = WTH (U,U,U), (38d)

∫
B

Sp : sym(∇wh) dB =

N∑
i=1

Wi

∫
B

Sp : sym(∇li) dB = WTFP , (38e)

∫
B

Sp : sym(∇Tuh · ∇wh) dB =

N∑
i,j=1

Wi

∫
B

Sp : sym(∇T lj · ∇li) dB Uj = WTKPU, (38f)

where the last two expressions represent the additional terms that stem from the employed piezoelectric
formulation. We remark that the same expression holds in presence of a generic pre-stress term. Furthermore,
the applicability of the presented method is not affected by the choice of the numerical scheme adopted to
discretise the governing equations.

B Solution scheme for the static analysis

Solution of Eq. (13) is performed using a standard Newton-Raphson procedure. To this aim, let us report
the partial differential equation that yields such system:∫

B

e[u,u] : A : δe[u,w] dB =

∫
B

Sp
0 : δe[u,w] dB, ∀w ∈ C(0) (39)

with Sp
0 mean value of the inelastic stress caused by electrostriction. Square brackets are used specify

on which variables each operator acts. Linearisation of Eq. (39) around of generic known configuration ū
yields the following:

∫
B

e[ū, ū] : A : δe[ū,w] dB +

∫
B

δe[ū, δu] : A : δe[ū,w] dB +

∫
B

e[ū, ū] : A : δe[δu,w] dB =∫
B

Sp
0 : δe[ū,w] dB +

∫
B

Sp
0 : δe[δu,w] dB, ∀w ∈ C(0), (40)

where δu is the displacement variation with respect to ū. We highlight that Eq. (40) is linear with
respect to the displacement increment δu. As a result, we can collect term that depend linearly on the
displacement δu at the left hand side and terms that can be computed from the configuration ū on the right
hand side:
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∫
B

δe[ū, δu] : A : δe[ū,w] dB +

∫
B

e[ū, ū] : A : δe[δu,w] dB −
∫
B

Sp
0 : δe[δu,w] dB =

−
∫
B

e[ū, ū] : A : δe[ū,w] dB +

∫
B

Sp
0 : δe[ū,w] dB, ∀w ∈ C(0), (41)

where the integrals on the left hand side are in order the material tangent, the geometrical tangent,
and the piezoelectric force tangent. The right hand side is simply the residual of the equation. Upon finite
element discretisation of Eq. (41) it is possible to solve it iteratively by updating the configuration ū until
it minimises the total energy defined for Eq. (39).

C Detailed explicit expressions of the ROM

This appendix is devoted to emphasizing some calculation details related to the derivation of the reduced-
order models using the direct parametrisation of invariant manifolds (DPIM). The main developments have
been reported in [30, 31] for autonomous and non-autonomous systems encompassing geometric nonlinearity.
Here the general developments are adapted to tackle the present problem with the piezoelectric forcing terms.
A special emphasis is put on the additional treatments needed to take into account the new terms.

One of the main feature of the method is to derive arbitrary order homological equations, expressed at the
specific level of a given monomial. To that purpose, all unknown functions (nonlinear mappings and reduced
dynamics) are expanded, and each order-p term is developped according to the summation of monomials
written as:

[Ψ(z)]p =

2n∑
i1=1

2n∑
i2=1

. . .

2n∑
ip=1

Ψ
(p)
{i1i2...ip} zi1zi2 . . . zip =

∑
I

Ψ
(p)
I π

(p)
I , (42a)

[Υ(z)]p =

2n∑
i1=1

2n∑
i2=1

. . .

2n∑
ip=1

Υ
(p)
{i1i2...ip} zi1zi2 . . . zip =

∑
I

Υ
(p)
I π

(p)
I , (42b)

[f (z)]p =

2n∑
i1=1

2n∑
i2=1

. . .

2n∑
ip=1

f
(p)
{i1i2...ip} zi1zi2 . . . zip =

∑
I

f
(p)
I π

(p)
I . (42c)

In these equations, following [30, 31], a given monomial is represented with π
(p)
I expressed as:

π
(p)
I = zi1zi2 ...zip , (43)

which is an order-p monomial of the normal coordinates. For the ease of treatments, each monomial can
be simply tracked by the set of indices I as:

I = {i1i2 ...ip}. (44)

The cardinal number of I equals p, meaning that in this ordering, indices with multiplicity higher than
one are repeated.

These solution forms for the unknowns mappings and reduced dynamics are substituted into Eqs. (24) and
(28), that are respectively the invariance equation at order ε0 for the autonomous problem, and invariance
equation at order ε1 for the non-autonomous terms. Upon collecting and identifying same powers for each
index set I , then one is able to write the homological equations that need to be solved to retrieve mappings
and reduced dynamics of the reduced model. For the autonomous case, Eq. (24), one is thus able to write
the homological equation at any order p, and for an arbitrary monomial I ∈ H(p), where H(p) refers to the
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set of all combination of indices with degree p:

∀ p = 2, ..., o, ∀ I ∈ H(p),

MΥ
(p)
I σI +

2n∑
s=1

(
Mϕϕϕsλs f

(p)
s I

)
+Mν

(p)
I +CΥ

(p)
I +KTΨ

(p)
I +G

(p)
I +H

(p)
I = 0, (45a)

MΨ
(p)
I σI +

2n∑
s=1

(
Mϕϕϕsf

(p)
s I

)
+Mµ

(p)
I −MΥ

(p)
I π

(p)
I = 0, (45b)

where the new introduced quantities are defined as:

σI =λi1 + λi2 + ...+ λip , (46a)

µ
(p)
I =

2n∑
s=1

p−1∑
k=2

p−k∑
l=0

Ψ
(p−k+1)
{i1...ils il+k+1...ip}f

(k)
s{il+1...il+k}, (46b)

ν
(p)
I =

2n∑
s=1

p−1∑
k=2

p−k∑
l=0

Υ
(p−k+1)
{i1...ils il+k+1...ip}f

(k)
s{il+1...il+k}. (46c)

G
(p)
I =

p−1∑
k=1

G̃(Ψ
(k)
{i1...ik},Ψ

(p−k)
{ik+1...ip}), (46d)

H
(p)
I =

p−2∑
k=1

p−k−1∑
l=1

H (Ψ
(k)
{i1...ik},Ψ

(l)
{ik+1...ik+l},Ψ

(p−k−l)
{ik+l+1...ip}). (46e)

A similar treatment is operated for the non-autonomous problem at order ε1, and again the homological
equations can be written for arbitrary order p and for any monomial designated with the set of indices I as:

∀ p = 0, ..., q, ∀ I ∈ H(p),

σ̂IMΥ̂
(p)
I +CΥ̂

(p)
I +KT Ψ̂

(p)
I +

2n∑
s=1

(
λsf̂

(p)
s I Mϕϕϕs

)
+Mν̂

(p)
I + Ĝ

(p)
I + Ĥ

(p)
I = F̂

(p)
I , (47a)

σ̂IMΨ̂
(p)
I −MΥ̂

(p)
I +

2n∑
s=1

(
f̂
(p)
s I Mϕϕϕs

)
+Mµ̂

(p)
I = 0, (47b)

where all quantities not previously defined are given as:
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σ̂I = λ̂+ λi1 + λi2 + ...+ λip , (48a)

µ̂
(p)
I =

2n∑
s=1

(
p∑

k=2

p−k∑
l=0

Ψ̂
(p−k+1)
{i1...il s il+k+1...ip}f

(k)
s{il+1...il+k}+

p−1∑
k=0

p−k∑
l=0

Ψ
(p−k+1)
{i1...il s il+k+1...ip}f̂

(k)
s{il+1...il+k}

)
, (48b)

ν̂
(p)
I =

2n∑
s=1

(
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k=2

p−k∑
l=0

Υ̂
(p−k+1)
{i1...il s il+k+1...ip}f

(k)
s{il+1...il+k}+

p−1∑
k=0

p−k∑
l=0

Υ
(p−k+1)
{i1...il s il+k+1...ip}f̂

(k)
s{il+1...il+k}

)
, (48c)

Ĝ
(p)
I =2

p∑
k=1

G̃
(
Ψ

(k)
{i1...ik}, Ψ̂

(p−k)
{ik+1...ip}

)
, (48d)

Ĥ
(p)
I =3

p−1∑
k=1

p−k∑
l=1

H
(
Ψ

(k)
{i1...ik},Ψ

(l)
{ik+1...ik+l}, Ψ̂

(p−k−l)
{ik+l+1...ip}

)
, (48e)

F̂
(0)
I = F̃P , and F̂

(p)
I = K̃PΨ

(p)
{i1 ... ip}, ∀ p ≥ 1. (48f)

It is possible to notice that the structure of the resulting homological equations is identical to that already
derived in [30, 31], the only differences being brought by the definition of the stiffness matrix, the quadratic
operator, and the right-hand side of the non-autonomous homological equations. Indeed, the stiffness opera-
tor is given by the tangent stiffness matrix computed in one of the fixed points of the system. The shift of the
fixed point with respect to the origin changes the quadratic operator, as highlighted in Eq. (48d). Finally,
we report that the last term in Eq. (48f) depends on the nonautonomous part of the piezoelectric stiffness.
We notice that this last term is usually not diagonalised by the system eigenfunctions. Also, following [31], it
can be observed that the structure of both problems (autonomous and non-autonomous) are the same, such

that a single problem can be rewritten, containing the two subcases. Introducing the general superscript (̊·)
to identify mappings and reduced dynamics of either autonomous and non-autonomous equations, one can
rewrite the two previous problems as a single one which reads:

∀ I ∈ H(p), ∀ p ∈ {1, ..., q},(
σ̊I

[
M 0
0 M

]
+

[
C KT

−M 0

])[
Υ̊

(p)
I

Ψ̊
(p)
I

]
+

2n∑
s=1

f̊
(p)
sI

[
M 0
0 M

]
Ys =

[
E̊

(p)
I

−Mµ̊
(p)
I

]
. (49)

where the excitation vector E̊
(p)
I follows the following definition for the ε0 homological equations:

E̊
(p)
I =∆ E

(p)
I =∆ −Mν

(p)
I −G

(p)
I −H

(p)
I . (50)

On the other hand, the ε1 homological equations have an exitation vector defined as:

E̊
(p)
I =∆ Ê

(p)
I =∆ −Mν̂

(p)
I − Ĝ

(p)
I − Ĥ

(p)
I + F̂

(p)
I . (51)

D Cantilever beam

In this Section we collect some results concerning the simulation of a cantilever beam in large bending.
Although less meaningful from a technical point of view, this test is known to be a more severe benchmark
than the clamped-clamped beam [30, 31] as it heavily involves non-resonant coupling between master and
slave coordinates and can be employed to validate the limits of the proposed formulation.
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The beam is illustrated in Figure 13a, where L1 = 15µm is the total length of the beam, L2 = 5µm is
the length of the two piezo patches. T1 = 0.2µm denotes the thickness of the silicon body of the beam, while
T2 = 0.01µm is the piezo thickness. The materials properties are detailed in Table 1. As for the previous
example, piezo patches are symmetrically positioned on the upper and lower surfaces of the beam, but in
this configuration, they cover one third of the beam length at the anchoring point. The two patches are
actuated according to Eq. (34) and set in resonant motion the first bending mode illustrated in Figure 13.

The polarisation curves reported in Fig. 1a) have been used and a Rayleigh damping with β = 0 and α
calibrated so as to obtain the quality factors indicated in Fig. 14. Figures 14a and 14b collect the simulations
for the two voltage bias V0 = 10V and V0 = 15V, respectively. In each chart the analyses have been repeated
for three different values of the quality factor Q, namely 150, 250 and 350. It is worth stressing that the
vertical axis reports the maximum displacement normalised with respect to the length of the beam, so that
the deviation evidenced between the DPIM results and the reference HBFEM occurs only at very large
vibration amplitudes and may denote the validity limit of the first-order expansion in ε in Eqs.(22),(23) is
being progressively reached.

As a final check, we verify that the linear effect of the matrix K̃P is still negligible, to ensure that
this effect has not become important as compared to the clamped-clamped beam, which might give another
explanation for the small discrepancies observed at very large amplitudes. To that purpose, the same analysis
as at the end of Section 4.2 is reproduced, by quantifying the magnitude of the terms brought by the matrix
K̃P in the modal space of the tangent problem corresponding to the new static position. The results are
reported in Fig. 15. The coupling pattern is different from the clamped beam case, and one can observe that
the magnitudes are larger, with a maximum close to 3.10−4 for the maximum voltage considered at 15 V.
The coupling contribution is thus more meaningful, but still appears as small and should not be considered
here as the main obstacle in the application of the method.
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U=0

Figure 13: (a) Geometry of the tested cantilever. T1 = 0.2µm, T2 = 0.01µm, L1 = 15µm, L2 = 5µm,
W = 0.3µm. (b) Shape of the first bending mode ΦB . Homogeneous Dirichlet boundary conditions are
imposed on the initial cross section
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Figure 14: Comparison between full order HBFEM simulations and DPIM reduced model computed for 10
V (a) and 15 V (b). The tags in the charts report the quality factors Q used for the analyses.
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Figure 15: Visual representation of the influence of K̃P on the first 15 eigenmodes. Fig. a) and b) refer
to the voltage levels 10V, 15V corresponding to the polarisation curves of Fig. 1. Each coloured dot in the
matrices represents |ΦT

j K̃PΦi|/(ωiωj)
.
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