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Abstract

The direct parametrisation method for invariant manifold is a model-order reduction tech-
nique that can be applied to nonlinear systems described by PDEs and discretised e.g. with
a finite element procedure in order to derive efficient reduced-order models (ROMs). In non-
linear vibrations, it has already been applied to autonomous and non-autonomous problems
to propose ROMs that can compute backbone and frequency-response curves of structures
with geometric nonlinearity. While previous developments used a first-order expansion to
cope with the non-autonomous term, this assumption is here relaxed by proposing a differ-
ent treatment. The key idea is to enlarge the dimension of the parametrising coordinates
with additional entries related to the forcing. A new algorithm is derived with this start-
ing assumption and, as a key consequence, the resonance relationships appearing through
the homological equations involve multiple occurrences of the forcing frequency, showing
that with this new development, ROMs for systems exhibiting a superharmonic resonance,
can be derived. The method is implemented and validated on academic test cases involving
beams and arches. It is numerically demonstrated that the method generates efficient ROMs
for problems involving 3:1 and 2:1 superharmonic resonances, as well as converged results
for systems where the first-order truncation on the non-autonomous term showed a clear
limitation.

Keywords: nonlinear normal modes, invariant manifold, parametrisation method, finite5

element problems, geometric nonlinearity, non-autonomous problems, superharmonic
resonance

1. Introduction

Model order reduction for nonlinear vibratory systems using the nonlinear normal modes
(NNMs) of the systems, has been under development since the first works by Rosenberg10

in the 1960s [1]. In the 1990s, the concept regained attention and the link with Lyapunov
subcentre manifold, and more generally speaking invariant manifolds of the system, was first
introduced [2, 3, 4, 5]. Despite efficient results obtained in early 2000, see e.g. [6, 7, 8, 9],
the method has not been broadly adopted, probably because direct applications to finite
element (FE) problems have remained elusive. However, recent developments overcame this15

issue by proposing two important advances allowing one to set the theoretical settings in
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a unified framework, together with proposing direct computations, applicable to structures
discretised by the FE approach.

The first important step ahead has been to unify the different computational approaches
thanks to the parametrisation method for invariant manifold, a technique first proposed in20

the dynamical systems community [10, 11, 12]. Rewriting the problem from the invariance
equation, one is then able to link the different computations using either centre manifold
technique or normal form approach as different parametrisation styles [12, 13]. In the dy-
namical systems community, the parametrisation method has been first applied to different
limit sets to extend the analysis to e.g. limit cycles or stable manifolds [14, 15]. Applications25

to problems semi-discretised with FE have been proposed [16], whereas applications to ce-
lestial mechanics have been more largely developed, see e.g. [12, 17] and references therein.
Recent developments involve for example interesting discussions on the validity range of the
different styles of parametrisations [18], and application of the parametrisation method to
the Navier-Stokes equation [19]. In the field of nonlinear vibrations, it has been first used30

in [20, 21] for model order reduction. However, the calculations used, as a first step, the
equations of motion expressed in the modal basis, which was a known limitation for applica-
tions of invariant manifold methods to large-scale FE problems [22, 13]. In conjunction with
this technical development, a key result shown in [20] relates to the existence and uniqueness
of invariant manifolds used for model-order reduction, which has been named as Spectral35

Submanifold (SSM) for damped systems. Thanks to this proof, an effective mathematical
framework has been settled, which gives a ground existence to the nonlinear normal modes
(NNMs) defined as invariant manifolds. This seminal result allows understanding that the
SSM is the targeted unique invariant structure in phase space that can be used as a reduced-
order model. Although in a conservative framework an NNM is largely understood as being40

the associated Lyapunov subcenter manifold (LSM), in the dissipative case an NNM must
be defined as the associated SSM. Retrospectively, both earlier works, as those reported
in [4, 6, 8] and more recent ones, shown for instance in [20, 23, 24, 25], compute numerical
approximations of SSMs and LSMs.

The second important step has been to propose a direct approach such that one could45

bypass the projection onto the linear modes basis as a starting point. Indeed, in a FE context,
this step is a clear and known limitation that completely prevents a broad application of
invariant-based methods to engineering structures. Direct calculations have been proposed
in [23], where the normal form approach derived in [5, 22] has been adapted such that the
calculations can be operated in a direct and non-intrusive manner. The method has then been50

used in a more general setting, including internal resonance and engineering applications [26].
Then, direct computations relying on the parametrisation method, have been proposed in [25,
27] and, by the authors, in [24, 28]. In conjunction with these developments, efficient open-
source softwares implementing the developments have been released in order to share the
method: SSMtools [29] and MORFE [30]. Note that the present authors adopted the acronym55

DPIM (direct parametrisation of invariant manifold) in their works to refer to the algorithmic
procedure required to compute approximations of various objects: SSMs in the dissipative
case, LSMs in the conservative case, and whiskers in the non-autonomous case [31, 28, 25].

These implementations of the parametrisation method have then been applied to var-
ious problems [27, 32], including rotating structures [33] and piezo-electrically actuated60

MEMS [34]. Comparisons to deep-learning-based approaches are also reported in [35], un-
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derlining how well-tuned data-driven techniques can recover the invariant manifold solution.
Taking into account an external forcing makes the dynamical system non-autonomous,

such that the invariant manifolds become time-dependent, as opposed to those of the unforced
system. In dynamical systems literature, early developments considering the forcing are65

available for centre manifold approach [36], or normal form theory [37, 38]. For application
to vibratory systems, the first approaches to solve this dependency have been to compute
a numerical manifold for each forcing frequency as in [7], or simplify the forcing effect and
consider the simplest time-dependence of the manifold, without deformations, as e.g. in [22].
Using the parametrisation method and following for example [31], a small forcing assumption70

allows one to limit the forcing effect to its first ε-order, and split the contributions of the
autonomous and non-autonomous terms in separate calculations, a method that has been first
applied to vibratory systems in [39, 40]. In conjunction with this first ε-order assumption,
the quantities related to the non-autonomous terms can also be solved with arbitrary order
expansions. In the context of direct calculations, whereas a zero-order development for these75

terms is considered in [25], arbitrary expansions are consistently derived in [28], with the
main consequence of an improved gain in accuracy, together with the ability to treat the
case of parametric resonances for example.

The results shown in [28] on academic and engineering structures highlight the need to
use a high-order expansion for the ε-order forcing term, bringing very important corrections80

to the predictions in terms of amplitudes. Nevertheless, the assumption of small forcing,
which is then set to an ε amplitude, limits the generality of the development. Even if the
forcing amplitudes have been quantified in [28], showing that this development allows to
deal with a comfortable range of vibrations covering a variety of engineering situations, the
method still has a limitation and for instance is not able to tackle superharmonic resonances.85

To understand this, one has to inspect the resonance relationships that arise naturally in the
solution procedure, making appear the nonlinear resonances that are intimately connected
to the normal form theory [37, 41, 42, 43, 44, 45]. In the ε1-order assumption used in [28, 39],
the forcing terms appear with power one in the reduced dynamics expressed with normal
coordinates. The resonance relationships for this case have been analysed in [28], showing90

that, with a single master mode assumption, they reduce to the simple expression Ω = γωm,
with Ω the forcing frequency, γ ≥ 1 an integer, and ωm the eigenfrequency of the master
mode. Consequently, the ε1-order assumption on the forcing allows one to treat the case of
primary resonance (γ = 1), parametric resonance (γ = 2), and 1:3 subharmonic resonance
(γ = 3). But to deal with a superharmonic resonance, one needs multiple occurrences of95

the forcing frequency in the resonance relationships, which comes in the calculation only by
considering higher ε orders in the development of the forcing.

Previous developments as those reported for example in [46, 7], already proposed to
deal with time-dependent invariant manifold, without relying on an ε1-order truncation for
the forcing. While in [46], the forcing was added as an added oscillator; in [7] only the100

excitation frequency was added as a new variable to make the system autonomous. For
the solution, these papers considered only the graph style parametrisation, following their
previous works. While this procedure could have been considered again and enlarged to the
case of the parametrisation method for invariant manifold, it appears to face two limitations.
First, existence and uniqueness of the searched time-dependent invariant manifolds are not105

proven theoretically by mathematical theorems in the case of an eigenvalue with vanishing
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real part, which is the classical case under study in vibration theory to deal with harmonic
forcing. Second, The initial condition of the auxiliary variable representing forcing is unitary,
see e.g. [46], which can be problematic in the context of solutions based on asymptotic
expansions. Our goal here is thus to stick to the case where existence and uniqueness have110

already been proven, which is only possible by treating the forcing as a small parameter
and computing perturbation of the autonomous invariant manifold, as shown for instance
in [31, 20], with the added value that the expansions will not be stopped to ε1 order for
the non-autonomous term. For the sake of completeness, the comparison between these two
solution strategies is further developed in Appendix A.115

The aim of this article is thus to propose an arbitrary order expansion for the direct
parametrisation method of invariant manifolds. To reach this goal, a new version of the
algorithm is proposed, in which the ε development of the forcing are pushed to arbitrary
order by treating the non-autonomous term as an additional parametrising variable. This
embedding of the non-autonomous term into the original framework of the autonomous120

algorithm allows for little modifications to the structure of the algorithm itself. At the
same time, the range of applicability is significantly extended, thus providing a more general
method, applicable to FE problems with higher forcing levels than the current state of the
art. All the developments presented herein have been implemented in a new version of the
code MORFE, thus extending the range of the previous versions [24, 28, 30].125

2. Direct parametrisation for non-autonomous problems

In this section, a reduction method proposing a direct parametrisation for invariant
manifolds of non-autonomous systems is detailed. First, a preamble is devoted to presenting
the proposed strategy to cope with the non-autonomous term, and how it compares with
the current state of the art. Then the case of first-order dynamical systems is developed.130

Finally, the application to second-order nonlinear vibratory systems is detailed, where the
features of the formulation are used to decrease the computational burden.

2.1. Treatment of the non-autonomous terms in the context of the parametrisation method

The aim of this section is to present a methodology that can be used to deal with the
non-autonomous terms for a forced dynamical system. In order to make the presentation135

light, let us simplify the framework by considering a D-dimensional first-order dynamical
systems with a single external forcing term:

Bẏ = Ay +Q(y,y) + εC eλ̃t, (1)

where the state-space vector y ∈ CD. The real-valued matrix B is not assumed to have any
general property; in particular, it might be a singular matrix such that some lines of the
problem could not involve time derivatives, meaning that the development also considers the140

case of differential-algebraic equations (DAE), a case that has already been treated in [47],
to which the interested reader is referred for more theoretical details. On the other hand,
the real-valued matrix A is assumed to have full rank. The nonlinearity is given by a smooth
analytical function in quadratic form Q(y,y). This choice not only makes the derivations
simpler, but also allows, thanks to the quadratic recast [48, 49, 50], to treat any analytical145
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nonlinearity by augmenting the size of the system and adding new coordinates. Note that
performing quadratic recast is not always the best choice from a computational point of view
and, in the case of nonlinearities that are easy to incorporate in the algorithm, such as cubic
ones, it might be better to keep them on the right-hand side, as shown in Section 2.4. The
forcing term has a time dependence eλ̃t with λ̃ the forcing value. Constant forcing term is150

here not considered since its effect is to change the location of the fixed point. It is hence
assumed that Eq. (1) describes the dynamics in the vicinity of the origin, and in case a static
solution needs to be considered, then a change of coordinate has to be first applied, as done
for example in [34, 33] in the same context. The forcing vector is represented by the vector
C indicating its direction, and a small parameter ε. For the sake of simplicity we assumed155

a single forcing term, but the case of multiple ones can be treated in the same way. All the
methods presented here are local in nature and rely on asymptotic expansions, motivating
the introduction of this ε scaling for the forcing.

In the autonomous case, the main idea of the parametrisation method for invariant
manifolds is to introduce a nonlinear mapping W̄(z̄) relating the original coordinates of160

the dynamical system y to a new normal coordinate z̄ describing the dynamics on the
associated invariant manifold of dimension d ≪ D. Note that z̄ is a vector collecting the
normal coordinates of the master modes only, and is thus of dimension d. Together with
this unknown mapping, the reduced dynamics f̄(z̄) governing the time evolution of z̄ along
the embedding is also introduced. Elimination of time provides the invariance equation from165

which homological equations are deduced by separating orders, hence providing recursive
solutions [11, 12].

In the presence of an external excitation, the autonomous invariant manifold becomes
time-dependent, as it starts to oscillate and deform under the action of the forcing term.
Provided that the forcing is small in the mathematical sense and under appropriate non-170

resonance conditions, a non-autonomous invariant manifold is proven to exist, see e.g. [31,
20]. This manifold can be described by a time-dependent parametrisation W(ε)(z̄, t) and
a time-dependent reduced dynamics ˙̄z = f (ε)(z̄, t), which satisfy the invariance equation
obtained by substituting y with W(ε)(z̄, t) into (1), thus leading to

B∇z̄W
(ε)f (ε) +B∂tW

(ε) = AW(ε) +Q(W(ε),W(ε)) + εC eλ̃t . (2)

Although the mathematical results on existence and persistence are derived in an abstract175

setting [31], meaning they apply to arbitrary order expansion in ε, in all the previous ap-
plications to forced systems, see for example [31, 39, 40, 25, 28], the unknown nonlinear
mappings and reduced dynamics were introduced as a two terms expansion limited to the ε1

order:

y = W̄(z̄) + εŴ(z̄, t) +O(ε2), (3a)

˙̄z = f̄(z̄) + εf̂(z̄, t) +O(ε2). (3b)

Thanks to this expansion, the first terms W̄ and f̄ respectively refer to the nonlinear mapping180

and the reduced dynamics of the autonomous system, whereas the time-dependent part due
to the forcing is embedded in Ŵ and f̂ . The invariance equation could then be split by
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order, see e.g. [39, 28], leading to

ε0 : B∇z̄W̄f̄ = AW̄ +Q(W̄,W̄), (4)

ε1 : B∇z̄W̄f̂ +B∇z̄Ŵf̄ +B∂tŴ = AŴ +Q(W̄,Ŵ) +Q(Ŵ,W̄) + εC eλ̃t . (5)

It is clear how the ε scaling allows to separate the contributions of autonomous and non-
autonomous terms, so they can be computed one after the other. The ε0 problem corresponds185

to the autonomous system, and once it is solved for W̄ and f̄ , the ε1 problem can be
computed to yield Ŵ and f̂ . Besides, the ε1 problem is a set of time-dependent linear
ordinary differential equations in the unknown variables [28], such that the solution to the
exponential forcing can be written as an exponential, yielding

y = W̄(z̄) + εŴ(z̄) eλ̃t +O(ε2), (6a)

˙̄z = f̄(z̄) + εf̂(z̄) eλ̃t +O(ε2). (6b)

190

The main advantage of this processing of the forcing term, as underlined in [28], is that
the structure of the homological equations resulting from the splitting between ε0 and ε1

orders, is the same, such that extending the computations to non-autonomous systems is
easily attainable. However, the limitation to ε1-order is clear. Even though the structures of
the next εp orders also share the same structure, recursive coding of the next orders appears195

quite cumbersome. Numerical examples shown in [28] highlight that ε1-order truncation
together with arbitrary order expansion to solve for Ŵ and f̂ , already provides excellent
improvement covering wide ranges of applications. However, for some extreme conditions,
this might not be sufficient. Besides, the main limitation of this approach is to provide in
the reduced dynamics only terms that are proportional to the forcing amplitude at power 1,200

which comes with the fact that, in the resonance relationships, the forcing frequency appears
with a single occurrence and not as a summed term that can create multiples of λ̃. While this
can be used advantageously in the context of parametrised ROMs with forcing, see e.g. [33]
for an example, it is theoretically speaking a limitation since hindering the method to deal
with superharmonic resonances, where higher ε orders are then needed.205

The aim of the present development is to bypass the first-order ε truncation relative to
the non-autonomous term and push the ε expansion up to arbitrary order. To do so, it is
convenient to introduce the following notation for the autonomous terms and the first-order
terms in ε:

W(ε0)(z̄) = W̄(z̄), (7a)

W(ε1)(z̄) = Ŵ(z̄), (7b)

f (ε
0)(z̄) = f̄(z̄), (7c)

f (ε
1)(z̄) = f̂(z̄). (7d)

The generalisation of Eq. (6) for higher order expansion in ε can be written as210

y = W(ε0)(z̄) + εW(ε1)(z̄) eλ̃t+ε2W(ε2)(z̄) e2λ̃t + · · ·+ εoW(εo)(z̄) eoλ̃t+O(εo+1), (8a)

˙̄z = f (ε
0)(z̄) + εf (ε

1)(z̄) eλ̃t+ε2f (ε
2)(z̄) e2λ̃t + · · ·+ εof (ε

o)(z̄) eoλ̃t+O(εo+1). (8b)
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In fact, at any order p of the εp expansion, the dependence on time of both W(ε)(z̄, t) and

f (ε)(z̄, t), will always be conveyed by the corresponding harmonic epλ̃t. This is due to the
fact that the lower orders only create terms in the corresponding harmonic, and that the
solution of the linear ordinary differential equations (ODE) to the exponential forcing can
be written as an exponential.215

Given the sound mathematical results on the existence and persistence of a parametri-
sation for the non-autonomous invariant manifold described by Eqs. (8) [31, 20], the main
objective of this work is to provide an algorithm to compute this parametrisation in a fully
automated manner, for arbitrary order in ε. To do so, the first step is to notice that every
instance of ε always appears together with the exponential term elevated at the same integer220

power. We can then write Eq. (8) more compactly if we introduce the dummy variable

z̃(t)
.
= ε eλ̃t, (9)

so that we can write Eqs. (8) as

y =
o∑

p=0

W(εp)(z̄)z̃p +O(εo+1), (10a)

˙̄z =
o∑

p=0

f (ε
p)(z̄)z̃p +O(εo+1), (10b)

and the invariance equation (2) as

B∇z̄W
(ε)f (ε) +B∂z̃W

(ε) ˙̃z = AW(ε) +Q(W(ε),W(ε)) +Cz̃. (11)

The following step is to notice that z̃ can be algorithmically treated in the same way
the other normal coordinates in z̄ are. In fact, recalling that all the W(εp)(z̄) and f (ε

p)(z̄)225

terms will be sought as a Taylor expansion in z̄, it is clear from Eqs. (10) that treating z̃
as an additional normal variable is an automated way of expanding in both z̄ and ε at the
same time. Moreover, it is possible to see that the two terms on the left-hand side of the
invariance equation (11) share the same structure, provided that one defines a dynamics for
z̃. This is trivial to do as it follows from the definition of the dummy variable that ˙̃z = λ̃z̃.230

To incorporate z̃ as an additional normal variable, let us define the augmented vector of
normal coordinates as

z =

[
z̄
z̃

]
, (12)

We can then look for a parametrisation of the non-autonomous invariant manifold described
by the nonlinear mapping

y = W(z), (13)

relating the physical degrees of freedom y to the augmented normal coordinate z. At the235

same time, we define the reduced dynamics on the manifold as

ż = f(z). (14)
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The unknown functions W and f will be searched for as polynomials in the augmented
normal coordinates z, and they will have to satisfy, up to a desired order, the invariance
equation that in these settings read

B∇zW(z)f(z) = AW(z) +Q(W(z),W(z)) +Cz̃, (15)

where the time-dependency is embedded into the dummy variable z̃.240

Comparing this invariance equation to the autonomous one, one can see that they share
the same structure, with the exception of two key differences: (i) an additional term Cz̃
appears on the right hand side, which should be taken care of when solving the first order,
as it will be discussed in Section 2.3.1; (ii) the last entry of the vector f(z) is not actually
unknown. In fact, the dummy variable z̃ is only treated in the algorithm as an additional245

normal variable but its value is not arbitrary as the others in z̄. Since z̃ is well defined by
its original definition from Eq. (9), its dynamics cannot be altered by the algorithm. Hence
we have to impose

fd+1(z) = λ̃z̃, (16)

which means that we have to take care to set to zero all the other polynomial coefficients of
fd+1(z).250

Besides taking care of these differences, from an algorithmic point of view, the same rou-
tines used for the autonomous problem can be readily extended to treat the non-autonomous
one, thanks to the augmentation of the normal coordinates with the dummy variable z̃. More-
over, it is clear that, as compared to the present state of the art, the algorithm allows to
solve, in a fully automated manner, any arbitrary order of the ε expansion.255

Upon solving for these polynomial expansions, W(z) and f(z), the original value of the
dummy variable has to be substituted back into the equations, thus making the explicit
dependence on time appear again. In particular, the parametrisation originally sought will
be simply given by

W(ε)(z̄, t) = W(

[
z̄

εeλ̃t

]
) (17)

f (ε)(z̄, t) = f[1:d](

[
z̄

εeλ̃t

]
) (18)

As already mentioned, we restricted the presentation to the case of a single forcing term260

but the case of multiple ones can be handled in the same automated way by including as
many dummy variables as needed. This procedure will be exemplified in Section 2.4.

As a closing remark, the computational procedure to derive time-dependent invariant
manifolds could have followed the standard technique to render a non-autonomous system
autonomous, an idea already used in [46, 7]. However, as mentioned in the introduction, this265

approach suffers from a lack of a theoretical result ensuring the existence and uniqueness
of the sought manifold. Nevertheless, a detailed comparison is provided in Appendix A for
completeness.

2.2. Eigenproperties of the first-order system

Before addressing the application of the proposed methodology to cope with a non-270

autonomous system in the framework of the parametrisation method for invariant manifolds,
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the linear properties of the first-order system, are first recalled. Since no special properties
of the matrices B and A have been assumed (except that A has rank D), right and left
eigenvectors for the direct and adjoint problems are needed. The right eigenvectors Ys,
∀ s ∈ [1, D] are associated to the eigenvalues λs such that275

∀s = 1, . . . , D : (λsB−A)Ys = 0. (19)

The left eigenvectors are denoted as Xs and are defined through

∀s = 1, . . . , D : X⋆
s (λsB−A) = 0, (20)

whereX⋆
s = X̄t

s is the conjugate-transpose operation, also referred to as Hermitian transpose.
Let us denote as Xtot and Ytot the two matrices that gather respectively the D left and right
eigenvectors:

Xtot =
[
X1 X2 . . . XD

]
, (21a)

Ytot =
[
Y1 Y2 . . . YD

]
, (21b)

and Λ the matrix containing the D eigenvalues on the diagonal:280

Λ = diag(λ1, . . . , λD). (22)

In the case the B matrix is full rank, then an ODE system is at hand and it is assumed
to be dissipative. The negative real parts of the eigenvalues are sorted by decreasing values,
the less damped mode first, as:

Re[λD] ≤ Re[λD−1] ≤ · · · ≤ Re[λ1] < 0. (23)

Otherwise, if B is singular (and hence the original system is a DAE), the eigenvalues relating
to the algebraic equations are infinite. In such a case, we assume that the equivalent ODE285

system obtained via an index reduction technique is dissipative and its eigenvalues are all
negative, as proposed in [47]. The stability of the fixed point is, in fact, a required condition
of the parametrisation method [31, 12, 20].

The two bases of eigenvectors can be normalised in a very general manner with

X⋆
totBYtot = D, (24a)

X⋆
totAYtot = ΛD, (24b)

where D is a diagonal matrix with arbitrary entries that result from the choice on the290

normalisation. Note that, in general, it is assumed that D is the identity matrix for the sake
of simplicity. In order to keep the discussion as general as possible, this will not be assumed
here.

It is important to stress that these definitions serve the only purpose of clarifying the
setting in which the method is applied, but the whole eigenvector matrix is never actually295

computed in the algorithm. In fact, all equations are written in physical coordinates and
the only eigenvectors needed will be the ones chosen as master.
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2.3. First-order system with forcing

In this section, the complete derivation of the direct parametrisation method for systems
written in first-order form and accounting for an external forcing term, is detailed. The300

parametrisation method of invariant manifolds aims at giving explicit expressions for the
unknown nonlinear mapping, Eq. (13), and the reduced dynamics (14), which are functions
of the normal coordinate z. In the present context of a non-autonomous system, z is of
dimension d+1. The first d coordinates correspond to the master modes, while the last entry
is related to the forcing dummy variable z̃. The d master modes are selected according to the305

problem under study, but typically they coincide with the d−slowest modes of the system.
In the context of nonlinear vibrating systems, a frequency selection rule complemented with
a resonance check is sufficient, see e.g. [24, 28, 34, 33] for various examples.

The starting point is the invariance equation (15). Both unknowns W and f are searched
for as polynomial expansions of arbitrary order o, and are written as310

W(z) =
o∑

p=1

[W(z)]p , (25a)

f(z) =
o∑

p=1

[f(z)]p , (25b)

where the notation [.]p is used to refer to an arbitrary order-p term. The summations
start from order 1 since no constant term is considered. The polynomial and monomial
representation is here introduced following the multi-index notation [51]. A generic term of
order p is written as

[W(z)]p =

mp∑
k=1

W(p,k)zα(p,k), (26)

where α(p, k) refers to the k-th monomial of order p, k ∈ [1,mp], mp being the number315

of monomials of order p in d+ 1 coordinates, i.e.:

mp =

(
p+ d
p

)
=

(p+ d)!

p! d!
. (27)

A given order-p monomial is thus represented by the vector α(p, k) = {α1 α2 . . . αd+1}
of size d + 1, where each αj is such that 0 ≤ αj ≤ p, and collects the power associ-

ated to zj, such that
∑d+1

j=1 αj = p. The monomial associated to α(p, k) simply reads

zα(p,k) = zα1
1 zα2

2 . . . z
αd+1

d+1 . As an example, if z = [z1 z2 z3 z4]
T has four entries, then320

α(7, k) = {2 1 3 1} represents the monomial z21z2z
3
3z4 for a given k which depends on the

ordering adopted. In Eq. (26), W(p,k) stands for the D-dimensional vector of coefficients
associated to the monomial zα(p,k).

The solution to the invariance equation is found by writing it at each order, giving rise
to the so-called homological equation of order p that can be simply written from (15) as:325

B [∇zW(z)f(z)]p = A [W(z)]p + [Q(W(z),W(z))]p + [Cz̃]p . (28)

The order-1 homological equation contains the forcing and is solved first, then the arbitrary
order p is considered.

10



2.3.1. Order-1 homological equation

At order 1, Eq. (28) reads

B [∇zW(z)f(z)]1 = A [W(z)]1 +Cz̃. (29)

Given the specific status of the last entry of the vector z, it is important to follow here330

how the calculation proceeds with this last term. To this purpose, let us decompose the
first-order terms appearing in Eq. (29). Since only linear terms are selected, one can write
for the two unknowns:

[W(z)]1 = W(1)z, (30a)

[f(z)]1 = f (1)z. (30b)

The D × (d+ 1) matrix of unknown coefficients W(1) can be written columnwise as

W(1) =
[
W(1,1) W(1,2) . . . W(1,d+1)

]
=
[
W̄(1) W(1,d+1)

]
. (31)

In this expression, the last column W(1,d+1) has been isolated while the first d columns are335

set together in the D× d matrix W̄(1), as it coincides with the autonomous parametrisation
matrix. For the matrix of coefficients f (1), one can take advantage of the fact that the last
line is zero except the (d + 1, d + 1) term which is by assumption equal to λ̃. Hence the
(d+ 1)× (d+ 1) matrix of unknown coefficients f (1) can be expressed as

f (1) =

[
f̄ (1) f (1,d+1)

0 λ̃

]
, (32)

where f̄ (1) is a d× d matrix of unknown coefficients and f (1,d+1) a d× 1 vector. Eq. (29) can340

be rewritten columnwise as

B
[
W̄(1)f̄ (1) λ̃W(1,d+1) + W̄(1)f (1,d+1)

]
z = A

[
W̄(1) W(1,d+1)

]
z+

[
0 C

]
z, (33)

where the last column has been isolated in each matrix. Using the definition of z = [z̄t z̃]t

given in Eq. (12), one can also rewrite Eq. (33) as

BW̄(1)f̄ (1)z̄+B(λ̃W(1,d+1) + W̄(1)f (1,d+1))z̃ = AW̄(1)z̄+AW(1,d+1)z̃ +Cz̃, (34)

which clearly makes appear the part that is linked to the autonomous normal variables, and
the terms that are related to the added coordinate z̃. This last equation is true for any (z̄, z̃),345

hence it can be split into two different problems. Considering the first d columns leads to:

BW̄(1)f̄ (1) = AW̄(1). (35)

Here one recognises the linear eigenvalue problem. To enforce tangency to the linear eigen-
modes, the solution is selected as the right eigenvectors Yk ∈ CD associated to the master
eigenvalues {λk}k∈[1,d], see Eq. (19), such that finally:

∀ k = 1, . . . , d, W(1,k) = Yk. (36)
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Collecting the d right eigenvectors in the matrix of master modes Y as350

Y =
[
Y1 Y2 . . . Yd

]
, (37)

one simply has W̄(1) = Y. Finally for the reduced dynamics linear term, one obtains:

f̄ (1) = diag(λ1, . . . , λd). (38)

To conclude the calculation, the last column of Eq. (33) leads to the following problem:(
λ̃B−A

)
W(1,d+1) = C−BYf (1,d+1). (39)

The solution to this last equation is made difficult by the fact that there are two unknowns,
namely W(1,d+1) and f (1,d+1) for a single equation, as well as by the fact that the left-hand
side term can become singular in case of a primary resonance, if the forcing value λ̃, is355

aligned with one master eigenvalue. This problem is however classical in the context of the
parametrisation method for invariant manifold, generalises to arbitrary order, and is solved
by using the different styles of solution, see e.g. [12] for general discussions and [24, 28] for
solutions operating from the physical space.

Here we will only explain how to solve Eq. (39) in a direct manner, without projection to360

the modal space. However, for the sake of completeness, the solutions operated in the modal
space are made explicit in Appendix D. To set apart the case where the singularity might
appear, one needs to introduce R(1,d+1) as the set of modes that are in primary resonance
with the forcing value λ̃. In short, R(1,d+1) contains any r mode Yr such that λr ≃ λ̃. Note
that the cardinality of R(1,d+1) can be larger than 1, for the case of a degenerate eigenvalue365

λr with multiplicity larger than 1. For all r ∈ R(1,d+1), the matrix λ̃B−A is nearly singular,
and its kernel has the dimension of the cardinality of R(1,d+1).

Following the general discussion on the choice to make in such case (see Appendix D
for details and proof), the components of W(1,d+1) that are parallel to the kernel subspace
cannot be derived from Eq. (39), and they must be set to zero, which generates an additional370

set of equations that have to be appended to Eq. (39) in order to make it solvable while
imposing this vanishing condition:

∀ r ∈ R(1,d+1), X⋆
rBW(1,d+1) = 0. (40)

For the other non-resonant components, r /∈ R(1,d+1), in this case the choice retained (see Ap-
pendix D for details) is to set

∀ r ∈ R(1,d+1), f (1,d+1)
r = 0. (41)

The augmented solvable system combining Eqs. (39)-(40)-(41) finally reads:375 λ̃B−A BYR 0
X⋆

RB 0 0
0 0 I

W(1,d+1)

f
(1,d+1)
R
f
(1,d+1)

�R

 =

C0
0

 . (42)
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where the two matrices YR and XR containing respectively the resonant left and right
eigenvectors have been introduced to simplify notations as

YR =
[
Yr1 . . . Yrp

]
, ∀ rj ∈ R(1,d+1), (43a)

XR =
[
Xr1 . . . Xrp

]
, ∀ rj ∈ R(1,d+1), (43b)

and the notation for R(1,d+1) has been abbreviated to R in the subscripts. Besides, the
vector of unknown coefficients of the reduced dynamics has been split into two parts, by
separating the resonant ones collecting all the indices belonging to R(1,d+1), and denoted as380

f
(1,d+1)
R , from the non-resonant ones collecting the indices that do not belong to R(1,d+1), and

denoted as f
(1,d+1)

�R .

Notice that, since the check for resonances is only done between λ̃ and the master eigen-
values {λk}k∈[1,d], the last entry of f (1,d+1) related to the dynamics of the added variable z̃,
is included neither in R, nor in ��R. In fact, as mentioned in Section 2.1, the value of fd+1 is385

known and cannot be altered by the algorithm. Note that this consideration holds for any
order.

2.3.2. Order-p homological equation

To conclude this section, the solution to the homological equation of order p is derived.
Selecting order p from the invariance equation, one has:390

B [∇zW(z)f(z)]p = A [W(z)]p + [Q(W,W)]p . (44)

The idea is to write this homological equation at the level of an arbitrary monomial zα(p,k)

defined by the vector of integers α(p, k) = {α1, . . . , αd+1}. To do so we need to isolate the
unknown vectors W(p,k) and f (p,k) from the known ones calculated in previous instances of
the iterative procedure. Each (p, k)-homological will consist of a left-hand side containing
the unknowns and a right-hand side containing previously calculated quantities. Since the395

following derivation is quite heavy, the interested reader can refer to Appendix B for more
details. Here, suffice to say that each homological equation of order p at the level of the
arbitrary monomial (p, k) has the same structure, which reads

(
σ(p,k)B−A

)
W(p,k) +

d∑
s=1

BYsf
(p,k)
s = R(p,k), (45)

whereR(p,k) aggregates all quantities generated by lower order monomials, the full expression
of which being detailed in Appendix B. The second term appearing in Eq. (45) is σ(p,k),400

defined as:

σ(p,k) =
d+1∑
s=1

αsλs. (46)

This term is of particular importance and one can see that it involves multiples of each
eigenvalue, including the forcing value λ̃. This property allows generating superharmonic
resonances with the master eigenvalues. For instance, the case of σ(p,k) = 3λ̃ can appear
in the algorithm, thus covering the case of a 3:1 superharmonic resonance. Conversely,405
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state-of-the-art implementations reported for example in [28, 25, 27], can only handle direct
resonances with a unitary multiplier in front of λ̃.

Let us now highlight how to solve the homological equation of order p for an arbitrary
monomial, Eq. (45). This equation is underdetermined since there are still two unknowns,
respectively the nonlinear mapping coefficients W(p,k) and the reduced-order dynamics co-410

efficients f (p,k). Furthermore, the term in factor in front of W(p,k) might become singular
when a nonlinear resonance is met. Additional equations need thus to be appended to
deal with underdeterminacy, and different kinds of solutions, namely the different styles of
parametrisations, are introduced.

In the modal space, Eq. (45) is much simpler to handle. The interested reader might415

find this derivation in Appendix D, which follows classical choices made in the derivation
of the parametrisation method for invariant manifold [12]. Here, only the solution operated
from the physical space is explained, which is achieved by augmenting the system to make
it solvable.

Let us introduce R(p,k) the resonant set, which collects all the r indexes such that the420

nonlinear resonance relationship λr ≃ σ(p,k) is fulfilled:

R(p,k) = {r ∈ [1, d] | λr ≃ σ(p,k)}. (47)

Importantly, the index r here covers only the master modes and does not contain the (d+1)-th
term related to the forcing, following the choices made at the beginning to solve the non-
autonomous problem. For an index r ∈ R(p,k), the matrix (σ(p,k)B − A) is nearly singular
and its kernel has the same dimension as the cardinality of R(p,k). The components of W(p,k)

425

parallel to the kernel subspace cannot be found from Eq. (45). For this reason, they must
be set to zero, whatever the style used, see Appendix D for more details. This leads to
considering the added equations (the derivation of which is detailed in Appendix D):

X⋆
rBW(p,k) = 0, ∀r ∈ R(p,k). (48)

This condition imposesW(p,k) to be orthogonal to the kernel of (σ(p,k)B−A). In a graph style
parametrisation, these equations are sufficient since the choice of vanishing the coefficients430

of the nonlinear transform in the modal space is always retained. This is not the case in
a normal form style parametrisation, since in this case, the idea is to simplify as much as
possible the reduced dynamics by vanishing the coefficients for the non-resonant monomials,
leading to

f (p,k)
r = 0,∀r /∈ R(p,k). (49)

Finally, in order to propose direct computations that can be done from the physical space,435

and using a bordering technique that augments the size of the system to avoid singularities,
leads to the following problem to be solved for a given monomial with arbitrary order p, by
grouping Eqs. (45), (48) and (49):σ(p,k)B−A BYR 0

X⋆
RB 0 0
0 0 I

W(p,k)

f
(p,k)
R
f
(p,k)

�R

 =

R(p,k)

0
0

 , (50)
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where the two matrices YR and XR have been introduced following Eq. (43), while f
(p,k)
R

contains the coefficients f
(p,k)
r , ∀r ∈ R(p,k), and f

(p,k)

�R contains the coefficients f
(p,k)
r , ∀r /∈440

R(p,k).
Note that, by projecting the first row of the system of Eqs. (50) on X⋆

r, with r ∈ R, an
explicit expression for the reduced dynamics coefficients can be obtained as:

f (p,k)
r =

X⋆
rR

(p,k)

X⋆
rBYr

, ∀r ∈ R, (51)

with X⋆
rBYr the normalisation scalar, usually equal to 1. This expression can be used in

particular to better understand how superharmonic resonances are handled by the method.445

Let us take the particular case of a 3:1 superharmonic resonance, such that σ(p,k) = 3λ̃. The
monomial associated with this resonance relationship is z̃3. If such σ(p,k) is resonant with
the master eigenvalue λr, then, in the dynamics of the corresponding oscillator zr, a forcing
term z̃3 = e3λ̃t will appear, due to the presence of a nonzero coefficient f

(p,k)
r . The term will

be then responsible for exciting the oscillator at its superharmonic resonant response.450

The resonant set defined in Eq. (47) is valid for a normal form style parametrisation. For
a graph style parametrisation (see [12] for general discussions and [24] for specific develop-

ments for vibratory systems), one imposes R(p,k)
graph = {1, . . . , d}, consequently the last lines

in Eq. (50) needs not being considered, as the set ��R is empty.
In summary, in this section, the general equations for applying the direct parametrisation455

of invariant manifolds to a non-autonomous problem have been derived, based on an initial
assumption proposed to treat efficiently the non-autonomous term. The invariance equation
has been solved at an arbitrary order and special attention has been devoted to the treatment
of the non-autonomous term. Special attention will now be devoted to the case of mechanical
systems. In particular, it will be underlined how one can take advantage of the fact that the460

initial problem is second-order in time.

2.4. Second-order problems for mechanical vibrations

In this section, the previous developments are adapted to the case of mechanical vibratory
systems featuring geometric nonlinearity. The equations of motion to be considered read [52,
13]465

MÜ+CU̇+KU+G(U,U) +H(U,U,U) = F(t), (52)

where M, C, and K stand respectively for the mass, damping, and stiffness matrices. U
stands for the displacement vector and is assumed to be of size N . In the context of geometric
nonlinearity, and assuming that Eq. (52) is obtained from a finite element discretisation using
three-dimensional elements implementing linear elasticity with a full Lagrangian formulation
described by the Green-Lagrange strain measure, conjugated with the second Piola-Kirchhoff470

stress measure, then the nonlinearity is polynomial of order two and three and is exactly
represented by the terms G(U,U) and H(U,U,U). The forcing term at the right-hand side
is assumed to represent a harmonic forcing, with a single excitation frequency Ω, and reads:

F(t) = εE+ e+iΩt+εE− e−iΩt, (53)

where E+ and E− represents the spatial distribution of the harmonics of the forcing ±iΩ.
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The aim of this section is to adapt the previous developments to Eq. (52). In particular,475

since the two harmonics ±iΩ are considered, the method to make the system autonomous will
consider two added coordinates. Also, a particular attention will be paid to take advantage
of the fact that the initial problem is second-order in time. As done for instance in [24, 28],
this property can be used to halve the size of the problems to solve. In the same spirit, we
choose in this development to keep the cubic nonlinearity as it is, rather than performing480

quadratic recast on it.
In order to use the results from the previous section, Eqs. (52) is rewritten as a first-order

system as

MV̇ +CV +KU+G(U,U) +H(U,U,U) = E+z+ + E−z−, (54a)

MU̇ = MV, (54b)

ż+ = iΩz+, (54c)

ż− = −iΩz−, (54d)

which is complemented with initial conditions on the two added coordinates representing
the forcing so as to ensure that they are small and can be used in asymptotic developments:485

z+(0) = z−(0) = ε. To make explicit the link with the previous section, the matrices B and
A are introduced as

B =

[
M 0
0 M

]
, A =

[
−C −K
M 0

]
. (55)

The fact that the system is second-order in time finds back in Eq. (54b), which gives
a direct relationship between displacement and velocity. In order to keep the size N for
the problems to solve in the parametrisation method, and not extend to 2N , this property490

will be fully exploited, and all the vectors will be split into two parts by separating the
contributions relative to the displacement and to the velocity. This can be first done for
example for the right and left eigenvectors, defined in Section 2.2. Let us introduce for the
mechanical problems the following notation, ∀k ∈ [1, 2N ]:

Yk =

[
YV

k

YU
k

]
, Xk =

[
XV

k

XU
k

]
. (56)

Note that at this level of the development, no special properties about the linear modes of495

the mechanical problems are assumed in order to keep the presentation general and underline
how the method can handle different cases.

From the definition of the right eigenvectors Yk given in Eq. (19), and using Eqs. (55)-
(56), one can show that the two following relationships are fulfilled

YV
k = λkY

U
k , (57a)(

λ2
kM+ λkC+K

)
YU

k = 0. (57b)

The first equation shows that both halves of the right eigenvectors are linked through a simple500

relationship whatever the properties assumed on the mass, stiffness and damping matrices,
as a general consequence of the link between displacement and velocity. The second equation
recovers a general property that defines the eigenvalues for the mechanical problem.
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Similar expressions for the left eigenvectors can be found from Eq. (20):

XU
k

⋆
M = XV

k

⋆
(λkM+C) , (58a)

XV
k

⋆
K = −λkX

U
k

⋆
M. (58b)

These equations will be used to simplify some expressions in the next development.505

The parametrisation method for Eqs. (54) is introduced by defining the (2n+2)-dimensional
normal coordinate z as

z =

 z̄
z+
z−

 , (59)

where z̄ is of dimension 2n and groups the n master modes, while the two added coordinates
refer to the forcing. The nonlinear mapping W introduced in the previous section is split
into two parts. Following the notation introduced in [24, 28], it reads:510

U = Ψ(z), (60a)

V = Υ(z). (60b)

One can note in particular that on the left-hand side, only the physical displacement and
velocity vectors are involved, while the reduced dynamics is a system of size (2n+2) for the
normal coordinates reading

ż = f(z). (61)

As underlined in the previous sections, the two last entries of z are z+ and z−, and it is
assumed that the appended equations, which render the system autonomous, Eqs. (54c)-515

(54d), are already written with the normal coordinates. As a consequence, the last two lines
of f , namely f2n+1(z) and f2n+2(z), are linear equations reproducing Eqs. (54c)-(54d) and
are known. Only the first 2n lines are nonlinear and unknown.

The general solutions obtained for the first-order problem in the previous section can
now be directly applied. Using Eq. (36), the linear terms of the mappings (60) are obtained520

as, ∀k ∈ [1, 2n]

Ψ(1,k) = YU
k , (62a)

Υ(1,k) = YV
k , (62b)

where YU
k are the displacement-related right eigenmodes associated to Eq. (57b), while YV

k

are related to YU
k thanks to Eq. (57a).

The solution to the linear order needs to be completed by defining the added columns
(Ψ(1,2n+1),Ψ(1,2n+2)) and (Υ(1,2n+1),Υ(1,2n+2)) corresponding to the forcing frequencies ±iΩ.525

To that purpose, Eqs. (39) and (42) needs to be rewritten twice, one for each added forcing
coordinates, namely for the case 2n+ 1 corresponding to +iΩ, and 2n+ 2 corresponding to
−iΩ. Let us also introduce the two resonant sets that will gather the primary resonance as

R(1,2n+1) = R(1,+) = {r ∈ [1, 2N ] | λr ≃ iΩ}, (63a)

R(1,2n+2) = R(1,−) = {r ∈ [1, 2N ] | λr ≃ −iΩ}. (63b)
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In order to alleviate notations, the superscripts (1, 2n + 1) and (1, 2n + 2) are replaced by
(1,+) and (1,−) in the sequel, following the notation introduced here for R(1,+) and R(1,−).530

Focusing only to the (2n + 1)-th terms for the sake of brevity, and rewriting Eq. (39)
using (1,+) notation, leads to:

iΩMΥ(1,+) +CΥ(1,+) +KΨ(1,+) +
∑

r∈R(1,+)

MYV
r f

(1,+)
r = E+, (64a)

iΩMΨ(1,+) = MΥ(1,+) −
∑

r∈R(1,+)

MYU
r f

(1,+)
r . (64b)

The second equation (64b) can be used to eliminate Υ(1,+) from the calculation and halve
the size of the systems to be solved thanks to:

Υ(1,+) = iΩΨ(1,+) +
∑

r∈R(1,+)

YU
r f

(1,+)
r . (65)

Finally, using Eq. (57a) in Eq. (64a) in order to eliminate YV
r leads to a problem of size N535

where the two unknowns are the displacement mapping term Ψ(1,+) and the reduced-order
dynamics coefficients f

(1,+)
r :(

−Ω2M+ iΩC+K
)
Ψ(1,+) +

∑
r∈R(1,+)

[
((+iΩ + λr)M+C)YU

r f
(1,+)
r

]
= E+. (66)

This equation is interesting as it makes appear the usual linear primary resonance through
the left-hand side matrix in front ofΨ(1,+), which becomes singular in such case. The solution
to Eq. (66) follows the same lines of discussion as reported in the previous section and is540

thus not expanded further here. For a direct solution, the system needs to be augmented by
bordering the matrix by the eigenvectors of its kernel, which can be directly done here by
expanding the condition (40) as

∀r ∈ R(1,+), XV
r

⋆
MΥ(1,+) +XU

r

⋆
MΨ(1,+) = 0. (67)

Using Eq. (65) to eliminate Υ(1,+), and Eq. (58a) to eliminate XU
r , one can rewrite Eq. (67)

as545

∀r ∈ R(1,+), XV
r

⋆
[(+iΩ + λr)M+C]Ψ(1,+) +

∑
s∈R(1,+)

XV
r

⋆
MYU

s f
(1,+)
s = 0. (68)

The two systems to be solved at order one in order to operate a direct solution from physical
space can now be written down. To make the expressions more compact, the matrix of
resonant right eigenvectors (displacement part) YU

R and left eigenvectors (velocity part) XV
R,

gathering the r ∈ R(1,+) terms, are introduced as

YU
R =

[
YU

r1
. . . YU

rp

]
, ∀rj ∈ R(1,+), (69a)

XV
R =

[
XV

r1
. . . XU

rp

]
, ∀rj ∈ R(1,+), (69b)

where the notation for R(1,+) has been abbreviated unambiguously to R in the subscripts.550

For the term (1, 2n+ 1) corresponding to +iΩ, the system to be solved finally reads:
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 −Ω2M+ iΩC+K MYU
R(iΩIR +ΛR) +CYU

R 0
(iΩIR +ΛR)X

V ⋆

R M+XV ⋆

R C XV ⋆

R MYU
R 0

0 0 I

Ψ(1,+)

f
(1,+)
R
f
(1,+)

�R

 =

E+

0
0

 . (70)

where IR is an identity matrix having the cardinality of R(1,+), and ΛR is a diagonal matrix
with the same dimensions containing all the resonant λr. Finally, the coefficients of the
reduced dynamics have been collected in f

(1,+)
R and f

(1,+)

�R according to whether they belong

to R(1,+) or not.555

For the term (1, 2n+2) = (1,−) corresponding to−iΩ, the same process can be conducted
and one has simply to replace the +iΩ by −iΩ and R(1,+) by R(1,−), which is abbreviated
to R in the subscripts following (69), so that finally one has: −Ω2M− iΩC+K MYU

R(−iΩIR +ΛR) +CYU
R 0

(−iΩIR +ΛR)X
V ⋆

R M+XV ⋆

R C XV ⋆

R MYU
R 0

0 0 I

Ψ(1,−)

f
(1,−)
R
f
(1,−)

�R

 =

E−
0
0

 .

(71)
As compared to the system to be solved for the first-order problem, see Eq. (42), one

can observe that an additional term XV
R
⋆
MYU

R appears in the centre of the matrix on the560

left-hand side. It comes from the elimination of the velocity-dependent terms and the process
of halving the problems.

The same process can be repeated at arbitrary order p, the point being to rewrite Eq. (50)
to take advantage of the intrinsic properties of the second-order mechanical systems. To that
purpose, the right-hand side term R(p,k) needs to be also divided into two parts as:565

R(p,k) =

[
ν(p,k)

Mµ(p,k)

]
. (72)

Note that the matrix M can indeed be easily factorised from the lower part thanks to the
definition of R(p,k) given in Eq. (B.19) and the shape of the matrix B given in Eq. (55).
Rewriting and expanding Eq. (45) then yields(

σ(p,k)M+C
)
Υ(p,k) +KΨ(p,k) +

∑
r∈R(p,k)

f (p,k)
r MYV

r = ν(p,k), (73a)

σ(p,k)MΨ(p,k) −MΥ(p,k) +
∑

r∈R(p,k)

f (p,k)
r MYU

r = Mµ(p,k), (73b)

where the summed terms contains only resonant terms r ∈ R(p,k) since in the other case,
when r /∈ R(p,k), the corresponding reduced dynamics coefficient f

(p,k)
r is set to zero. In order570

to lighten the notations again, and since one is only concerned here with the k-th arbitrary
monomial of order p unambiguously defined by the vector α(p, k), the superscripts (p, k)
will be omitted in the next equations for R(p,k) and σ(p,k), which will thus be written simply
as R and σ. The second equation (73b) gives the important relationship that relates the
velocity mapping to the displacement mapping as575

Υ(p,k) = σΨ(p,k) +
∑
r∈R

f (p,k)
r YU

r − µ(p,k). (74)
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Replacing in Eq. (73a) and using Eq. (57a) to eliminateYV
r leads to the homological equation

at arbitrary order p for the second-order mechanical systems, which reads:[
σ2M+ σC+K

]
Ψ(p,k) +

∑
r∈R

[(σ + λr)M+C]YU
r = Ξ(p,k), (75)

where the right-hand side term Ξ(p,k) has been introduced to gather all the known terms as

Ξ(p,k) = ν(p,k) + (σM+C)µ(p,k). (76)

Eq. (75) makes appear the nonlinear resonance relationship in the matrix in front of the
mapping term Ψ(p,k). The system needs to be augmented by bordering this singular matrix580

with the eigenvectors of its kernel, using Eq. (48), which can be expanded to

∀r ∈ R, XV
r

⋆
MΥ(p,k) +XU

r

⋆
MΨ(p,k) = 0. (77)

Using Eq. (74) to eliminate Υ(p,k), and Eq. (58a) to eliminate XU
r , one can rewrite Eq. (77)

as

∀r ∈ R, XV
r

⋆
[(σ + λr)M+C]Ψ(p,k) +

∑
s∈R

f (p,k)
s XV

r

⋆
MYU

s = XV
r

⋆
Mµ(p,k). (78)

The augmented system to be solved at arbitrary order for the second-order mechanical system
that takes advantage of the relationship between displacement and velocity to halve the size,585

can be finally written, by grouping Eqs. (75) and (78), as:

 σ2M+ σC+K MYU
R(σIR +ΛR) +CYU

R 0
(σIR +ΛR)X

V ⋆

R M+XV ⋆

R C XV ⋆

R MYU
R 0

0 0 I

Ψ(p,k)

f
(p,k)
R
f
(p,k)

�R

 =

 Ξ(p,k)

XV ⋆

R Mµ(p,k)

0

 ,

(79)
where the two matrices XV

R and YU
R gathers the left and right resonant eigenvectors as:

YU
R =

[
YU

r1
. . . YU

rp

]
, ∀rj ∈ R, (80a)

XV
R =

[
XV

r1
. . . XU

rp

]
, ∀rj ∈ R. (80b)

In the process of halving the size of the system, two terms have appeared in the equations
that are added to the augmented system. First in the centre of the matrix on the left-hand
side, a term XV ⋆

R MYU
R, and second, the term on the right-hand side, XV ⋆

R Mµ(p,k), which590

makes the half-sized system very different from those obtained with a first-order formulation.
One can also note that in the present derivation, very few assumptions have been made on the
modes of the mechanical system. To make the link with the previous development reported
in [24, 28] where real normal modes were assumed, Appendix E details how the system to be
solved at arbitrary order p, Eq. (79), can be further simplified using classical assumptions for595

mechanical systems (real normal modes, symmetric matrices, damping matrix diagonalised
by the normal modes).
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2.5. Remarks on the implementation
The proposed formulation has been implemented in a julia package called MORFE2.0 which

can be downloaded from the github page of the MORFE project [30]. Using the multi-index600

notation with α(p, k) vectors for processing the monomials, the code has been completely
rewritten, and now gives a general formulation for non-autonomous problems. The FEM
discretisation is still based on 3D solid elements which can be either 15-node prisms or 27-
nodes hexahedra. The implementation follows strictly the derivation detailed in previous
sections and, actually, many definitions of the terms in the homological equations like (B.3),605

(B.12) and (B.18) have already been conveniently expressed using pseudo-code lines in the
presentation given in Appendix B.

Some remarks are worth stressing. First of all, even though for the sake of clarity the
derivations for order-1 and arbitrary order-p homological equations have been presented
separately in Sections 2.3.1 and 2.3.2, the procedure is the same and can be unified, thus610

leading to a great simplification which is used to present the sequential calculations inside
the code in a much more uniform manner.

Secondly, to keep the presentation as simple as possible, only one forcing frequency has
been introduced in Eq. (1) and (53), but it is actually easy to generalise to the sum of
many forcing frequencies. This leads to the presence of a larger number of non-autonomous615

variables which can all a priori resonate with the autonomous ones. This added feature is
thus already present in the julia package MORFE2.0.

Thirdly, as discussed in [27], in the usual case of λ̃ not fixed, the variation of λ̃ can be
discarded, so the computation can be performed for a single λ̃ value. This assumption is
made to meet the purpose of flexibility since proposing a single ROM equation that can be620

used for computing solution branches in the vicinity of the selected λ̃ value.
Lastly, it has been assumed everywhere in the paper that the maximum order of ex-

pansion o for the mappings and reduced dynamics is actually the same as the order of ε
truncation. This means that in the monomials zα(p,k) both master mode coordinates z̄ and
coordinates associated to the forcing (either z̃, z+ or z−) can appear with any order ranging625

from 1 to o. However, this choice considerably increases the number of homological equa-
tions to be solved and might not be necessary for all applications. Indeed, as will be shown
in the next section, the order needed in terms of ε development for the non-autonomous
part is generally smaller than the polynomial expansion order. Additionally, the fact that
with a ε1 order development, only linear terms with respect to the forcing are present in630

the reduced dynamics, is an attractive feature that can be used to interpolate reduced dy-
namics, see e.g. [33]. For all these reasons, it has been thus decided to offer the user the
possibility to select both the order of the asymptotic expansion o, as well as the order of the
ε truncation oε as input parameters. Note that Appendix C gives a detailed discussion on
the treatment of asymptotics by comparing the smallness of forcing and amplitudes, that635

appear independently in the process, but are related through the dynamics.
The notation O(zo, εoε) is adopted in the code and in what follows to denote the dif-

ferent maximum orders selected. For instance, in the case O(z6, ε3), all the monomials in
the expansion will have maximum order 6 for both coordinates, while the non-autonomous
variables will appear at most with power 3, meaning that we accept an order ε3 truncation.640

This pragmatic choice can be interpreted as giving equal importance to the asymptotics re-
lated to amplitude and forcing. This point is further detailed in Appendix C where different
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truncation strategies, based on the analysis of the two asymptotics, are also illustrated and
could have been used to define the truncation orders.

It is worth stressing that the case O(zo, ε1) coincides with the formulation in [28], hence645

the proposed derivation represents a generalisation to that approach. On the other hand,
the notation O(zo, ε0) corresponds to the case without the forcing. This choice can be used
in conjunction with vanishing damping to compute the backbone curve of the associated
conservative problem. It can also be used in a forced-damped case by simply appending the
forcing on the right-hand side of the system to compute frequency-response curves. In this650

case, the manifold is assumed to stay undeformed under the action of the forcing, which is
a limiting assumption already used for example in [22, 23, 26, 24]. A more rigorous way to
include the forcing with the least possible number of added monomials is to include only
linear monomials in z̃ (or z+, z−). In this way, one could keep higher-order monomials in
the autonomous expansion ε0, say O(zo, ε0), but only linear ones in the non-autonomous655

expansion, meaning O(z1, ε1). This approach is the one adopted in [25], and has also been
used in [28] to draw comparisons with higher orders developments in the ε1 truncation, in
order to show that the latter was needed to achieve convergence to the solution. In fact, this
approach is also limited to the cases where the manifold does not deform too much under
the forcing and no parametric forcing terms are present in the reduced dynamics. This case660

is very specific and as a matter of fact is denoted as O(zo, ε0) by abuse of notation.

3. Numerical results

The proposed methodology will be validated on three examples to stress its enhanced
capabilities for Reduced Order Model (ROM) generation. In all the examples, the ROM
solutions are systematically compared to a reference computed by means of the Harmonic665

Balance Method (HBM) applied to the full-order problem (denoted as HBFEM in the fol-
lowing). The test cases considered are quite simple from a geometrical standpoint as they
concern straight beams and shallow arches. Instead, the emphasis will be put on the dynam-
ical solutions and the ability of the ROM to recover solutions that were not computable with
previous formulations of the non-autonomous part. By resorting to non-dimensional forms670

of the input and output quantities, the improvements will be highlighted together with a
check of the admissible range in terms of amplitudes. It is worth stressing that geometrical
dimensions and material properties are typical of microstructures (MEMS) that often pro-
vide experimental evidence of nonlinear phenomena and are recently stimulating important
advancements in their numerical analysis.675

3.1. Straight beam with a 3:1 superharmonic resonance

In this section, we will address a 3:1 superharmonic resonance in a clamped-clamped
straight beam actuated by a body load proportional to its first bending eigenshape. The
selected beam, shown in Fig. 1(a), is made of polycrystalline silicon, which is modeled as an
isotropic material with density ρ = 2320 kg/m3, Young’s modulus E = 160GPa and Poisson680

ratio ν = 0.22. The reference finite element model consists of a mesh of 15-nodes quadratic
wedge elements with 2607 nodes, yielding a system with 7821 dofs. The eigenanalysis of the
system gives the eigenmodes and the eigenfrequencies reported in Figs. 1(b-d). Only the
first three in-plane modes are reported for the sake of brevity.
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The dynamics of the full-order FE model reads685

MÜ+CU̇+KU+G(U,U) +H(U,U,U) = κMϕB1 cos(Ωt), (81)

where ϕB1 is the mass-normalised bending mode, MϕB1 are nodal forces corresponding to a
body force distribution proportional to the inertia of the mode. In order to test the method,
large values of κ will be selected. To monitor the amplitude of the forcing with respect to
the geometric nonlinearity, a non-dimensional amplitude ϵ is introduced as

ϵ =
ϕ

H

κ

ω2
B1

, with ϕ = max(∥ϕB1∥). (82)

This choice is inspired by the non-dimensional form of equations in beam theory, see Ap-690

pendix F, and follows earlier normalisation already used in [28]. Note in particular that the
characteristic length selected is here the thickness H in the direction of the vibration since
the beam is axially constrained [13]. As a general remark, ”large forcing amplitude” needs
to be understood here in the engineering sense. Since the parametrisation method relies on
a local theory using asymptotic expansions, the non-dimensional amplitude ϵ introduced in695

Eq. (82) has to be smaller than 1, meaning that the forcing amplitudes are small in the
mathematical sense. However, they are large if compared to the usual range observed in
engineering literature.

Figure 1: Clamped-clamped beam. (a) geometry L = 1000µm, B = 24µm, H = 10µm. (b-d) first three
bending eigenmodes.

To trigger the 3:1 superharmonic resonance, the excitation frequency Ω is selected in
the vicinity of ωB1/3, where ωB1 is the eigenfrequency of the fundamental bending mode.700
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The forcing amplitude is set to κ = 5µs/µm2 which corresponds to ϵ = 0.1170, considering
that ϕ = 0.06738µm. As shown in the results, this forcing will lead to vibration amplitudes
in the range of 2.9µm, corresponding to (1/3)H, which is sufficient to trigger nonlinear
effects. Finally, a Rayleigh model is selected for the damping matrix C = αM + βK, with
α = ωB1/500, β = 0.705

Fig. 2 collects the Frequency Response Curves (FRCs) expressed in terms of the modal
coordinate uB1 = ϕT

B1MU, normalised by the eigenmode amplitude and the characteristic
length H. The reference HBFEM solution has been computed with 9 harmonics together
with 35 integration points for the Fourier projection. According to our experience, these
settings provide a robust solution that is almost at convergence up to very small details.710

Improving the full-order solution would imply a computational burden difficult to manage
with standard computing resources.

Figure 2: Frequency response curves corresponding to a 3:1 superharmonic resonance on the doubly clamped
beam having a mass-proportional damping α = ωB1/500 and an external excitation with amplitude κ =
5µm/µs2 i.e. ϵ = 0.1170[−]. (a) DPIM solution with different expansion orders compared to the HBFEM
solution obtained with 9 harmonics. (b) enlarged view of the FRC peaks. For the ROMs, the stability of
the solution branches is reported with solid lines (resp. dashed lines) for stable solutions (resp. unstable
solutions). The star markers pinpoint the saddle-node bifurcation points.

The ROMs are obtained by choosing a single master coordinate (corresponding to the
fundamental bending mode) and are computed using different orders for the parametrisa-
tion with a complex normal form style. The ROMs have been integrated by means of the715

MATLAB package MATCONT [53], which deploys continuation of periodic orbits with the
collocation method. To guarantee a proper representation of the solution, 4 collocation
points and 40 time intervals have been used, which results in a discretisation of the orbit
with 161 nodes.

Following the introduced terminology, O(zp, εq) defines the parametrisation and ε trun-720

cation orders. The special case O(z3, ε1) is here used to make a direct comparison with
previous formulations limited to ε1 [28]. As awaited, with this choice the 3:1 superharmonic
resonance cannot be retrieved simply because, according to the previous theoretical devel-
opments, this resonance cannot be identified. An ε3 truncation is the minimum needed to
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Figure 3: Computational burden to construct the ROMs in terms of time and number of monomials. (a) In-
creasing orders in the parametrisation with a fixed truncation order in ε. (b) Increasing truncation in ε order
with a fixed order expansion order for the normal coordinate. (c-d) number of monomials to be computed
in each case.

capture the superharmonic resonance. Indeed, in Fig. 2 the O(z3, ε3) solution captures the725

resonance, but overpredicts the amplitude peak, indicating that higher orders are needed to
achieve convergence. Finally, the cases O(zp, εp) with p = 6, 7 and 9 are simulated to verify
the convergence of the ROM. The zoom shown in Fig. 2(b) highlights a slight difference
between O(z9, ε9) and the HBFEM solution. Nevertheless, the difference is very small and
might also be attributed to a not fully converged HBFEM solution.730

The stability of the computed branches of solutions has been reported in Fig. 2 for the
ROMs only. Indeed, computing the stability of the full-order model is computationally
expensive and has not been considered here. As awaited, the stability analysis reports
classical results about the solutions of the 3:1 superharmonic solution, with the presence of
an unstable branch in between two saddle-node bifurcation points.735

As far as the performance is considered, the O(z9, ε9) parametrisation needs less than 60
minutes to be computed, while tracing the FRCs requires only a few seconds. The O(z5, ε5)
solution, which gives accurate but not fully converged results, is constructed in 1 minute.
On the other hand, the 9 harmonics HBFEM solution requires approximately 10 minutes for
each frequency value along the FRCs. As a single FRC needs approximately 150-200 points740

depending on the continuation algorithm parameters, this results in a total of 1-2 days for
each curve. All the analyses have been run on a workstation with an Intel(R) Xeon(R)
W-2275 CPU having 14 cores with 3.3 GHz processor base frequency, and 128 GB of RAM
memory.

The computational time needed for different parametrisations is detailed in Fig. 3 in745
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Figure 4: Graphical representation of the whisker motion with time in the case of the 3:1 superharmonic
resonance in a straight beam. Single nonlinear normal mode truncation along the first bending mode (B1),
parametrised with an order O(z5, ϵ5). (a)-(c) 3-d and 2-d representation using the second bending mode as
slave coordinate. (b)-(d) Using the third bending modal coordinate B3.

order to give a complete overview of the construction times needed for the ROMs. The
reported times correspond to the example studied, the clamped-clamped beam with 2607
nodes (7821 dofs), the reduction being performed by using a single nonlinear normal mode.
Fig 3(a) shows that a nearly linear trend is observed when increasing the order of the
asymptotic expansion for a fixed value of the ε truncation for the non-autonomous part,750

recovering earlier results shown for example in [24]. Different orders lead to slightly different
slopes. Fig 3(b) underlines that, with increasing ε, the computational time increases at a
slower pace. This is a direct consequence of the number of terms to be computed in the
parametrisation and to the truncation choices retained to define the orders O(zp, εq), see the
discussions reported in Section 2.5 and in Appendix C. Fig. 3(c-d) reports the number of755

monomials in each truncation computed. Both figures highlight that the number of terms
strongly increases with the order of the expansion in the normal coordinate z. On the other
hand and due to the practical choice retained here to define the truncation order O(zp, εq),
the number of monomials to be added for each order decreases for increasing ε at a fixed
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order for z.760

In order to conclude this section, the motion of the parametrised invariant manifold with
respect to time is displayed in Fig. 4, illustrating how the method automatically computes
the curvatures of the reduced subspace corresponding to non-resonant coupled modes. The
time-dependent invariant manifold in the case of a non-autonomous system is often referred
to as a whisker [31, 28]. To represent the time dependence of the whisker, different snapshots765

at a fixed phase are shown, which is done by fixing 6 phase values along one period of the
forcing through z+ = sinφ and z− = cosφ and φ=0, π

3
, 2π

3
, π, 4π

3
, and 5π

3
. To appreciate

the curvatures of the manifold, two different slave coordinates are represented corresponding
to the second and third bending modes. The plots clearly show that the most important
coupling is with the third bending mode, which is a symmetric mode like the master. Whereas770

the deformations of the whisker are small during the oscillations, it shows a sliding motion
as evidenced by the different snapshots represented in Fig. 4. This first observation of the
whisker motion for a 3:1 resonance scenario is very different from the ones already commented
at primary resonance [28].

3.2. Shallow arch and 2:1 superharmonic resonance775

The second selected example considers a 2:1 superharmonic resonance in a shallow arch.
Whereas 3:1 superharmonics have been the subject of numerous investigations, 2:1 super-
harmonics excited through quadratic nonlinearity are seldom addressed. The structure con-
sidered is the clamped-clamped arch shown in Fig. 5(a) together with its dimensions. The
rise is proportional to a sine function.780

This beam is expected to have geometric nonlinearities with important quadratic cou-
plings between bending modes [54, 55, 56]. The reference finite element model consists of a
spatial discretisation made by 15-node quadratic wedge elements with 1161 nodes, yielding a
system with 3483 dofs. Material properties are those of polycrystalline isotropic silicon with
density ρ = 2320 kg/m3, Young’s modulus E = 160GPa and a Poisson ratio ν = 0.22. The785

first eigenmodes and eigenfrequencies are reported in Figs. 5(b-d). The arch is excited in
the vicinity of half the eigenfrequency of the fundamental bending mode, with a body load
proportional to its eigenshape. The semi-discrete FE model reads:

MÜ+CU̇+KU+G(U,U) +H(U,U,U) = κ1MϕB1 cos(Ωt). (83)

with Ω = ωB1/2. As in the previous example, we adopt mass-proportional Rayleigh damping,
with α = ωB1/500, β = 0.790

The external forcing amplitude is set equal to κ1 = 1.5µm/µs2 i.e. ϵ1 = 0.019, considering
that max(∥ϕB1∥) = ϕ = 0.0898µm. This load induces a midspan displacement of 1.08µm,
which is about 1/6 of the arch thickness H. This vibration amplitude is sufficient to correctly
excite the 2:1 superharmonic, which is also known to give rise to much smaller vibration
amplitudes as compared to the primary resonance. Fig. 6 collects the FRCs considering795

different parametrisation orders, for a complex normal form style and reduction to a single
NNM. The FRCs plot the modal coordinate uB1 = ϕT

B1MU, normalised by the eigenmode
amplitude ϕ, and the characteristic length H. The FRCs display how the proposed method
converges towards the HBFEM results after adding the order 2 contribution in the non-
autonomous forcing.800
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Figure 5: Sine-arched structure. (a) Geometry with length L = 640µm, rise R = 3.84µm, width B = 32µm
and thickness H = 6.4µm. (b-d) First three bending eigenmodes.

To check the convergence trend of the method, different parametrisation orders have been
considered. As expected, ε1 truncation fails to reproduce the super-harmonic effect, while
ε2 captures the main features. Increasing the order from z3 to z5 allows recovering the same
nonlinearity content of the HBFEM solution. Further increasing the non-autonomous order
to ε4 provides a minor improvement that can be appreciated only at the FRC peak. As in the805

previous example, the HBFEM convergence issues limit the effectiveness of the comparison
between the two solutions close to the FRC peak. The ROMs solution is also in this case
computed with MATCONT with the same set of parameters as in previous sections. For the
sake of brevity, stability information has not been reported in this case.

An orderO(z5, ε4) parametrisation needs less than 40 seconds to be computed and tracing810

the corresponding FRCs requires seconds. On the other hand, the 9 harmonics HBFEM
solution takes approximately 3-5 minutes for each frequency value along the FRCs which
results in 8-10 hours for a complete curve for this specific case.

3.3. Multimodal forcing of a shallow arch

As a last example, the same arch structure as in the previous section is considered. It815

is now actuated with a more complex forcing shape involving two eigenmodes. The goal is
to underline the effect of a strong forcing on a slave mode, when interested in the primary
resonance of the master mode. The body load has a spatial distribution proportional to a
linear combination of bending mode B1 and the second symmetric bending mode B3. The
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Figure 6: FRCs corresponding to a 2:1 superharmonic resonance on the arch structure having a mass
proportional damping α = ωB1/500 and an external excitation with amplitude κ = 1.5µm/µs2 i.e. ϵ = 0.019.
(a) DPIM solution with different expansion orders compared to the HBFEM solution. (b) enlarged view of
the FRCs peaks. We remark that any expansion having ε strictly greater than 1 match almost perfectly the
reference HBFEM.

corresponding FE model reads:820

MÜ+CU̇+KU+G(U,U) +H(U,U,U) = κ1MϕB1 cos(ωt) + κ2MϕB3 cos(ωt), (84)

This example corresponds to the one critically analysed in [28] with a ε1 order truncation.
The forcing factor κ2 will be here further increased to enhance the observed discrepancies
and show how the new method cures the limitations. Primary resonance of the fundamental
mode is studied, such that ω ≃ ωB1.

As in the previous examples, we introduce a normalisation of the external forcing to825

better highlight its magnitude with respect to the problem scale:

ϵ1 =
ϕ1

H

κ1

ω2
B1

, with ϕ1 = max(∥ϕB1∥), (85)

ϵ2 =
ϕ3

H

κ2

ω2
B1

, with ϕ3 = max(∥ϕB3∥). (86)

In the upcoming example, we will consider κ1 = 0.03, that corresponds to ϵ1 = 3.94·10−4 and
κ2 = (20, 40) which gives ϵ2 = (0.263, 0.526) with ϕ1 = 0.0898µm and ϕ3 = 0.0829µm. These
loading scenarios lead to a peak midspan displacement of 0.981µm and 0.89µm respectively.830

The load applied on the slave mode ϕB3 is strong enough to significantly alter the dynamics
of the master mode. As a consequence, the maximum vibration amplitude decreases with
increasing κ2, such that the case (κ1, κ2) = (0.03, 20) corresponds to the upper curve with
largest amplitude in Fig. 7(a), while the lower curve corresponds to the loading scenario
(κ1, κ2) = (0.03, 40). As in the previous examples, a mass-proportional Rayleigh damping835

model is assumed with α = ωB1/500, β = 0.
The results from the DPIM are compared with the ones achieved with an HB approach

applied to the full finite element model (HBFEM) and 7 harmonics. The FRCs are reported
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Figure 7: Multimodal forcing of a shallow arch: performance of the DPIM and comparison with 7 harmonics
HBFEM results. The FRCs are obtained with κ1 = 0.03µm/µs2 and κ2 = 20, 40µm/µs2, i.e., ε1 = 3.94·10−4

and ε2 = 0.263, 0.526. (a): FRCs for the normalised modal coordinate of the master mode. The DPIM
solution provides excellent results after introducing at least an order 3 approximation of the non-autonomous
part. (b-c): zoom near the peaks. Increasing the order improves the accuracy close to the FRCs peaks. (d-e):
FRCs of the normalised modal coordinate of the slave mode. The DPIM approach allows reproducing the
slave mode dynamics with a proper parametrisation of the non-autonomous part. The two forcing values
are represented in separate subfigures for the sake of clearness.
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in Fig. 7, where again different orders of truncation are considered for a complex normal form
style parametrisation. To better highlight the difference between the proposed formulation840

and the ε1 order truncation used for example in [28], we present the FRCs of the normalised
modal coordinates of both the master mode uB1 in Figs. 7(a-c), and of the slave mode uB3

in Figs. 7(d-e).
The O(z9, ε0) solution is the same for the two forcing values κ2 = (20, 40)µm/µs2 for the

projection on the master modal coordinate uB1, thus resulting in a single curve shown in845

Fig. 7(a); but is not for the slave modal coordinate uB3, as shown in Figs. 7(d,e). Indeed,
as noted in Section 2.5, the notation O(z9, ε0) refers to the case where the autonomous part
is developed up to order 9, and the non-autonomous one is developed only up to order 1
in the non-autonomous variables z+, z−. This means that the component of the forcing
along the slave mode only appears as a rigid translation of the manifold and it is therefore850

visible only on the slave mode, so the projection on the master mode is independent of the
variation of the values of κ2. From Figs. 7(a,d,e), it appears clearly that this truncation is
too crude and offers a prediction that is unacceptable as compared to the reference HBFEM
solution. Note also that even the O(z9, ε1) solution, already used in [28], begins to depart
from the full-order solution at κ2 = 20µm/µs2, and is then too far and unacceptable for855

κ2 = 40µm/µs2. A minimal order to retrieve the correct result is given by O(z9, ε2), and
convergence of the ROM is obtained for O(z9, ε3). This specific case thus underlines the
gain brought by considering higher ε order truncation in the non-autonomous part, even for
cases corresponding to a primary resonance, with a strong excitation of the slave mode.

4. Conclusion860

In this contribution, the parametrisation method for invariant manifold has been for-
mulated in order to take into account the non-autonomous terms in a different manner as
compared to previous developments shown e.g. in [39, 28], where a first-order ε development
was imposed to deal with the forcing terms. Here, this assumption is bypassed using an au-
tomatic way of dealing with higher orders in ε in the context of the parametrisation method.865

In particular, a dummy variable accounting for the exponential forcing term is included in
the parametrisation algorithm as additional normal coordinates, and later replaced by its
original definition to retrieve the time dependence of both invariant manifold parametrisa-
tion and reduced dynamics. In this way, the same routines used in the autonomous case can
be readily extended to the non-autonomous one.870

As a direct consequence of this new formulation, the method is not limited anymore to
an ε order development on the forcing amplitude, and is able to cope with superharmonic
resonance. Indeed, the resonance relationship appearing from the solving of the homological
equations makes appear multiple occurrences of the forcing frequency, a feature that was not
present with a ε1 order truncation.875

The method has been implemented in a new version of the code MORFE which has been
completely rewritten by also using the monomial representation with α(p, k) vectors that
were not used in [24, 28]. In this new version of the code, the truncation can now be realised
by selecting the order of the asymptotic expansion as well as the order of the ε truncation.

Numerical results have been produced to demonstrate the gain brought about by this880

formulation as compared to previous developments shown in [24, 28]. Consequently, the
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numerical developments have focused on illustrating that the method can deal with 3:1 and
2:1 superharmonic resonances respectively in a straight beam and a curved arch. Finally,
an example with a two-mode shape forcing, already used in [28] and where the limits of
the ε1 order truncation begin to appear, has been selected and pushed further in amplitude,885

definitely showing how the new implementation is now robust to a large range of forcing
amplitudes.

The only limitation of the method seems now to be related to the fact that asymptotic
expansions based on either graph or normal form styles have boundaries related to the
assumed smallness of the normal variable. These boundaries are for example explored in [57,890

18]. Another limitation for broad application to different nonlinearities is linked to the
polynomial representation. Nevertheless, the method as it stands proposes very efficient
ROMs for geometrically nonlinear structures, directly computable from the FE discretisation,
able to converge to the desired accuracy thanks to arbitrary order expansion. Moreover, it
directly computes the invariant manifold where the solutions are, thus offering the framework895

for exact reduced-order solutions.
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parametrisation of invariant manifolds for model order reduction of finite element struc-
tures: application to large amplitude vibrations and uncovering of a folding point. Non-985

linear Dynamics, 110:525–571, 2022.

[25] S. Jain and G. Haller. How to compute invariant manifolds and their reduced dynamics
in high-dimensional finite-element models. Nonlinear Dynamics, 107:1417–1450, 2022.

34



[26] A. Opreni, A. Vizzaccaro, A. Frangi, and C. Touzé. Model order reduction based
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Appendix A. Comparisons on the methods to compute non-autonomous invari-
ant manifolds

The main purpose of this appendix is to compare more accurately the method proposed
in the main text, to the more classical treatment of the non-autonomous term that relies
on adding an auxiliary variable. For the sake of self-consistency, some of the equations1080

already given in the main text are rewritten. The development is again led on a first-order
non-autonomous system to make the presentation simpler:

Bẏ = Ay +Q(y,y) + εC eλ̃t, (A.1)

with a single external forcing term, but its extension is straightforward in the case of multiple
ones.

The most classical method to make autonomous a non-autonomous dynamical system1085

consists of expanding the size of the phase space and considering an augmented state variable
that will report on the forcing, as shown in all textbooks, see e.g. [41, 42] for instance. In
the context of a vibratory system, adding the forcing as an additional degree of freedom
has been proposed in [46] to derive invariant-based ROMs. However, the procedure does
not seem to have been further used by the authors, who then proposed another treatment1090

in [7], by adding a phase variable to make the system autonomous. In this appendix, we
highlight the difference between this classical method and our proposal. To do so, the
method proposed in [46] is first detailed. The first step is to make the original system
autonomous and the second one is to compute the invariant manifold. Since a graph style
parametrisation was considered in [46], the realm is also extended here to the more general1095
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case of the parametrisation method that can also handle normal form style. At the end of
the Appendix, similarities and differences are finally discussed.

In order to make the system in (A.1) autonomous, one needs to introduce the following
additional variable:

p̃
.
= eλ̃t, (A.2)

and subsequently eliminate the explicit dependence on time by writing:1100

˙̃p = λ̃p̃, (A.3)

in conjunction with the initial condition: p̃(0) = 1. The new system reads:[
B 0
0 1

] [
ẏ
˙̃p

]
=

[
A εC

0 λ̃

] [
y
p̃

]
+

[
Q(y,y)

0

]
. (A.4)

The parametrisation algorithm could now be applied directly to this autonomous system.
To seek a parametrisation of the invariant manifold from the space composed by both y and
p̃, a nonlinear mapping should be introduced as[

y
p̃

]
=

[
W(z)
w̃(z),

]
, (A.5)

where the last line concerned with the added coordinate p̃ has been isolated to keep track of1105

it during the development. The dynamics on the sought manifold is expressed as usual with
respect to the normal coordinates z as:

ż = f(z). (A.6)

We will now demonstrate that if we apply the classical parametrisation algorithm in
this autonomous setting, we will arrive at the same results that we reach with the strategy
chosen in the paper. This is however only an algorithmic equivalence in terms of numerical1110

computation, but not in terms of mathematical formulation, as discussed at the end of this
Appendix.

To apply the parametrisation algorithm to the system of Eq. (A.4), the first step is to
compute the linear master subspace. If λ̃ is resonant with an eigenvalue of the original
system, then a Jordan block in the eigenvalue matrix appears. The most interesting case1115

and the one we will focus on here is the case of primary resonance. Say that an eigenvalue
of the autonomous system, that we will denote with λ̄, is equal or very close to the forcing
eigenvalue λ̃, so that λ̃ ≈ λ̄. Also, let us call Ȳ and X̄ the right and left eigenvector of the
original autonomous system associated to λ̄.

One can see that the solution to the original eigenproblem associated with A and B, is1120

also a solution to the eigenproblem associated with Eq. (A.4). In fact, the following equation
is verified: [

B 0
0 1

] [
Ȳ
0

]
λ̄ =

[
A εC

0 λ̃

] [
Ȳ
0

]
. (A.7)

Similarly
[
X̄⋆ 0

]
would be a solution of the left eigenproblem.
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We now want to find the eigenvector associated with the eigenvalue λ̃. Let us call Ỹ
the upper part of this eigenvector related to the original variable y, and ỹ the last entry of1125

the eigenvector related to the added variable p̃. Also, let us remind that we are treating the
case of λ̃ ≈ λ̄. This is not a case of repeated eigenvalues per se since the equality is only
approximately fulfilled, but, in this context, near-resonances need to be treated in the same
way exact resonances are, if we want to obtain meaningful results. This means that we are
in the case of repeated eigenvalues with algebraic multiplicity equal to two. In such a case,1130

one has to check the geometric multiplicity of the eigenvalues. If it is one, the eigenvalues
admit a diagonal form. Otherwise, a Jordan block will appear in the eigenvalues matrix and
the eigenvectors [ȲT 0]T and [ỸT ỹ]T will be coupled by an extra diagonal unitary term in
the Jordan block. The geometric multiplicity of the eigenvalue can be simply checked and
it is one if X̄⋆C = 0, and two otherwise. If X̄⋆C = 0, the method can be applied normally1135

as one would do to square section beams, for instance. However, the condition X̄⋆C = 0
means that the shape of the forcing is orthogonal to the mode it is supposed to force. Hence
no direct spatial forcing is at hand, which is a very uncommon case. We are thus interested
in the occurrence X̄⋆C ̸= 0, where the geometric multiplicity is two. A Jordan block then
appears and the eigenproblem reads:1140 [

B 0
0 1

] [
Ȳ Ỹ
0 ỹ

] [
λ̄ 1

0 λ̃

]
=

[
A εC

0 λ̃

] [
Ȳ Ỹ
0 ỹ

]
. (A.8)

The first column of the resulting system coincides with the system of Eq. (A.7), so it is
automatically verified. The bottom row of the second column is also automatically verified
by ỹλ̃ = λ̃ỹ. What we need to solve to obtain Ỹ and ỹ is the top row of the second column,
which gives the relationship:

BȲ +BỸλ̃ = AỸ + εCỹ. (A.9)

However, this is an underdetermined system, so one last equation is needed. Since the1145

orthogonality between eigenvectors should still be respected, we can complement the under-
determined system with an additional equation enforcing the orthogonality of the sought
eigenvector [ỸT ỹ]T with respect to

[
X̄⋆ 0

]
. Coupling the two equations together leads to:[

Bλ̃−A −εC
X̄⋆B 0

] [
Ỹ
ỹ

]
=

[
−BȲ
0

]
. (A.10)

It is possible to see that the upper part of the sought eigenvector Ỹ is B-orthogonal to X̄
and takes on the part of the forcing vector C which is also B-orthogonal to X̄, whereas the1150

lower part of the sought eigenvector is equal to:

ỹ =
X̄⋆BȲ

εX̄⋆C
. (A.11)

This expression can be further simplified by noticing two things. First of all, the numer-
ator is the arbitrary normalisation of Ȳ which we can set to 1. Secondly, from the definition
of ε, the amplitude of C along the forced mode is also unitary, because the amplitude of the
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forcing must be quantified by ε. This means that the numerator and denominator simplify,1155

leading to:

ỹ =
1

ε
. (A.12)

Now that we found the solution to the eigenproblem associated with Eq. (A.4), we are
finally able to see the effects that this choice of linear master subspace would have on the
successive developments of the parametrisation algorithm. For the sake of readability, let us
split the normal coordinates vector z into its two components as z̄ the one related to the1160

eigenvalue λ̄ and z̃ the one related to the eigenvalue λ̃. Recalling now Eq. (A.5), we can see
that the linear part of the mapping reads:[

y
p̃

]
=

[
Ȳ
0

]
z̄ +

[
Ỹ
1/ε

]
z̃ +

[
O(||z||2)
O(||z||2)

]
, (A.13)

and the reduced dynamics reads:[
˙̄z
˙̃z

]
=

[
λ̄
0

]
z̄ +

[
1

λ̃

]
z̃ +

[
O(||z||2)
O(||z||2)

]
. (A.14)

Lastly, we must notice that setting to zero the higher order terms in the bottom rows
of these last two equations solves the added equation for p̃, i.e. ˙̃p = λ̃p̃. This means that1165

both the mapping w̃(z) and the reduced dynamics for the non-autonomous normal variable
z̃ reduce to their linear part:

p̃ =
1

ε
z̃, (A.15)

˙̃z = λ̃z̃. (A.16)

Exactly like the strategy adopted in the paper, there is no need to look for higher order
terms in these two equations because they are automatically verified by their linear part, so
only the mapping W(z) and reduced dynamics for the normal variable z̄ must be computed.1170

Moreover, since the original equation for p̃ is derived with an additional initial condition
p̃(0) = 1, this automatically implies that:

z̃(0) = ε, (A.17)

which is also equivalent to what we assume in the strategy adopted in the paper, as z̃ = εeλ̃t.
It is possible to demonstrate that pushing the developments to higher orders for the

remaining functions W(z) and the dynamics of z̄, would also lead to the same numerical1175

results as the strategy used in this paper. As a matter of fact, from an algorithmic point of
view, the two techniques are fully equivalent.

Having shown the numerical equivalence of the two strategies, we now want to discuss
the key conceptual difference between them. Let us start by pointing out that, even though
one could apply the parametrisation algorithm to any system, an actual convergence to a1180

true invariant manifold is only proven under certain assumptions. There are indeed two
main issues with the approach proposed in [46]. The first one is that, unless the forcing
is decaying (Re[λ̃] < 0), the theoretical results of the parametrisation method do not hold.
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In fact, these results lay on the assumption that all the eigenvalues of the system around
the fixed point are stable. This is a rather uninteresting case as typically the forcing one1185

λ̃ is purely imaginary. Secondly, since we are dealing with a local method, the results are
only guaranteed in the vicinity of the fixed point, thus the initial condition with unitary
amplitude (p̃(0) = 1) is problematic. These issues are well known and the interested reader
is referred to [20, 58] for more extensive discussions. As opposed to the strategy proposed
in [46] where z̃ is a legitimate normal variable, we only introduce z̃ as a dummy variable in the1190

algorithmic implementation and then retrieve the time-dependency of the parametrisation by
substituting back its original definition. In this way, the condition on the stability of the fixed
point required by the parametrisation method to ensure existence of an invariant manifold is
not compromised. At the same time, no enforcement of a particular initial condition on the
original system is imposed as we do not perform any modification to the original system.1195

Appendix B. Detailed calculation for the homological equation of order p

In this Appendix, we show how to deal with the generic order p homological equation,
at the level of the arbitrary monomial (p, k). In particular, starting from Eq. (44), we want
to isolate the single monomial by making all the terms in the equation explicit. Here, the
complete derivation and all calculation details to go from Eq. (44) to Eq. (45) of the main1200

text, are thus given for the sake of completeness.
The terms on the right-hand side of Eq. (44) can be rewritten as

A [W(z)]p =

mp∑
k=1

AW(p,k)zα(p,k), (B.1a)

[Q(W,W)]p =

mp∑
k=1

Q(p,k)zα(p,k). (B.1b)

The quadratic terms are constructed from the product of lower-order terms, by exploiting
the general relationship:

Q
(
W(p1,k1)zα(p1,k1) , W(p2,k2)zα(p2,k2)

)
= Q

(
W(p1,k1),W(p2,k2)

)
zα(p1,k1)+α(p2,k2), (B.2)

for arbitrary orders p1 and p2. For a given order p, the Q(p,k) terms can be computed in1205

parallel for all k, according to:

Q(p,k) =

p−1∑
p1=1

mp1 ,mp2∑
k1,k2=1

Q
(
W(p1,k1),W(p2,k2)

)
, (B.3)

p2 : p2 = p− p1,

k : α(p, k) = α(p1, k1) +α(p2, k2).

Let us now consider the left-hand side term in Eq. (44), which is expanded to separate
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known and unknown terms as:[
∇zW(z)f(z)

]
p
=

d+1∑
s=1

[∂W
∂zs

fs(z)
]
p

(B.4)

=
d+1∑
s=1

[(
W(1,s) +

∂[W(z)]> 1
< p

∂zs
+

∂[W(z)]p
∂zs

)(
d+1∑
j=1

f (1,j)
s zj + [fs(z)]> 1

< p
+ [fs(z)]p

)]
p
,

where the shortcut notation [·]> 1
< p

has been introduced to denote terms of order strictly larger

than 1 and smaller than p. This three terms separation is needed to distinguish the known1210

terms of order smaller than p from the unknowns of order p. Since the operator [·]p solely
selects order p, only three terms from the product will stay instead of nine, the other ones
being of lower orders, such that one can rewrite:

[∇zW(z)f(z)]p =
d+1∑
s=1

W(1,s)[fs(z)]p +
∂[W(z)]p

∂zs

(
d+1∑
j=1

f (1,j)
s zj

)
+

[
∂[W(z)]> 1

< p

∂zs
[fs(z)]> 1

< p

]
p

 .

(B.5)
In this last equation, only the first two terms contain the unknowns. The last term is known
as it involves products of lower orders. Let us separate the three terms of Eq. (B.5) as1215

[∇zW(z)f(z)]p = N1(z) +N2(z) +N3(z). (B.6)

One can rewrite explicitly

N3(z) =
d+1∑
s=1

o∑
pW ,pf=1

mpW
,mpf∑

kW ,kf=1

αs(pW , kW )W(pW ,kW )f
(pf ,kf )
s

[
zα(pW ,kW )+α(pf ,kf )−es

]
p
, (B.7)

where the derivative
∂zα(pW ,kW )

∂zs
= αs(pW , kW )zα(pW ,kW )−es , (B.8)

has been used. The notation α(pW , kW ) − es is introduced to express the fact that the
vector α(pW , kW ) has to be decreased by a unit value at the s-th component. In (B.8),
αs(pW , kW ) is specified in order to keep track that this exponent comes from the derivative1220

of the nonlinear mapping. Since the operator [·]p selects only order p, it is clear that from the
double summations on all the possible orders (pW , pf ), only those fulfilling the relationship

p = pW + pf − 1, (B.9)

will be selected. Besides, the term N3(z) will produce (d+1) monomials of order p, relative
to the s = 1, . . . , d+ 1 index k(s) verifying

α(p, k(s)) = α(pW , kW ) +α(pf , kf )− es. (B.10)

Consequently, the N3 term can be expressed as1225

N3(z) =

mp∑
k=1

N
(p,k)
3 zα(p,k), (B.11)
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where the coefficients N
(p,k)
3 can be computed directly from Eq. (B.7) at a given order p and

for all k at the same time:

N
(p,k)
3 =

d+1∑
s=1

p−1∑
pW=2

mpW
,mpf∑

kW ,kf=1

αs(pW , kW )W(pW ,kW )f
(pf ,kf )
s , (B.12)

pf : pf = p+ 1− pW ,

k : α(p, k) = α(pW , kW ) +α(pf , kf )− es.

The term N1(z) in Eqs. (B.5)-(B.6) can be rearranged by using the fact that the last line
of the reduced dynamics, fd+1, is linear by assumption and [fd+1(z)]p = 0, for p ≥ 2. Also,
as shown in Eq. (36), the first-order linear mapping vectors W(1,s) are the right eigenvectors1230

Ys. Consequently, the term N1 can be rewritten as

N1(z) =

mp∑
k=1

(
d∑

s=1

Ysf
(p,k)
s

)
zα(p,k). (B.13)

This term involves the unknown coefficients f
(p,k)
s and will thus contribute to the left-hand

side of the homological equation that gathers all unknown quantities.
The N2(z) term can also be expanded, using the derivative given in Eq. (B.8), as:

N2(z) =
d+1∑
s=1

d+1∑
j=1

mp∑
kW=1

αs(p, kW )W(p,kW )f (1,j)
s zα(p,kW )−es+ej . (B.14)

The matrix f (1) given in Eq. (32) is composed of a main diagonal collecting all eigenvalues1235

λ1 to λd plus the forcing value λ̃ in (d+ 1)× (d+ 1) position. The only non-diagonal terms
appear in the last column with non-zero entries in f (1,d+1) when a primary resonance occurs.
This special structure allows rewriting Eq. (B.14) as:

N2(z) =

mp∑
k=1

d+1∑
s=1

αs(p, k)λsW
(p,k)zα(p,k) +

mp∑
kW=1

d∑
s=1

αs(p, kW )W(p,kW )f (1,d+1)
s zα(p,kW )+ed+1−es .

(B.15)
In this last equation, the first term has been rewritten using the diagonal entries of f (1) (i.e.
s = j), while the non-zero terms in the last column f (1,d+1) have been gathered in the second1240

term.
Let us denote as σ(p,k) the term:

σ(p,k) =
d+1∑
s=1

αsλs. (B.16)

The first term in Eq. (B.15) is an unknown term that will hence contribute to the left-
hand side of the homological equation for a given monomial of order p and index k. The
second term in Eq. (B.15) involves an order p as well so that N2 can be rewritten as:1245

N2(z) =

mp∑
k=1

σ(p,k)W(p,k)zα(p,k) +

mp∑
k=1

N
(p,k)
2 zα(p,k). (B.17)
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Unlike the coefficients N
(p,k)
3 where all k can be computed in parallel, see Eq. (B.12), one

needs to proceed here with a suitable ordering of the α(p, k) vectors having the same order

p and, for a given (p, k), the coefficients N
(p,k)
2 are computed thanks to

N
(p,k)
2 =

d∑
s=1

αs(p, kW )W(p,kW )f (1,d+1)
s , (B.18a)

kW : α(p, kW ) = α(p, k)− ed+1 + es . (B.18b)

Fortunately, the homological equation for the (p, k) combination only depends on W(p,kW )

such that Eq. (B.18b) holds. By suitably ordering the list of mp vectors it can be guaranteed1250

that the homological equation for (p, kW ) is solved before addressing the case (p, k). As a
matter of fact, this result exploits the upper triangular nature of the linear reduced dynamics
which makes the system here solvable iteratively. We can now write the order-p homological
equation at the level of an arbitrary monomial defined by α(p, k). Let us denote as R(p,k)

the right-hand side term gathering all the known quantities as1255

R(p,k) = Q(p,k) −B
(
N

(p,k)
3 +N

(p,k)
2

)
. (B.19)

Finally, the homological equation of order p at the level of an arbitrary monomial reads

(
σ(p,k)B−A

)
W(p,k) +

d∑
s=1

BYsf
(p,k)
s = R(p,k). (B.20)

This equation is underdetermined and considerations on its solvability are reported in
the main text in Section 2.3.2.

Appendix C. Considerations on the order of truncation of the normal variables
and the dummy variables1260

In this Appendix we want to give more insight on the problem of the treatment of the
different asymptotics linked to the amplitude of the dummy variables and of the normal
variables, and how this is embedded in the strategies used to solve out the problem. From
a mathematical point of view, the smallness of the forcing is automatically embedded in the
fact that the asymptotic expansion is performed around z = 0, with z now including both1265

z̄ and z̃. In order to treat z̄ (related to the dynamics) and z̃ (related to the forcing) with
the same assumptions in terms of expansions, the only thing left to define is the relationship
between the smallness of ε = ||z̃|| as compared to that of ρ = ||z̄||. Typically in nonlinear
vibrations, large amplitude displacement can be observed even with very small forcing level if
the forcing frequency resonate with one of the system’s natural frequencies. For this reason,1270

it makes sense to define ε to be smaller than ρ in the asymptotic sense. Let us write such
relationship in the general case as:

O(ε) = O(ρm), (C.1)

with m a nonzero integer that can be tuned.
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Notice that the choice of m affects the truncation order for the normal variables. In fact,
it follows from Eq. (C.1), that a truncation at order o for ρ corresponds to:1275

O(ρo) = O(εo/m) = O(ρp̄ε(o−p̄)/m), ∀p̄ = 0, . . . , o (C.2)

Basically, given p̄ being the order of the autonomous variables, and p̃ that of the forcing
variables, only the monomials respecting p̄+mp̃ ≤ o, are kept in the expansion. An example
of which monomials will be left in the expansion under this approach is given in Tab. C.1a-
C.1b. From an asymptotic point of view, this is the most rigorous approach to the choice
of the truncation order of the monomials. However, it is not intuitive to foresee what value1280

of m is appropriate for a given case. In fact, fixing ō and m automatically decides õ, the
maximum order of the ε expansion. This is in opposition to what one would like to do, which
is to freely choose ō and õ. In fact, õ has a much clearer physical meaning than m in most
cases, for instance, if one is interested in the third superharmonic resonance of a system, at
least a third order in the forcing expansion is needed. It is then easier to set the maximum1285

needed order for the forcing than selecting a value for m. For this reason, the approach we
use in the code is to set m = 1 in all cases and to add another constraint to the maximum
order of the epsilon expansion: p̃ ≤ õ. An example of the monomials that would be left
by following this approach is given in Tab. C.1c. For the sake of completeness, it is worth
mentioning that a third approach could be also adopted, which is related to the idea that1290

there is no relation between the smallness of ε and that of ρ. In such a case, only constraints
on the single variables are given (p̄ ≤ ō and p̃ ≤ õ) without enforcing any constraint on their
relationship. This is what we call the disjoint approach and an example of it is given in
Tab. C.1d.

Appendix D. Treatment of the homological equations in the modal space1295

In this appendix, more details are given to the solution of the homological equations by
using a projection onto the modal space. Only the case of first-order systems is detailed.

To begin with, the solution to Eq. (39) written in the modal space for a better under-
standing of the appearance of resonance relationship, is first highlighted. Let us denote as
ξ(1,d+1) the projection of the unknown mapping vector W(1,d+1) in the modal space:1300

ξ(1,d+1) = X⋆
totBW(1,d+1), (D.1)

where Xtot collects the D left eigenvectors, and has been defined in Eq. (21a). Let us also
introduce the modal forcing vectors F as

F = X⋆
totC, (D.2)

Eq. (39) can be projected onto the modal space by left-multiplication with the matrix X⋆
tot,

yielding:

X⋆
tot

(
λ̃B−A

)
W(1,d+1) = X⋆

totC−X⋆
totBYf (1,d+1). (D.3)

Using the relationship defining the left eigenvectors, Eq. (20), one can write1305

X⋆
totAW

(1,d+1) = Λξ(1,d+1), (D.4)
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O(ρ0ε0) O(ρ0ε1) O(ρ0ε2)
O(ρ1ε0) O(ρ1ε1)
O(ρ2ε0) O(ρ2ε1)
O(ρ3ε0) O(ρ3ε1)
O(ρ4ε0)
O(ρ5ε0)
O(ρ6ε0)

(a) Asymptotic approach with m = 3: p̄+ 3p̃ ≤ o

O(ρ0ε0) O(ρ0ε1) O(ρ0ε2) O(ρ0ε3)
O(ρ1ε0) O(ρ1ε1) O(ρ1ε2)
O(ρ2ε0) O(ρ2ε1) O(ρ2ε2)
O(ρ3ε0) O(ρ3ε1)
O(ρ4ε0) O(ρ4ε1)
O(ρ5ε0)
O(ρ6ε0)

(b) Asymptotic approach with m = 2: p̄+ 2p̃ ≤ o

O(ρ0ε0) O(ρ0ε1) O(ρ0ε2) O(ρ0ε3)
O(ρ1ε0) O(ρ1ε1) O(ρ1ε2) O(ρ1ε3)
O(ρ2ε0) O(ρ2ε1) O(ρ2ε2) O(ρ2ε3)
O(ρ3ε0) O(ρ3ε1) O(ρ3ε2) O(ρ3ε3)
O(ρ4ε0) O(ρ4ε1) O(ρ4ε2)
O(ρ5ε0) O(ρ5ε1)
O(ρ6ε0)

(c) The approach we use: p̄+ p̃ ≤ o & p̃ ≤ õ

O(ρ0ε0) O(ρ0ε1) O(ρ0ε2) O(ρ0ε3)
O(ρ1ε0) O(ρ1ε1) O(ρ1ε2) O(ρ1ε3)
O(ρ2ε0) O(ρ2ε1) O(ρ2ε2) O(ρ2ε3)
O(ρ3ε0) O(ρ3ε1) O(ρ3ε2) O(ρ3ε3)
O(ρ4ε0) O(ρ4ε1) O(ρ4ε2) O(ρ4ε3)
O(ρ5ε0) O(ρ5ε1) O(ρ5ε2) O(ρ5ε3)
O(ρ6ε0) O(ρ6ε1) O(ρ6ε2) O(ρ6ε3)

(d) Disjoint approach: p̄ ≤ o & p̃ ≤ õ

Table C.1: Visualisation of the order of the monomials kept in the expansion for different truncation ap-
proaches. Case of o = 6, ō = 6, õ = 3.

where Λ is the diagonal matrix containing the D eigenvalues {λ1, . . . , λD} as defined in
Eq. (22). Assuming that the modes have been normalised with respect to B such that the
matrix D appearing in Eq. (24) is the identity matrix, Eq. (D.3) finally reads:

[
λ̃ID −Λ

]
ξ(1,d+1) =



F1 − f
(1,d+1)
1
...

Fd − f
(1,d+1)
d

Fd+1
...

FD


. (D.5)

This equation is interpreted in the same lines as general solutions at order p for the homolog-
ical equation, the only difference being that, with the new treatment of the forcing proposed,1310

a first resonance already appears at first order. One can separate the contributions of the
first d lines of Eq. (D.5) (the tangent space, relative to the master modes) to the last D− d
lines corresponding to the normal space relative to the slave modes. In the normal space,
one can write ∀ j ∈ [d+ 1, D]:

(λ̃− λj)ξ
(1,d+1)
j = Fj. (D.6)

By definition there is no primary resonance condition between the forcing frequency and the1315

slave modes, consequently λ̃ ̸= λj, and thus the solution for the unknown mapping in the
modal space is known. In the tangent space, one arrives at, ∀ j ∈ [1, d]:

(λ̃− λj)ξ
(1,d+1)
j = Fj − f

(1,d+1)
j . (D.7)
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Two unknowns are still present, the solution is thus given by following the discussion on
resonance: if there is no primary resonance, meaning that the forcing value λ̃ is far from
any eigenvalue of the master modes, then Eq. (D.7) is solved by setting f

(1,d+1)
j to zero and1320

solving for ξ
(1,d+1)
j . In this case, the linear term of the reduced dynamics becomes diagonal,

meaning that the forcing is not an order 1 term for the dynamics onto the manifold. The
other case is the resonant one. Let us denote as R(1,d+1) the set of of primary resonant
modes, i.e.

R(1,d+1) = {r1, . . . , rl} , such that λrj = λ̃, (D.8)

with Yrj the associated resonant right eigenvectors. The cardinality of R(1,d+1) is here l1325

which can be larger than 1 in order to take into account the particular case of degenerate
modes where the eigenvalues has multiplicity l. In the notation R(1,d+1), the upperscript
(1, d + 1) refers to the fact that order-1 term is at hand (first entry), and the resonance
relationship is here considered with λ̃, which is the eigenvalue of the d+ 1 linear monomial,
zd+1 = z̃. This notation naturally generalises to any monomial of arbitrary order.1330

The solution to Eq. (D.7) is then given by:

if r ∈ R(1,d+1), ξ(1,d+1)
r = 0, and f (1,d+1)

r = Fr, (D.9)

if r /∈ R(1,d+1), ξ(1,d+1)
r =

Fr

λ̃− λr

, and f (1,d+1)
r = 0. (D.10)

Note that for the resonant modes for r ∈ R(1,d+1), the condition ξ
(1,d+1)
r = 0 translates back

to the physical space to
X⋆

rBW(1,d+1) = 0, (D.11)

which is the condition used to augment the singular system and make it solvable while
imposing this vanishing condition in the modal space.1335

The same projection can be used to shed light on the solution of the homological equation
of order p, written at the level of an arbitrary monomial defined by α(p, k), Eq. (45). Left-
multiplying Eq. (45) by X⋆

tot for projection, it reads:

σ(p,k)X⋆
totBW(p,k) −X⋆

totAW
(p,k) +

d∑
s=1

X⋆
totBYsf

(p,k)
s = X⋆

totR
(p,k). (D.12)

Defining S(p,k) = X⋆
totR

(p,k) as the modal projection of the left-hand side, and using the
orthonormality relationships, one arrives at1340

(
σ(p,k)ID −Λ

)
ξ(p,k) +



f
(p,k)
1
...

f
(p,k)
d

0
...
0


= S(p,k). (D.13)

The solution of this equation follows then the classical discussion related to the use of the
parametrisation method for invariant manifolds [12]. In the normal space, i.e. ∀s = d +
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1, . . . , D, the equation writes simply as

(σ(p,k) − λs)ξ
(p,k)
s = S(p,k)

s . (D.14)

It is assumed that no cross-resonance exists, such that the relationship λs ≃ σ(p,k) is never
fulfilled for the slave modes. Then Eq. (D.14) has a single solution. The case is different in1345

the tangent space relative to the master coordinates since we will have more unknowns than
equations. Indeed, ∀s = 1, . . . , d, one has

(σ(p,k) − λs)ξ
(p,k)
s + f (p,k)

s = S(p,k)
s . (D.15)

Let us introduce R(p,k) the resonant set, which collects all the r indexes such that the
nonlinear resonance relationship λr ≃ σ(p,k) is fulfilled:

R(p,k) = {r ∈ [1, d] | λr ≃ σ(p,k)}. (D.16)

The two main styles of parametrisations follow the guidelines given below. In a graph style1350

parametrisation, then Eq. (D.15) is solved by setting

∀s = 1, . . . , d, ξ(p,k)s = 0, f (p,k)
s = S(p,k)

s . (D.17)

This means that, in the graph style parametrisation, the set R(p,k)
graph is filled with all indexes

of the master modes, irrespective of the fact that the resonance relationship is effectively
fulfilled

R(p,k)
graph = {1, 2, . . . , d}. (D.18)

In a normal form style parametrisation, Eq. (D.15) is solved following the dichotomy:1355

∀ s ∈ R(p,k), ξ(p,k)s = 0, f (p,k)
s = S(p,k)

s ; (D.19)

∀ s /∈ R(p,k), f (p,k)
s = 0, ξ(p,k)s =

S
(p,k)
s

σ(p,k) − λs

. (D.20)

In the normal form style, R(p,k) strictly follows the definition (D.16) and gathers only the
resonant monomials, with the view of offering the most simple reduced dynamics: the normal
form.

As a final note, one can observe that imposing ξ
(p,k)
s = 0 when s ∈ R(p,k), translates in

the original coordinates as:1360

X⋆
sBW(p,k) = 0, (D.21)

which is the orthogonality condition used to solve the augmented system in a direct approach.

Appendix E. Second order mechanical problem: further simplifications using
real modes

The aim of this appendix is to show how one can further simplify the order-p homolog-
ical equations to be solved for mechanical systems, Eq. (79), where the property relating1365

displacement and velocity has already been used to halve the size of the problems to be
solved. By doing so, the link with the previous developments reported in [24, 28] will be
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completely made explicit. Let us assume here that the mass, damping and stiffness matrices
of the mechanical problem are symmetric such that

Mt = M, Ct = C, Kt = K. (E.1)

The real normal mode ϕk with associated radian eigenfrequency ωk are the solutions of the1370

conservative eigenproblem
(K− ω2

kM)ϕk = 0. (E.2)

For the sake of simplicity, it is here assumed that the modes are mass-normalised, and the
damping matrix is diagonalised by the real normal modes, such that:

ϕt
kMϕl = δkl, ϕt

kKϕl = ω2
kδkl, ϕt

kCϕl = 2ξkωkδkl, (E.3)

where the modal damping ratio ξk has been introduced. The complex-conjugate eigenvalues
of the damped problem come by pairs and read1375

λk = −ξkωk ± iωk

√
1− ξ2k. (E.4)

They are solutions of the problem(
λ2
kM+ λkC+K

)
ϕk = 0. (E.5)

A last and important property shared by the modes has been demonstrated in Appendix B
of [24] and will be used to simplify the equations:

(λkM+C)ϕk = −λ̄kMϕk. (E.6)

With these assumptions, the left and right eigenvectors Xk and Yk used in the main text
can be completely rewritten as function of the real normal modes of the mechanical problem.1380

The matrix of right master eigenvectors Y introduced in Eq. (37) can be advantageously
rewritten for mechanical systems. It can be first divided in two parts, by separating the
first N lines YV corresponding to the velocity, to the last N lines YU corresponding to the
displacement. Since a vibration mode corresponds to a pair of complex eigenvalues, selecting
n master modes (ϕ1, . . . ,ϕn) leads to a matrix Y having 2n columns, such that1385

YU =
[
ϕ1 . . . ϕn ϕ1 . . . ϕn

]
. (E.7)

The left eigenvectors Xk can also be constructed from the mass-normalised real normal
modes as it has been done in [24, 28]. In this case, for the velocity part (first N lines), one
has

XV
k =

1

λk − λ̄k

ϕk. (E.8)

Note that the scalar in front of the eigenmode shape just results from the fact that the
left eigenvectors are in this case constructed from the mass-normalised mode. If one uses a1390

normalisation with respect to the B matrix of the first-order problem, then this term will
disappear. Since this is only a problem related to normalisation, it will not affect the next
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developments which can be conducted in the same manner. Since the goal here is to make
the link with [24], the real modes mass-normalised will be kept for this calculation.

Let us focus on the added term appearing in Eq. (79), XV
R
⋆
MYU

R, in order to show how1395

this term simplifies to retrieve the problem formulation derived in [24, 28]. The aim of
the derivation here is to show that one can retrieve the formula to solve the second-order
mechanical problem given in [24]. Since the augmented problem to be solved depends on the
style of parametrisation selected and on the filling of the set R, one has to distinguish here
the case of complex normal form, real normal form and graph style parametrisation.1400

Let us begin with the complex normal form style parametrisation, assuming a single
master mode labeled r for simplicity and no internal resonance, as in Section 4.3 of [24].
If the monomial under study α(p, k) is resonant with r, then RCNF = {r}, and the term
simplifies to

XV
R
⋆
MYU

R = XV
r

t
MYU

r =
1

λk − λ̄k

ϕt
rMϕr =

1

λk − λ̄k

. (E.9)

Besides, the upper term [(σ + λr∈R)M+C]YU
R also simplifies using Eq. (E.6):1405

[(σ + λr∈R)M+C]YU
R = [(σ + λr)M+C]YU

r = (σ − λ̄r)Mϕr. (E.10)

The second line of Eq. (79) makes appear the product by the left eigenvector XV
R
⋆
, so the

factor 1
λk−λ̄k

can be easily simplified, such that one is able to write the augmented system
for the CNF as[

σ2M+ σC+K (σ − λ̄r)Mϕr

(σ − λ̄r)ϕ
t
rM 1

] [
Ψ(p,k)

f
(p,k)
r

]
=

[
Ξ(p,k)

ϕt
rMµ(p,k)

]
, (E.11)

which is exactly the formulation given in [24], see Eq. (80).
In the case of the real normal form style, then if the monomial considered α(p, k) is1410

resonant with the master mode r, then the choice RRNF = {r r⋆} is made. Once again the
terms appearing in Eq. (79) can be easily simplified and one retrieves the formulation given
in Eq. (83) in [24]. For the graph style parametrisation, the filling of R contains all the
master modes and the supplementary terms of the augmented system makes finally appear
a 2n × 2n matrix composed of four n × n blocks with the identity matrix, as in Eq. (88)1415

of [24].

Appendix F. Normalisation based on structural theory

The aim of this appendix is to justify the nondimensional parameter introduced in
Eq. (82), which is used in order to monitor the importance of the forcing term. Whereas the
characteristic length used to monitor the importance of the transverse displacement with re-1420

spect to geometric nonlinearities is generally given as the thickness (except for unconstrained
beams in the axial direction where it stands as the length, see e.g. [13] for a discussion), quan-
tifying the importance of forcing with a nondimensional number is less standard. The goal
here is thus to introduce the scaling by referring to the simple case of a beam of length L,
restrained in the axial direction. In such case, the von Kàrmàn-Mettler assumptions can be1425

used to derive the equations of motion as

ρA
∂2v

∂t2
+ EJ

∂4v

∂x4
− EA

2L

[∫ L

0

(
∂v

∂x

)2

dx

]
∂2v

∂x2
= F (x, t). (F.1)
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In this equation, ρ stands for the density, A the area of the cross-section, E the Young
modulus, J the quadratic moment, v(x, t) is the transverse displacement and F (x, t) the
distributed external force. Note that the boundary conditions are not specified since they
are not needed for the development shown here. Assuming a single mode expansion as1430

v(x, t) = ϕ(x)q(t), with ϕ the non-dimensional shape function, one easily arrives to an
oscillator equation

Mq̈ +Kq +K3q
3 = f, (F.2)

where

M =

∫ L

0

ρAϕ2 dx, (F.3a)

K =

∫ L

0

EJϕ′′′′ϕdx, (F.3b)

K3 = −EA

2L

∫ L

0

(ϕ′)
2
dx

∫ L

0

ϕϕ′′dx. (F.3c)

Dividing by the mass, adding dissipation and assuming a harmonic forcing with excitation
frequency ω, Eq. (F.2) can be written as:1435

q̈ + 2ξω0q̇ + ω2
0q + k3q

3 = κ cos(ωt), (F.4)

with k3 = K3/M and ω2
0 = K/M . Finally, let us introduce the nondimensional time τ = ω0t

to have a unitary linear stiffness, and let us make the displacement nondimensional with
Q = qmax(ϕ)/LCH , where max(ϕ) is the maximal value of the eigenmode shape, and LCH

the characteristic length (in general the thickness, but for unconstrained beams the length).
The non-dimensional equation then reads:1440

Q′′ + 2ξQ′ +Q+

(
LCH

max(ϕ)

)2
k3
ω2
0

Q3 =
max(ϕ)

LCH

κ

ω2
0

cos(τ). (F.5)

One can see that the nondimensional parameter appearing in front of the forcing amplitude
is the one used in Eq.(82).
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