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Abstract
The recent development of high average, high peak power lasers has revived the effort of using
lasers as a potential tool to influence natural lightning. Although impressive, the current
progress in laser lightning control (LLC) technology may only be the beginning of a new area
involving a positive feedback between powerful laser development and atmospheric research. In
this review paper, we critically evaluate the past, present and future of LLC, considering both its
technological and scientific significance in atmospheric research.

Keywords: laser, lightning, protection, filamentation

1. Introduction

Lightning is a spectacular natural phenomenon that has evoked
both fear and wonder in humanity. Among the one billion
lightning strikes that occur annually on Earth [Gowlett2016],
many lead to natural fires, casting no doubt that the human fas-
cination by lightning is closely intertwined with our history of
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mastering fire [Roebroeks2011, Gowlett2016]. Lightning has
thus naturally fascinated generations after generations since
the dawn of humanity.

The era of modern lightning science started with Benjamin
Franklin’s famous experiment in the 18th century that identi-
fied the electrical nature of the phenomenon. Alongside with
this fundamental discovery, Franklin’s work provided the first
efficient protection technique against lightning: the lightning
rod [Franklin1752]. With minor enhancements, this technique
still forms the foundation of the state of the art lightning pro-
tection today [Uman2008]. A lightning rod primarily functions
by diverting the lightning current to the ground through a safe
conductor, thus preventing it from flowing through vulner-
able structures. However, in spite of this simple and affordable
protection means and its ubiquitous use, the total number of

1 © 2024 The Author(s). Published by IOP Publishing Ltd
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Figure 1. Number of scientific publications in the last 100 years in which the word ‘lightning’ appears either in the title, the abstract or the
keywords. Source: Scopus (6 September 2023).

lightning-related fatalities worldwide is still estimated to range
from 6.000 to 24.000 per year [Holle2016, Holle2023]. Death
rates in developed regions are estimated to be around ∼0.3
fatalities per million people per year, but they are significantly
higher in less developed regions [Holle2008, Singh2015].
Damages caused by lightning amount to billions of dollars
every year [Uman2008, Mills2010, Holle2014, Holle2023,
Rudden2023]. Over recent decades, the range of risks associ-
ated with lightning has expanded significantly. Initially, they
primarily included human and livestock fatalities, transporta-
tion disruption and structural damage.

However, as our society and economy have become
more dependent on electricity, sensitive electronic, and
digital control systems, new vulnerabilities have emerged
[DataReportal]. The emergence of new risks associated with
power outages as well as the disruption or damage to electron-
ically or computer-controlled systems can in turn affect critical
infrastructure, facilities, or services.

As a result, research efforts have intensified over time
to enhance our understanding of lightning and to develop
better protection against its adverse effects. This is evid-
enced by the significant rise in the number of scientific
and technical articles on the subject (figure 1). In spite of
these efforts of the scientific community, the detailed phys-
ical mechanisms underlying the lightning initiation and asso-
ciated phenomena like transient luminous events (including
Red Sprites, Blue Starters, Blue Jets, Gigantic Blue Jets,
and Sprites) remain only partially understood [Franz1990,
Surkov2012, Dwyer2014], calling for further fundamental
studies. However, conducting such studies require adequate
tools, including the ability to trigger lightning on demand with
minimal disturbance to its natural development, a task primar-
ily achieved today through rocket-triggered lightning (RTL).

The present article presents first an extensive, though non
exhaustive, review of past scientific efforts involving the use
of lasers for controlling electric discharges with a particular

focus on large-scale, high voltage and lightning. Additionally,
it explores directions for future developments, with a special
emphasis on laser lightning control (LLC), which recently
gained new momentum with the report of successfully laser
guided lightning [Houard2023].

We review the scientific questions and technical challenges
that lie ahead, in view of a deeper understanding of both
laser physics, laser technology, and the physics of light-
ning. Furthermore, we discuss the requirements for realistic
full-scale lightning control experiments representative of typ-
ical use cases, in order to provide a clear assessment of the
relevance of LLC technology in future lightning research,
effective enhanced lightning protection, and other potential
applications.

2. Physical background of laser-discharge
interactions

The scientific community’s efforts to understand the inter-
action between laser light and high-voltage electric dis-
charges emerged very soon after the development of the first
laser. Here, we give the reader an overall extensive, though
non-exhaustive, review of different aspects surrounding the
physics underlying these interactions.

2.1. Lightning discharge

2.1.1. Electric discharge propagation. The Townsend ava-
lanche is a process of ionization of a gas where free elec-
trons are accelerated by an electric field and, upon colliding
with molecules of the gas, release new electrons; an avalanche
of electrons is created as shown schematically in figure 2.
The dielectric strength, which is the threshold electric field
for avalanche formation, is around ∼3·106 V m−1 at 1 atm
in air [Cooray2015]. It depends linearly on the atmospheric
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Figure 2. Scheme of the formation of a Townsend avalanche.
Adapted from [Cooray2015], with permission from Springer Nature.

pressure (i.e. air density at constant temperature) because
it depends directly on the number of collisions. This phe-
nomenon was already studied in the 19th century by the sci-
entist Friedrich Paschen, who thus expressed the eponymous
law [Paschen1889, Tirumala2010].

However, the Townsend avalanche alone does not allow
to fully and faithfully describe the propagation of electric
discharges in its full complexity. Above a certain threshold
field, which is close to but lower than the dielectric strength,
a filamentary propagation of the electric potential at speeds
of the order of 105 m s−1–106 m s−1 is already present
[Nijdam2020], as reported also in table B1. This propaga-
tion is explained by the early formation of so called streamers
initiated from avalanches, when the number of released elec-
trons, growing exponentially, reaches approximately 108–109

[Cooray2015] (figure 3). The entire region containing stream-
ers is called streamers burst. An electric field higher than
3 MV m−1 is necessary to initiate streamers in air at atmo-
spheric pressure, but they can propagate in a lower field, some-
times critical field, on the order of 500 kV m−1. This critical
field limits the extension of streamers to a few tens of centi-
meters. An additional concept needed to explain the initiation
and the propagation of long distance discharges such as light-
ning, is the formation of leader channels that allow lightning
flashes to propagate in a relatively weak ambient electric field
[Gallimberti1979, Bondiou1994].

When streamer bursts propagate, the addition of their cur-
rents can lead to the formation of a much more conductive
channel (∼104 S m−1 [Rakov2003]) called leader, in which
Joule heating raises the gas temperature above 1500 K. At
this temperature, the electron reattachment to, e.g. molecular
oxygen, becomes negligible. The propagation of the plasma
front is sustained in spite of a relatively low electric field
(∼104–105 V m−1) [Bazelyan2000, Comtois2003b]. Leaders
often display a branching and stepping propagation character
and can allow the electric discharge to propagate over meters
to km (figure 4).

2.1.2. Lightning initiation and propagation. During a thun-
derstorm, the charge separation in the cloud can generate
an average electric field of 50 kV m−1 some hundreds of

Figure 3. Initiation and progression of a positive streamer. (a) A
seed electron in the vicinity of the positive electrode initiates a
Townsend avalanche toward the electrode, leaving a positive space
charge in its departure region. (b) This locally positive region in turn
attracts secondary electron avalanches. (c) and (d) The process
repeats, effectively transferring the positive potential of the
electrode over distances of tens of cm. Adapted from [Cooray2015],
with permission from Springer Nature.

Figure 4. Progression of a positive leader. If the electric field close
to a positive electrode is sufficient to initiate a streamer from
electron avalanches (see figure 3), a burst of streamers starts from
the electrode (T1). As these streamers originate in a common stem,
they combine into a region of high current, therefore heating up,
forming a so-called leader (T2). The high conductivity of the hot
and ionized leader transfers the electrode potential to its head,
offsetting the formation of the streamers. The merging of these
streamers leads to the iterative extension of the leader (T3—T5).
The progression of negative leaders is slightly different but
ultimately follows also a stepping behavior. Adapted from
[Cooray2015], with permission from Springer Nature.

meters above the ground and 10 kV m−1 at the ground level
[Rakov2003], orders ofmagnitude higher than the fair-weather
electric field of about ∼100 V m−1 [Rakov2003].

This electric field is about two orders of magnitude lower
than the dielectric strength at ambient pressure, partially
explained by the presence of runaway electrons. These fast
electrons feature longer mean free paths in air and produce
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fast avalanches that are considered key in the development
of lightning [Gurevich1992, Gurevich2005, Dwyer2005].
Additional effects might need to be considered as well and
detailing the physics at play is still an active branch of
research. Lightning is usually associated with convective
cloud systems, most abundantly cumulonimbus, which range
from 3 to 20 km in vertical extent and 3 to>50 km horizontally
[Rakov2003]. The charge distributions in cumulonimbus, pro-
ducing these electric fields, come from vertical convection
and triboelectrification of graupel (mm-sized precipitation
forming from supercooled water) colliding with ice crystals
[Jayaratne1993, Rakov2003].

These charge centers can see total charges of a few C to
hundreds of C [Rakov2003, Cooray2015].

Typically, a leader–return-stroke sequence sees a con-
ductive path being created by a descending stepped leader,
with step lengths of ∼50 m, which brings the cloud charge
source to the ground and deposits negative charge in its wake
[Rakov2003]. Once the conductive path is completed, the fol-
lowing return stroke traverses that path, moving in the oppos-
ite direction, neutralizing the negative leader charge along
with a peak current of ∼30 kA [Rakov2003]. Each lightning
flash typically sees multiple sequences of downward leader—
subsequent return strokes, about 3–5 per flash, bearing 109–
1010 J in total [Rakov2003].

A full review of the current understanding of the complex
lightning physics for interested readers can be accessed in
[Raizer2000, Rakov2003, Dwyer2014, Cooray2015].

2.1.3. Classification of lightning flashes. Cloud-to-ground
lightning is traditionally categorized in four types, depend-
ing on the direction of the propagation of the leader and the
polarity of the charge transferred to ground. Hence, a negat-
ive lightning effectively brings negative charges to the ground,
while a positive lightning lowers positive charge, as schem-
atized in figure 5. Moreover, the terms downward or upward
refers to the propagation direction of the leader. Downward
negative lightning flashes globally account for about 90% of
all cloud-to-ground lightning [Rakov2003]. Another rare cat-
egory of cloud-to-ground lightning is bipolar, in which posit-
ive and negative charges are transferred sequentially to ground.

2.2. Laser-induced plasma channel

2.2.1. High energy nanosecond lasers in air. The first lasers,
considered for the control of lightning in the 1970s, were
CO2 lasers at 10.6 µm and neodymium lasers at 1.06 µm
because of their ability to deliver energetic pulses with
several kJ and nanosecond pulse duration [Koopman1971].
With an intensity exceeding the breakdown threshold of air
(∼109 W cm−2), these high energy laser sources can produce
meter scale plasma columns when focused in the atmosphere
[Greig1978]. At atmospheric pressure and nanosecond times-
cales, molecules are first directly ionized by the laser beam and
then assisted by collisional processes (avalanche). Free elec-
trons gain energy in the laser field via inverse Bremsstrahlung
and then ionize other gas molecules by collision. Avalanche

Figure 5. Schematic pictures of the four main types of lightning
and the respective terminology associated with it. [Rakov2003].
Reproduced with permission of the Licensor through PLSclear.

ionization takes place until the plasma density approaches the
critical density, given by nc =

ε0meω
2

e2 [Gurnett2017], where ε0
is the vacuum permittivity, me is the electron mass, e is the
elementary charge and ω is the plasma frequency nc is about
1019 cm−3 for a wavelength at 10.6 µm and 1021 cm−3 for
1 µm. At the critical density, the plasma becomes fully opaque
and prevents the further propagation of the laser beam. The
resulting plasma column has a high plasma density close to nc
and a gas temperature that can reach several thousand degrees,
but the energy cost is considerable. Bazelyan andRăızer estim-
ate that a laser energy of about 800 J is necessary to ionize and
heat a column of air of 1m [Bazelyan2000]. In the absence of a
saturation process in the laser ionization, the plasma produced
by the leading edge of the laser pulse easily reaches the crit-
ical density, preventing the rest of the pulse from propagating
further.

It results in the formation of separate plasma ‘balls’,
whose spacing increases with the beam focal distance
[Bazelyan2000, Apollonov2002]. Therefore, no continuous
plasma column can be generated beyond some meters.

2.2.2. Femtosecond lasers and filamentation in air. When
the peak power of a laser pulse exceeds a critical value Pcr,
its propagation in a transparent medium becomes non-linear.
In particular, self-actions like self-focusing and self-trapping
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Table 1. Example of filamentation critical power values Pcr for
different wavelengths.

Wavelength Critical power Pcr

266 nm 0.1 GW [Schubert2017b]
800 nm 3.3 GW [Bergé2007, Couairon2007]
1030 nm 5.3 GW [Houard2016]
3.9 µm 80 GW [Schubert2017b]
10.6 µm 90 GW [Pigeon2016]

of light (‘filamentation’) arise. Although these phenomena
were already described in the early 1960s in solids and liquids
[Askaryan1962, Chiao1964, Hercher1964, Lallemand1965,
Shen1965, Talanov1965, Javan1966] and although beam trap-
ping and thermal channeling was reported already in the
80s [Zuev1985, Jean-Jean1988], filamentation in air, requir-
ing femtosecond lasers, was only observed 30 years later
[Braun1995]. This breakthrough was achieved thanks to the
development of the laser chirped pulse amplification (CPA)
technique, which was invented by the 2018 Nobel laureates
Mourou and Strickland [Strickland1985]. More precisely, at
high laser intensity, the refractive index n of the air is modi-
fied by the electric field of the laser, a process known as the
Kerr effect [Boyd2020]: n = n0 + n2 I, where I is the incid-
ent intensity and n2 is the so-called nonlinear refractive index.
As the intensity in a cross-section of the laser beam is not
uniform and n2 in air is positive, the refractive index in the
center of the beam is higher than on the edge. This induces
a radial refractive index gradient equivalent to a converging
lens (called ‘Kerr lens’). If the beam power exceeds the critical
power Pcr, this Kerr effect overcomes diffraction and the beam
is focused by this Kerr lens, which continuously increases the
intensity and shortens the Kerr focal length. The whole beam
would therefore tend to collapse at a distance which depends
on the initial beam intensity [Couairon2007, Bergé2007]. This
critical powerPcr scales as λ2 [Couairon2007, Bergé2007] and
various experimental values are reported in table 1. Kerr self-
focusing could therefore be expected to prevent propagation
of high power lasers in air if it was the only process at play.
However, as the laser self-focuses, the intensity rises to 1013–
1014 W cm−2 and starts to ionize the air molecules.

The produced electron density ρ induces a negative vari-
ation of the refractive index, and accordingly, a negative
refractive index gradient. This acts as a diverging lens, which
defocuses the laser beam and counteracts Kerr self-focusing.
The consequent dynamic balance between Kerr effect and
plasma generation leads to the formation of stable structures
called ‘filaments’ (figure 6), bearing intensities in the range
of 1013–1014 W cm−2 on a few hundred micrometers diamet-
ers, and spanning over tens of meters. Typical electrical carrier
densities in filaments range from 1015 to 1017 cm−3, making
the air suddenly conductive. If the laser carries a power P0

much higher than the critical power, typically some tens of
GW or more, the whole beam splits into a bundle of filaments,
the number of which scales with the ratio of P0/Pcr, a phe-
nomenon called multi-filamentation or multiple filamentation.

2.3. Laser control of electric discharges in the laboratory

2.3.1. Small-scale experiments. The discovery and experi-
mental demonstration of the ability of powerful lasers to con-
trol electric discharges were provided soon after the invention
of the laser itself. While our review focuses on large-scale dis-
charges and lightning, we briefly summarize in this section
the main concepts that emerged about laser-discharge inter-
action, whether guiding, extension, triggering, or inhibition,
since they led the community to identify the main processes at
play.

The first demonstration of streamer channeling by high-
energy (45–90 J) pulses of 12–25 ns duration from a Nd:glass
laser at 1.06 µm provided the evidence of the importance
of air ionization [Vaill1970]. The same group further charac-
terized the laser-guided discharges, evidencing their guiding,
as well as the role of air density depletion (Paschen effect)
in the laser-discharge interaction [Koopman1971]. They also
provided photographic evidence of the guiding of the electric
arc, its extension from 14 to 20 cm length, and modeled the
laser-discharge interaction based on the local heating of the
air, enhanced by the injection of NH3 in the discharge cham-
ber. In particular, they estimated that 11 J from the sub-second
laser pulse was absorbed [Saum1972].

Ultraviolet lasers, whether excimer or frequency-tripled
Ti:Sa laser [Zhao1995], renewed this interest, from both the
small-scale experimental and the modeling point of views.

Small-scale experiments also allowed to compare the beha-
viors of pulsed, DC, and AC voltages. The interaction of laser
filaments with a DC voltage combines two processes, with
different time scales. On one hand, the electronic breakdown
already observed with pulsed voltage provides a fast (sub-µs)
mechanism.

On the other hand, the DC regime enables a second process
related to ionic mobility [Fujii2008, Schubert2017c], acting
on a timescale of hundreds of µs to milliseconds [Zhao1995,
Vidal2000, Schubert2015]. Due to the higher electric field and
energy required to accelerate the ions, this slower mechanism
is only observed when the voltage approaches the laser-free
breakdown threshold, around ∼3·106 V m−1 at atmospheric
pressure [Zhao1995].

In contrast to the leader-streamer mechanism of pulsed
or DC voltages, AC voltages [Brelet2012, Henrikson2012,
Daigle2013, Arantchouk2016] generated e.g. by Tesla coils
rely on a purely leader regime [Daigle2013]. This regime
allows repeated discharges up to the repetition rate of the
laser, i.e. 10 Hz in these experiments [Arantchouk2016,
Walch2023b], facilitating the use of fast imaging to elucid-
ate the development of the discharges [SchmittSody2015] for
various temporal shapes (duration, chirp) of the laser pulse.
Besides fully developed discharges, laser filaments were found
to strongly influence corona discharges, even with low-energy
laser pulses in the 10 mJ range. They can divert the corona dis-
charge away from an electrode towards the filament tip, while
increasing their lifetime by a factor of 1000 [Wang2015]. This
corona guiding effect can reachmeter scale with a focused TW
beam [Fu2024a].
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Figure 6. Upper left: radius of a filamenting 800 nm ultrashort (50 fs) laser beam as a function of its propagation distance. Upper right:
associated estimated upper bound of the electron density. Reprinted (figure) with permission from [Couairon2002], Copyright (2002) by the
American Physical Society. Lower center: side view of the ∼1 m long characteristic blue sideward luminescence of the ionized channel
associated with laser filamentation. Reproduced from [Wolf2018]. © IOP Publishing Ltd. All rights reserved.

It was also discovered that at a higher laser repetition rate,
usually above 100 Hz and typically around 1000 Hz, laser fil-
amentation would locally heat the air in its wake and leave
a depleted air density [Cheng2013, Lahav2014, Houard2016,
Higginson2021]. This effect was shown to significantly
enhance the laser effect on electric discharge [Houard2016,
Walch2021, Löscher2023] mostly through Paschen’s law
[Tirumala2010].Moreover, it was also shown that ultracorona-
like discharges [Uhlig1956, Rizk2010] were able to dis-
charge a HV capacitor without triggering any spark between
electrodes [Schubert2015]. The interaction of the laser fila-
ments with the corona discharges also produces UV bursts
[Sugiyama2010, Sasaki2010] indicating the generation of run-
away electrons, which are key players in the development
of lightning [Gurevich1992, Gurevich2005, Dwyer2005].
Paradoxically, the same group observed that laser filaments
perpendicular to the laser axis can quench the same runaway
electrons up to 1 MeV [Eto2012].

2.3.2. Meter-scale experiments. In the context of lightning,
the mechanisms discussed in the previous paragraphs are not
sufficient to describe the discharge build-up. The much more
complex streamer-leader mechanism has to be considered
[Cooray2015]. The first demonstrations of discharge guiding
and triggering at the meter-scale were shown in 1978 by Greig
et alwith a CO2 laser in an average electric field of 1 kV cm−1

[Greig1978]. The guided length was further extended to 4.5 m
by Shindo et al with a laser pulse energy of 50 J and dis-
charges were also guided in fog or rain [Shindo1993]. Almost
at the same time, Diels et al proposed to guide natural light-
ning with UV lasers in the light of the new ultrashort techno-
logy emerging in the 1990s [Diels1992, Zhao1995, Diels1997,
Rambo2001].

In the near-infrared (NIR), the first results with ultrashort
laser filaments were obtained at the turn of the 21st cen-
tury with positive discharges [LaFontaine1999, Comtois2000,
Pepin2001]. NIR (800 nm) femtosecond pulses reduced the
leader inception voltage by 50% and guided discharges over

Figure 7. Picture of a laser-guided negative discharge. Adapted with
permission from [Rodriguez2002] © Optical Society of America.

up to 2.3 m, with a 10 fold acceleration of the leader velocity
[LaFontaine2000]. Numerical modeling [Bondiou1994]
allowed the effect of the laser filaments to be understood as a
combination of the release of free charges in the plasma and
a local air depletion favoring their acceleration in the electric
field [Vidal2000]. Similar results were observed in the case of
negative discharges [Rodriguez2002, Vidal2002].

The breakdown voltage was reduced by 30% in an inter-
electrode gap up to a 3.8 m, and fully guided discharges
were recorded (figure 7), even in the presence of artificial rain
[Ackermann2004]. The Teramobile group also observed laser
triggered space-leader discharges [Ackermann2006]. Later,
the deviation of discharges from their natural path, switching
their trajectory from one ground electrode to another, illus-
trated the versatility of NIR laser filaments and allowed con-
sidering new lightning protection schemes [Forestier2012].
Subsequent efforts aimed at approaching the conditions of real
thunderstorms [Comtois2003a, Comtois2003b] and included
upscaling the experimental setup with a 5 m wide planar elec-
trode facing, at a distance of 5 m, a 2 m long lightning rod in
the middle of a 15 m planar grounded electrode.
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2.3.3. Designs for field experiments. Following laboratory
experiments demonstrating the triggering and/or guiding of
discharges with lasers, and considering the multi-meter scale
of the leader-streamer mechanism of lightning initiation, the
need for field experiments appeared very early. In fact, the first
actual experimental design was proposed more than 45 years
ago. Ball estimated that the multi-GW power available at that
time in 10 ns pulses was sufficient to reach free-electron con-
centrations of 107 cm−3 or above and sustain it over kilometers
[Ball1974]. He further reviewed the technical and scientific
challenges at that time, in particular discussing the respect-
ive merits of near- and mid-infrared as well as ultraviolet
wavelengths. This work translated into a patent a few years
later [Ball1977].

The first actual, real-scale experimental concept was based
on a beam-expanded, slightly focused (up to 500 m) CO2 laser
fired towards the top of a 15 m-tall tower at a distance of 30 m
already featured most of the geometry of today’s experiments
[Lippert1978]. A plasma model quantifying the evolution of
free charges as well as the thermodynamics of the air and the
free electrons at the same scale was developed simultaneously.
It provided orders of magnitude on the achievable ionization
length (in the km-range), the free charge lifetime (100 ns for
electrons, 100 µs for ions), the required powers (GW cm−2

for CO2 lasers at 10.6 µm, or hundreds of GW cm−2 for
Nd:glass lasers at 1.06 µm). The model was already consider-
ing aerosol breakdown, and the dual contribution of ionization
to the release of free charges and of an air-depleted channel
[Schubert1978, Schubert1979].

Absorption of the beam by the self-generated plasma itself
(see section 2.2.1) however limited the applicability of these
concepts at large scale. A common strategy considered in the
1990s to control lightning with laser, was not to intercept and
guide a preexisting leader but to initiate an upward leader with
the plasma column formed by the laser, reproducing the effect
of RTL [Bazelyan2000]. To excite viable leaders from its ends,
the plasma lifetime must be long enough to allow the polariza-
tion of the plasma channel in the presence of the lighting field.
For an external field of 1 kV m−1 Bazelyan estimates that this
would require the formation of a 20 m long plasma channel
with a diameter of 1 cm, an electron density of 1012–1013 cm−3

and a plasma lifetime of 100 µs. This approach appeared
unrealistic because the corresponding energy requirement was
estimated to 16 kJ [Bazelyan2000]. Nevertheless, after long
preparatory works [Wang1994, Wang1995] the first reported
successful field LLC was reported in 1999 [Uchida1999] and
used a set of 3 different lasers (see section 4.1), two of which
were high power CO2 lasers.

Alternatively, solutions have been proposed in 1995 based
on the heating of the femtosecond filament by a second
energetic UV pulse [Zhao1995] or using only ultrashort
lasers [Diels1997, Wille2002]. The interest went along with
the advent of femtosecond UV pulses, whether excimer or
frequency-tripled Ti:sapphire, as reviewed in section 3.1.
The recent LLC experiments involving ultrashort lasers are
described in further detail in section 4.1.

2.4. Physical process at play in laser guiding and triggering
of discharges

Modeling the interplay between the intense laser pulse and
the electric spark or lightning is challenging since one has
to simultaneously model the plasma dynamics, the thermal
effects in the laser-induced plasma channel [Tzortzakis2001,
Comtois2003b, Petrova2007], the propagation of the intense
beam and the development of the lightning discharge in
this non-stationary medium [Sasaki2010, Popov2024]. Hence,
numerical studies to date have mainly been considering only
one aspect of the problem, either with 1D simulations of the
plasma [Zhao1995, Comtois2003b, Petrova2007], or with cen-
timeter scale plasma propagation simulations [Popov2024].

One should distinguish two potential effects in LLC:

1. Guiding, where the laser-induced plasma and associated
air-depleted channel produces a preferential path for the
discharge. This effect can be easily obtained in laboratory
and corresponds to all the experimental results presented in
section 2.3.

2. Discharge triggering (or initiation), where the laser-
induced plasma channel should produce inception of a
leader channel [Zhao1995, Bazelyan2000]. This process is
similar to the one initiated by a rocket pulling a conductive
wire [Rakov2003], discussedmore in detail in section 4.4.1.
Initiating a leader (as opposed to a streamer limited to a
couple of meters) is very difficult to reproduce in the labor-
atory, and would require in theory the formation of a highly
conductive plasma channel over decametric lengths.

The two main effects of the laser induced plasma column
on the discharge propagation are related to the formation
of charged particles in the gas (free electrons and ions)
and with the subsequent heating of the gas that gives rise
to an underdense gas channel with a millisecond lifetime
[Comtois2000, Tzortzakis2000]. We review here the different
underlying physical mechanisms and their interactions inmore
depth.

2.5. Free electrons

The free electrons generated in the filament increase the chan-
nel conductivity. In the case of plasma channels produced by
nanosecond lasers, the plasma density can reach 1019 cm−3, so
that conductivity and the lifetime of the plasma are sufficient to
directly influence the discharge [Apollonov2002]. This is not
the case for femtosecond filaments. The initial plasma density
ranges from 1015 cm−3 for a filament produced by a collim-
ated beam to 1017 cm−3 for a filament produced by a focused
beam largely exceeding the critical power [Théberge2006].
The evolution of this plasma can be computed as illustrated
in figure 8 from Vidal et al for an initial plasma density of
1017 cm−3 and in the presence of an external electric field of
5 kV cm−1 [Vidal2000]. Partial recombination of the free elec-
trons on the parent ions occurs over a few nanoseconds and is
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Figure 8. ((a), left) Calculated evolution of the charged species (laser pulse energy: 120 mJ) ((b), right) air density in a femtosecond
filament in the presence of an external electric field of ∼5 kV cm−1. © 2000 IEEE. Reprinted, with permission, from [Vidal2000].

followed by attachment of remaining free electrons to neutral
oxygen molecules over hundreds of nanoseconds. These free
electrons are responsible for the spark suppression observed
with a kHz laser [Schubert2015]. But their short lifetime (∼ns
to µs lifetime [Walch2023b]) and relatively low electron dens-
ity (typically<1013 cm−3 after∼1 µs [Tzortzakis2000]) does
not explain by itself the guiding of long spark discharges in
the laboratory or in lightning experiments [Tzortzakis2001,
Forestier2012].

2.6. Negative ions

The long-lived negative ions created by electron attachment
on O2 molecules can also accelerate the leader development
[Raizer2000]. Because electron attachment is much slower
than the recombination process, only 1% of the initial free
electrons are converted to negative ions in the case of fila-
ment with a lifetime about 100 µs [Popov2010]. The corres-
ponding simulated dynamics is plotted in figure 8(a) for a
120 mJ femtosecond filament in the presence of an external
electric field of ∼5 kV cm−1. Its behavior depends strongly
on the external electric field and on the complex air chemistry
[Popov2010]. The contribution of O2

− ions has been demon-
strated experimentally and quantified only in the case of
centimeter-scale discharges [Walch2021].

2.7. Air density depletion

The air density depletion induced by the energy deposition
in the laser-induced plasma channel creates a preferable path
for the free streamers and leaders [Tzortzakis1999, Vidal2000,
Tzortzakis2000, Tzortzakis2001, Gordon2003]. In the long-
lived low density channel formed by the filament, the break-
down voltage is proportional to the gas density, down to
∼0.1 atm, as described by the Paschen’s law [Tirumala2010].

It is hence beneficial for electric arc guiding [Saum1972].
The density depletion can be further amplified by Joule heating

of the free electrons in the presence of an external elec-
tric field [Vidal2000, Tzortzakis2001, Petrova2007]. In the
case of ultrashort laser filaments the air density depletion
forms about 100 ns to 1 µs after the ionization and can last
up to milliseconds [Lahav2014, Jhajj2014, Point2015]. For
example, figure 8(b) shows the evolution of gas density cal-
culated in a 120 mJ femtosecond filament in the presence
of an external electric field of ∼5 kV cm−1. Depending on
the laser intensity, an initial increase of the gas temperat-
ure between 100 K [Cheng2013] and 1000 K [Point2015]
can be achieved, resulting in a transient reduction of the air
density between 10% and 90% [Tzortzakis2001, Pepin2001,
Clerici2015, Dehne2024]. At a laser repetition rate of sev-
eral hundred Hz and above, a permanent reduction of the air
density by a few % can be observed [Walch2021, Goffin2023,
Löscher2023].

2.8. Interaction of ionization and density depletion

The release of free charges and air-density depletion occur
simultaneously and can even act in synergy. In particular,
releasing free electrons in an air-density-depleted channel
provides both free charges and favorable conditions for their
acceleration.

Furthermore, the air density depletion follows energy
deposition from the laser, which mostly occurs due to ioniza-
tion and subsequent electron–ion recombination [Lahav2014,
Jhajj2014, Walch2021, Löscher2023], as well as electron
acceleration and avalanche in the case of an external electric
field. It is therefore difficult to disentangle the effect of the free
charge carrier availability and that of the air depletion itself.
However, a recent experiment using quantum control of rota-
tional heating [Zahedpour2014] allowed to disentangle the two
effects, as heating of the air channel occurred ionizationless.
The results suggest that the cumulative air density depression
channel plays the dominant role in the gap evolution leading
to breakdown, while the release of free charges only increases
the early heating [Rosenthal2020].
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Table 2. Comparison of typical characteristics of ultrashort laser filaments, streamers, and leaders generated in atmospheric air.

Laser filament Streamer Leader

Electron density 1015–1017 cm−3 [Theberge2006] 1014 cm−3 [Bazelyan2000] 1013 cm−3 [Popov2003]
Electron temperature 0.5–1 eV [Bodrov2013] 2 eV [DaSilva2013] 2 eV [DaSilva2013]
Air temperature 400–1000 K [Point2015] 1500–2000 K. Transition to leader

around 5000 K [Popov2003]
>5000 K [Bazelyan2000,
Popov2003]
∼15 000 K/> 20 000 K
(stepped/dart leader) [Chang2017]

Depleted air density (ρ/ρ0 ) 0.5–0.99 [Cheng2013, Walch2021] 0.9 [Woolsey1986] 0.1 [Popov2003]
Propagation velocity ∼c (2.99 x 108 m s−1) Typically between 105 m s−1 and

106 m s−1 [Nijdam2020]
∼105 m s−1 [Bazelyan2000]

2.9. Comparing streamers with laser filaments

As detailed in table 2, the conditions (temperature, free elec-
tron density, etc) in plasma filaments are close to those of
streamers [Bazelyan2000, Popov2003], justifying the attempts
of using laser filaments to control the early development
dynamics of lightning. The same applies to time scales, where
quasi-static processes like the slow rise of the macroscopic
electric field are interconnected with microsecond-scale pro-
cesses like the stepped leader propagation and the lightning
discharge itself, requiring a high amount of both concep-
tual work and computational power. In that regard, though
impressive and insightful, the use of a rather simplistic empir-
ical model to interpret the results of [Houard2023] illustrates
the need of developing comprehensive models of the interplay
between lightning and laser filaments.

3. Laser developments for LLC

Beyond the required efforts of the scientific community to
understand the physics at play between high power lasers and
electric discharges, LLC imposes stringent requirements on
the laser technology itself. In several cases, it even pulled spe-
cific laser developments [Wille2002, Herkommer2020]. In this
section, we review the laser development in the context of
atmospheric applications topically close to lightning research
and comment on the safety of using powerful lasers in the
atmosphere.

3.1. Ultrashort lasers relevant to atmospheric applications

Most of the high intensity lasers used for large scale filament-
ation studies, hence most adapted for atmospheric applic-
ations, have been relying on the Ti:sapphire technology,
pumped by Nd:YAG lasers. The first mobile system ded-
icated to atmospheric applications was the Teramobile in
1999 [Wille2002]. The Teramobile project set the ground
for many disruptive atmospheric applications of ultrashort
lasers capable of TW peak powers like multi-pollutant
Lidar detection [Kasparian2003, Bourayou2005], remote fila-
ment based laser induced breakdown spectroscopy analysis
[Stelmaszczyk2004, Rohwetter2004, Rohwetter2005],
remote lidar detection of bioaerosols [Méjean2004,
Kasparian2003], laser induced water condensation in clouds

[Rohwetter2010, Petit2010, Rohwetter2011, Henin2011,
Staathoff2013, Joly2013, Mongin2015], and lightning control
[Kasparian2008].

Several similar platforms were also developed for atmo-
spheric applications, like the ENSTAmobile at the LOA
[Brelet2012], the T&T at DRDC in Canada [Kamali2009,
Durand2013], the MU-HELF at CREOL in Florida
[Richardson2020, Thul2021], and at SIOM in Shanghai
[Wang2015, Wang2020b]. For more details on the recent
advancement in high power lasers in general, the reader is
referred to the recent review by Zuo et al [Zuo2022].

The main disadvantage of Ti:sapphire lasers for field exper-
iments is the lack of direct diode-pumping. Rather, diode-
pumped Nd:YAG lasers, which are frequency doubled in a
non-linear crystal, are required. This significantly limits the
efficiency of the laser chain and induces prohibitive energy
consumption for high average power laser systems (>100W).

Thin disk Yb based laser (TDL) systems, first demonstrated
in 1994 [Giesen1994], became game changers, thanks to their
direct diode pumping capability and efficient heat extraction,
allowing to aim for higher average power laser systems.

These lasers have seen massive improvement in the last
decade [Saraceno2019, Drs2023], as reviewed specifically in
the review by Saraceno et al [Saraceno2019]. However, TDL
systems providing simultaneously high average powers and
high pulse energy/peak power are required for LLC techno-
logy and such requirement remains challenging.

A remarkable laser development was recently achieved
within the European laser lightning rod (LLR) project
[Produit2021, Produit2021 a, Houard2023] by TRUMPF
Scientific Lasers GmbH + Co. KG [Herkommer2020].

Using a regenerative amplifier followed by a multipass
involving 4 thin disk heads, they achieved pulse energies as
high as 0.72 J within 920 fs pulse duration at 1 kHz repetition
rate [Herkommer2020].

This achievement constitutes a real milestone, as this laser
is the first laser system simultaneously offering TW-class peak
power and kW-class average power. This high average power
and high pulse energy/peak power laser also showed excel-
lent conversion efficiencies when generating SHG at 515 nm
(using a LBO 50 mm diameter LBO crystals of 1.8 mm)
and THG (using a second 50 mm diameter LBO crystal of
2 mm thickness) at 343 nm. Energies as high as, respect-
ively, 300 mJ at 515 nm (59% efficiency) and 120 mJ at
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343 nm (27% efficiency) were achieved in this configuration
[Andral2022]. Fourth harmonic at 257 nm with a 20% overall
conversion efficiency has also been obtained recently with the
laser [Mennerat2024]. As compared to a TW laser based on
Ti:sapphire, the pulse duration is significantly longer: (∼1 ps
as compared to ∼50–100 fs) reflecting the narrower band-
width (few nm around 1030 nm as compared to few tens of nm
around 800 nm). Very recent developments using a 24-passes
Herriott spectral broadening cell (filled with Ar or He) and
recompression however demonstrated pulses as short as 32 fs
for 64 mJ pulse energy and a compressibility down to 45 fs for
200 mJ, at 5 kHz repetition rate [Pfaff2023], opening the door
to combining the best of the TDL and Ti:Sa worlds. Although
most of the large scale and outdoor experiments were car-
ried out with ultrashort near-IR lasers, it is worth highlight-
ing some advantages provided by lasers in different spectral
ranges. For instance, as already mentioned, one of the first
filament-based discharge triggering and guiding experiments
was performed in the UV by the group of J.-C. Diels using
seeded KrF lasers on 100 kV discharges over a 26 cm gap
between the electrodes [Zhao1995, Rambo2001]. More recent
developments were reported on the combination of a train of
picosecond UV pulses with a long UV nanosecond pulse, ori-
ginating from the same multi-Joules laser system (Ti:sapphire
seededKrF laser) [Zvorykin2015]. This hybrid pulse sequence
was shown to trigger discharges over distances doubled as
compared to the long UV pulse only [Ionin2012], and success-
fully guided sub-MV discharges over 0.7 m [Zvorykin2015].
The use of a Bessel nanosecond pulse to heat a femtosecond
filament was also demonstrated [Scheller2014, Papeer2014],
with a reduction of the natural breakdown voltage by a factor
10. By amplitude modulating the spatial profile of the laser,
Geints et al also demonstrated UV-filaments spanning on
extended distances up to 100 m [Geints2022]. These experi-
ments involved large excimer gas lasers, which limited mobil-
ity and operational safety. The multiple pulse approach was
supported by experimental work showing discharge acceler-
ation [Schubert2017a] and looked for optimal energy parti-
tioning between sub-pulses [Schubert2016], as well as model-
ing of the plasma evolution [Schneider2011, Schubert2016].
The main advantage of the UV spectral range is a higher
ionization efficiency of air molecules (at least in the multi-
photon ionization regime) [Zvorykin2015], thus providing
higher conductivity.

The group of J.-C. Diels also recently reported a novel
solid-state option based on Nd:YAG lasers and stimu-
lated Brillouin scattering to overcome these limitations
[Rastegari2021].

The drawback of filamentation in the UV (below 300 nm)
is its lower transmission through the atmosphere as compared
to NIR. In particular, Rayleigh/Mie scattering cross-sections
strongly increase in the UV, as well as ozone absorption, which
impacts the propagation over long distances. In contrast to UV
filamentation, Mid-IR filamentation is expected to be better
transmitted through the atmosphere (in the water windows)
and bear higher energies in their filaments.

Recent developments allowed reaching TW peak powers
with CO2 based ps-lasers around 10 µm [Tochitsky2019a,

Welch2022] and with optical-parametric-CPA (OPCPA) fs-
laser systems around 4 µm [Kartashov2013, Mitrofanov2015,
Shumakova2016, Mitrofanov2016, Shumakova2018]. Due to
the λ2 dependence in the critical power and the lower ioniza-
tion yield in the mid-IR (reaching plasma densities of typically
1013–1015 cm−3 [Mongin2016, Zheltikov2017, Patel2022]),
mid-IR filamentation differs significantly from its near-IR
counterpart. Main differences are channels of larger diamet-
ers, less multifilamentation break-up and arrest of Kerr self-
focusing bymechanisms like diffraction, shock processes, har-
monics generation, dispersion around molecular resonances,
effects of aerosol ionization, and so on. Several modeling
efforts have been dedicated to these new non-linear propaga-
tion effects [Geints2014a, Geints2014b, Mitrofanov2015,
Panagiotopoulos2015, Panagiotopoulos2016, Zheltikov2017,
Woodbury2020, Tochitsky2024] and are still on-going.

Experimentally, long distance mid-IR filamentation has
been observed on distances over 70 m [Tochitsky2024] using
multi-Joule 10 µm pulse trains of ps duration. The diamet-
ers of the self-guided channels can reach as much as 10 mm.
Numerical simulations, on the other hand, predict channel-
ing distances spanning over several hundred meters, which is
attractive for laser triggering and guiding of electric discharge.
However, only few experiments were dedicated to the trigger-
ing of electric discharges in the mid-IR to date, and they were
not fully convincing and conclusive [Mongin2016].

3.2. Safety and side effects of high-power lasers

Although producing only limited damages on solid surfaces
for transient exposures, ultrashort TW lasers must be imple-
mented in the field with caution. In particular, in the fila-
mentary region, eye safety requirements (e.g. IEC-60825-1,
EN 207, EN 208 and EN 60825 in Europe, and ANSI Z136
in the US) are never fulfilled at any wavelength. Beyond the
filamentary region, the intensity decreases and international
standards can be used to define the most favorable experi-
mental conditions (in particular the wavelength of the laser).
Pointing vertically in a fixed, near-vertical direction is also
favorable, because it prevents the risk of direct illumination
to the pilots’ eyes. However, for any safe implementation of
LLC, a no-flight zone of some kilometers radius around the
laser has to be requested by the air traffic control administra-
tion, requiring the emission of aNOtice ToAirMen (NOTAM).
Although relatively common, these requests can sometimes
take several months or more until final acceptance and hence
increase the administrative preparation of LLC campaigns.
Risk management should also involve the implementation of
additional measures like real-time monitoring of the air traffic
by transponder communications (ADS-B), and coordination
with the nearest airport. In the case of vertical pointing and
scanning over a cone, the no-flight zone has to be widened
accordingly, so that eye safety regulations for air traffic are
fulfilled. Particular care has to be brought to light aircrafts,
paragliders and similar activities, which do not use transpon-
ders andmaymiss the NOTAM announcing the no-flight zone.
It is therefore strongly advised to add surveillance cameras
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with AI-based real-time detection of flying objects connec-
ted to laser interlocks. This is also advised for the protection
of the fauna, like birds. In the case of the LLR laser system
[Produit2021, Produit2021a, Houard2023], the beam can be
switched on and off with a reaction time of a millisecond,
i.e. during the time interval between two pulses.

However, in the case of lightning research, the laser is used
only during thunderstorms and lightning periods at the loca-
tion of interest, which most flying objects avoid, thus limiting
the probability of interacting with them during the laser opera-
tion. Laser filaments have also been observed to generate NOx

and Ozone [Petit2010] and produce nanoscopic condensation
nuclei that can turn into cloud condensation nuclei and lead
to water droplet condensation if the meteorological conditions
are favorable [Rohwetter2010, Henin2011, Rohwetter2011].
Although these productions are very modest as compared to
similar effects induced by the lightning themselves, it is worth
keeping these side effects in mind when long term implement-
ation of LLC is planned at the same location.

4. LLC experiments

In this section we review the scientific community’s efforts of
real scale LLC experiments. We also comment on the role of
cloud clearing in LLC and comment on these LLC advances
in the broader lightning research context.

4.1. Field experiments

Even before the laboratory experiments described in
section 2.3, the possibility of influencing natural light-
ning with lasers, and its potential for lightning protec-
tion, were discussed in the scientific community [Vaill1970,
Saum1972, Ball1974, Ball1977, Lippert1978, Schubert1978,
Schubert1979, Diels1992, Diels1997]. One failed attempt was
reported by [Lippert1978] in which, during one thunderstorm
event with no cloud-to-ground lightning discharge, they tried,
unsuccessfully, to trigger lightning. The first reported success-
ful field experiment did not occur until 1999 [Uchida1999]
after long preparatory works [Wang1994, Wang1995].

Pre-dating large-scale laboratory experiments using
ultrashort laser filaments, the latter experiment relied on a set
of 3 lasers. A first CO2 laser (10 µm wavelength) providing
1 kHz pulses was focused on a dielectric hard target at the apex
of a 50 m tower installed on a 200 m high hill. It produced an
ablation plume in which a second CO2 laser produced a 2 m
long plasma spark. Finally, an ionized plasma channel was
produced by a UV laser slightly aside of the tower apex, in
order to guide the leader to the cloud. The setup was triggered
based on the intra-cloud activity, considered as a precursor
of the cloud-to-ground discharges. Unfortunately, only two
discharges were reported, preventing a statistical assessment
of the laser effect. No other attempts were reported in this
configuration and hence other limitations like the short (2 m)

reported plasma length or the scalability of the technique still
stood unanswered.

The first attempt based on ultrashort laser filaments was
performed at the top of the South Baldy Peak (New Mexico,
USA), 3200m above sea level, in a very different configuration
[Kasparian2008]. The 4 TWTeramobile laser [Wille2002]was
fired at a repetition rate of 10 Hz as soon as the electric field
at ground exceeded 5 kV m−1, regardless of the actual light-
ning activity. The beam, leaning 70◦ above horizontal, pro-
duced multiple filamentation at several hundred meters above
ground, over a length of typically 100 m. A lightning mapping
array [Rison1999] monitored the radiofrequency emission at
a frequency of 63 MHz from the atmospheric electric activity.

Triangulation on the times-of-arrival of such pulses, detec-
ted by 5 antennas synchronized by GPS clocks, allowed to
locate the development of the radiation source in three dimen-
sions with an accuracy of∼100 m [Kasparian2008]. Only two
thunderstorms occurred during the measurement time and no
lightning strike was triggered to the ground.

However, in the simultaneous presence of a ground elec-
tric field exceeding 10 kV m−1 and of the laser filaments,
an electromagnetic activity was detected, which was both co-
located with the filament position and synchronized at the
same repetition rate of 10 Hz. The fact that the laser filaments
did not trigger fully developed lightning in conditions where
RTL would expectedly have done so was interpreted as the
triggering of corona discharges at the upper end of the laser
filaments [Kasparian2008]. Such a limited effect was attrib-
uted to the short (µs or shorter) lifetime of the laser-generated
plasma, which together with the 106 m s−1 velocity of the
leaders limits the laser effect to an effective length of a few
meters. Overcoming this limitation requires taking advantage
of Paschen’s law, which is the second physical mechanism
playing a significant role in laser-induced effects on electric
discharges.

Indeed as already pointed out in section 2.4, in the wake
of filamentation a density depletion of air is formed and can
be sustained virtually forever by cumulative effects of the
filamentation at a repetition rate above several hundred Hz.
Keeping such an air-depleted channel open requires high aver-
age power lasers, in the kW range.

The latest LLC experiment was done by Houard et al in the
framework of the LLR project [Produit2021, Produit2021a,
Houard2023]. The experimental details of this experiment is
detailed in appendix B.

Out of the 16 discharges recorded during their measurement
campaign, 4 were guided over ∼50 m, as assessed from VHF
interferometry.

Furthermore, for one event the cloud ceiling was above the
tower apex, allowing fast imaging from two locations with
viewing angles 45◦ apart (figure 9). These four guided light-
ning strikes were all positive upward strikes, while all but
one unguided flashes that were detected during the same cam-
paignwere negative. The unguided flashes exhibitedmuch less
branching, as well as a higher number of X-ray bursts. These
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Figure 9. Image of the laser guiding lighting flash recorded by two fast cameras on Mount Säntis, Switzerland. Reproduced from
[Houard2023]. CC BY 4.0.

results, which due to the strong contrast, are statistically sig-
nificant in spite of the limited number of events, provided the
first evidence of laser-guided lightning [Houard2023].

4.2. Role of laser cloud clearing in LLC

It was shown that the shockwaves initiated by the energy
deposition in laser filaments are able to opto-mechanically
push water droplets [Schroeder2022]. Laser filamentation at
kHz repetition rate can thus keep such particles out of the beam
at a rate sufficient to compensate for their drift back into the
laser path. Hence, it is possible to drill a hole through clouds
over a certain distance, thanks to the radial pressure wave
generated by the filament [DelaCruz2015, Schimmel2018,
Schroeder2022, Schroeder2023]. One could imagine that this
could have a significant effect in the microphysics of cloud
electrification when laser filament propagates through thun-
derstorm clouds [Henin2009]. Though there is a renewed
interest in long-range filamentation physics [Durand2013,
Isaacs2022, Goffin2024], these physical processes remain rel-
atively unexplored in the context of LLC [Kosareva2021]. An
important discovery of the field measurements is that laser
guiding of lightning [Houard2023] was also observed inside
the thundercloud conditions by the VHF interferometer, and
over the same distance as in a clear atmosphere. This is a
strong hint that filamentation-induced cloud clearing occurred
at atmospheric scale, as already characterized in the laboratory
[Courvoisier2003, Kolesik2004, Méjean2005, DelaCruz2015,
Schimmel2018, Schroeder2022, Goffin2022, Schroeder2023,
Goffin2024].

4.3. Relevance of laser control for lightning research

Studying lightning presents challenges due to its inherently
random nature. Because it is impossible to predict exactly

when and where lightning will strike, direct experimental data
have to be gathered either from instrumented tall human-made
objects such as telecommunications towers or skyscrapers that
are struck by lightning several times a year, or by initiat-
ing lightning artificially. Currently, the only reliable means of
artificially triggering lightning discharges is RTL that, under
appropriate conditions, can initiate lightning [Rakov2009].

Both the use of tall structures and the rocket-and-wire light-
ning initiation technique are relatively inefficient, expensive to
implement and to operate. Moreover, in the case of RTL, there
is a risk of danger when debris from the rocket or the Kevlar or
metal wire fall to the ground. In contrast, the use of high-power
lasers for initiating and guiding lightning discharges, the LLC
technology, offers several advantages over rockets.

Lasers eliminate the hazard associated with falling debris.
They allow greater control, as they can be activated and deac-
tivated at will, and precisely steered by orienting the beam,
unlike rockets where operators only control launch time and
direction.

For research purposes, this system could be deployed in
different geographical locations and the beam could in prin-
ciple be aimed, potentially in real-time, at specific locations in
the cloud for lightning initiation (e.g. the most active ones),
facilitating data collection for testing specific scenarios of
interest. Unlike RTL, which produces environmental pollu-
tion, the laser technique has minimal environmental impact
apart from its energy consumption, manufacturing process,
and disposal at the end of its lifespan. This promotes sustain-
able research practices that strives towards reducing the eco-
logical footprint of research activities [Jain2022].

In addition, implementing high-power lasers as a means
to trigger lightning could potentially lead to long-term cost
savings.

Indeed, while the initial investment in laser technologymay
be substantial, the technique is likely to be more economical
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compared to the maintenance required for instrumented
tall structures or rocket launchers, specialized rockets, and
repeated rocket launches.

A further advantage of high-power lasers over RTL is the
ability to operate remotely, allowing researchers to influence
lightning from a distance.

From an experimental lightning science standpoint, LLC
experiments would be more repeatable under similar condi-
tions due to better control of the laser path compared to the
trajectory of rockets.

Furthermore, the plasma channel left behind by laser fil-
aments causes much less disturbance to the local electric
field than the highly conductive wires pulled by rockets.
This repeatability is essential for data analysis and validat-
ing research findings. An indirect benefit of using high-power
lasers for discharge initiation, with broader applications bey-
ond lightning research, is that it would drive technological
innovation and advancements in laser and optics technologies.

LLC experiments offer unique insights into lightning
initiation processes, leader development, and other light-
ning processes, thereby enhancing our understanding of the
phenomenon. This enhanced understanding contributes to
advancements in atmospheric science and lightning protection
strategies.

The portable and versatile nature of LLC technology
enables lightning research experiments to be conducted in
diverse settings, including rural and urban areas, different lat-
itudes, under different topographical conditions, and in the
vicinity of critical infrastructure requiring enhanced light-
ning protection. Considering these advantages, high-power
lasers hold the promise of transforming the landscape of light-
ning research. Typical potential use-cases will be reviewed in
section 6.

4.4. LLC vs alternative technologies

4.4.1. Rocked-triggered lightning. In the second half of the
20th century, the development of electric and telecommunic-
ation networks as well as control electronics in many sensit-
ive facilities or vehicles increased the need to better charac-
terize the physics of lightning as well as to design more effi-
cient protection technologies. In the 1960s, a technique was
developed to artificially trigger lightning using small rock-
ets trailing grounded wires, called RTL. The technique was
first demonstrated from a ship in 1963 [Newman1967], and
from ground ten years laters [Fieux1975]. Triggering lightning
requires several conditions: the presence of thunderclouds, an
electric field at ground sufficient to sustain the propagation
of the discharges (⩾5 kV m−1) but insufficient for its nat-
ural triggering (⩽10 kV m−1) [Rakov2003]. Furthermore, the
enhancement of the electric field at the rocket tip is critical.
The rocket velocity must therefore be sufficient to keep ahead
of the space charge released by the rocket itself, that would
screen the electric field at its tip and prevent the formation of
a streamer.

The enhanced electric field at the rocket tip and the charges
provided by the connected conducting wire allow the propaga-
tion of an upward leader starting from the rocket tip. Rockets

mainly trigger upward lightning strikes, with characteristics
representative of the natural ones, and allow to characterize
the establishment of the leader-streamer mechanism, their
propagation velocity, the electromagnetic emission spec-
trum from the lightning strikes, among others [Hubert1984,
Rakov2005]. Downward leaders were initiated by using partly
insulating wires (the so-called TIPSY scheme), whereby con-
ducting and insulating wire sections alternate in various
schemes [Hubert1984]. Triggering of lightning with RTL and
with lasers are similar in some aspects: both provide a con-
ducting path in the intense electric field above the ground,
which establishes faster than the build-up of space charges and
the associated screening. Both may be grounded, or not: rock-
ets by using a fully conductive wire connected to the ground,
or a partially insulating one, lasers by producing ionized fila-
ments starting in the air or at the tip of a grounded tall structure
like a tower. Furthermore, the typical length of laser filaments,
some tens of meters, is comparable to that of the conducting
segments of rocket-pulled wires in downward leader experi-
ments. Both techniques however differ in several ways, from
both physical and operational points of view. From the phys-
ical point of view, the main difference is the much lower con-
ductivity of laser filaments (10◦–103 S m−1 [Burger2018]) as
compared to the almost perfect conductors constituted by the
metallic wires pulled by rockets.

On the other hand, the increased conductivity in filaments
stems from both the release of free electrons and the air dens-
ity depletion favoring electron avalanche, a mechanism much
closer to the streamer-leader behavior than the ohmic conduc-
tion of the rocket wires.

Furthermore, the operational constraints are much differ-
ent. RTL is much less demanding in terms of the envir-
onmental conditions than cutting-edge lasers, which require
stable power supply and temperature as well as a clean envir-
onment. Lasers however can be fired continuously over exten-
ded periods of time, without consideration of the stock of rock-
ets in the launchpad, nor the pollution of both the environment
and the measurements by the wire sections that have not been
vaporised by the lightning strike and fall down to ground. The
lasers therefore reduce the need for choosing the right moment
for firing, which in the case of rockets requires a combina-
tion of experience, intuition, and some luck. The possibility
to continuously operate lasers is also favorable to statistical
assessments, by alternating on and off times without consid-
eration of the atmospheric conditions, and comparing the rate
and properties of lightning strikes between periods when the
laser is active and when it is not. Finally, in an operational per-
spective, the laser may be steered and aimed at specific regions
of thunderclouds, tracking the best conditions for lightning
initiation.

4.4.2. Non-conventional lightning technologies. We want
to emphasize that the LLC approach is not to be confused
with existing non-conventional lightning protection systems
(LPSs), specifically those called early streamer emission
(ESE) that have long been under scrutiny for their unproven
claims of lightning prevention and control [Zipse1994]. ESE
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systems have been reviewed in several articles over the
past 25 years [Mackerras1997, Chalmers1999, Uman2002,
Beccera2007, Beccera2008]. Note that [Uman2002] also
reviewed other non-conventional LPSs. A recent comparison
of ESE and conventional Franklin rods, also including other
non-conventional systems, is given by [Ozdemir2023].

We argue that LLC is different from ESE in the following
fundamental aspects:

1. Unlike ESE systems, whose purported operation attempts
to provide a larger zone of protection, the principle of
operation of the LLC is to actively control lightning
through guiding or initiation using laser-generated ionized
filaments.

2. ESE systems aim tomitigate the impact of lightning strikes,
whereas LLC explores the potential to guide lightning away
from sensitive areas or initiate controlled lightning for pro-
tection and scientific purposes. In that respect, LLC is more
akin to the commonly used RTL technique for lightning ini-
tiation in the context of lightning research.

3. As demonstrated in the reviews of ESE in the literature, the-
oretical and experimental observations have raised doubts
about the effectiveness of ESE systems. In contrast, LLC
research is driven by experimental evidence and aims to
explore new possibilities in lightning control.

5. Future progress path of LLC technology and
research

Real scale experiments like the recent one at the Säntis tower
in Switzerland by Houard et al [Houard2023] were impress-
ive demonstrations of LLC and clearly illustrated the poten-
tial of ultrashort laser filaments for lightning research and
application purposes. Moreover, these indications are sup-
ported by theoretical modeling of the lightning initiation
threshold in terms of electric field, with and without the laser
filaments [Houard2023]. However, these observations are only
the beginning of the LLC journey and many further experi-
ments are required to explore the full potential of this techno-
logy. Indeed, all real scale experiments published to date and
reviewed in section 4.1 suffer from shortcomings. Therefore,
beyond the spectacular and encouraging demonstration, chal-
lenges remain ahead. Here, we first review the open ques-
tions remaining, which, most likely, will mark the short- and
medium-term development of LLC.We propose a critical eval-
uation of pertinent sites and lightning prone locations for the
future progress path of LLC. Moreover, we also comment on
the future laser development relevant for LLC. With the aim
of encouraging the community to take the next step, we try in
this section to give a summary of the state-of-art and future
path envisioned for LLC.

5.1. Shortcomings of previous experiments

In the recent demonstration by Houard et al [Houard2023], the
guided lightning flashes were all of the positive type. While
improving the statistical significance of their results, this pecu-
liarity corresponds to an asymmetry in the laser-lightning

interaction, which has been interpreted via their modeling.
The fact that only positive strikes were guided while negat-
ive ones are much more frequent in Europe, including at the
Säntis, challenges the applicability of the results to the bulk
of the lightning strikes. The configuration of a tall tower on a
high (2500 m) and relatively isolated mountain is pretty spe-
cific, and not representative of most use cases for applications
on, e.g. buildings or airports in plains or protecting of wide-
area flat facilities. These applications will be reviewed in more
detail in section 6.

Finally, the main shortcoming in our view is reprodu-
cibility: each of the previous real scale LLC experiments
[Uchida1999, Kasparian2008, Houard2023] was conducted
during onemeasurement campaign and hence all suffered from
sparse data. Uchida et al reported two laser-triggered events,
Kasparian et al reported two thunderstorm events with statist-
ical significant laser effect and Houard et al reported 16 light-
ning strikes, 4 of whichwere laser guided over∼50m, over the
course of their single experimental campaign (July–September
2021). No ulterior replication of their respective experiments
were published.

Since lightning is intrinsic of random nature, a perman-
ent LLC station would be very valuable to advance lightning
research, to provide various conditions all year long, together
with long statistical series, and to investigate in greater detail
the physics and the use-case applicability of LLC by providing
long data series in a wide range of conditions, including wind,
cloud altitude, season, etc.

Another major interrogation resides in the ability of the
laser filament to trigger lightning or to initiate leaders.While
the ability of near-IR filaments to guide lightning leaders over
tens of meters has been clearly demonstrated in [Houard2023],
initiating lightning is more difficult to obtain and even more
to demonstrate experimentally. Kasparian et al experiments
[Kasparian2008] showed the synchronicity of corona dis-
charges and the laser pulses: Further experiments could be per-
formed by either connecting an ascending leader with a des-
cending one in conditions where the ambient field does not
allow them to connect, or by initiating an upward leader like a
rocket would do [Rakov2005].

The first case would correspond to conditions in the Säntis
experiment, where many positive flashes were observed in
the presence of the laser. Inducing an upward leader with
the filament would require the generation of a highly con-
ductive channel during several microseconds to allow the
polarization of the channel in the presence of the external
field [Bazelyan2000]. This appears to be difficult to realize
with a single ultrashort pulse. Solutions have been proposed
based on the heating of the filament by a second energetic
pulse [Scheller2014, Papeer2014] but the required energy of
∼15 J m−1 and the use of multiple lasers make it difficult to
implement on real scale especially at a kHz repetition rate.

5.2. Unexplored parameters

Besides identifying the interaction processes between lasers
and their plasma with lightning flashes, exploring various
laser configurations is crucial for optimising applications.
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Indeed, several parameters could be explored in future LLC
experiments:

• The parameters of the laser filaments (air density, ioniza-
tion, temperature, plasma lifetime, diameter…) depend dir-
ectly on the laser wavelength. As discussed in section 3.1,
a UV laser would be more efficient to ionize the air and
generate denser plasma channels [Diels1992, Diels1997,
Rambo2001, Khan2002, Rastegari2021]. Conversely, IR
lasers better propagate in the air and produce very long and
wide mono-filaments containing energy up to the Joule level
[Tochitsky2019b].
These options are promising, but the only technology avail-
able to date to routinely generate TWpeak power with a high
repetition rate are working in the near-IR range, at 800 nm
or 1030 nm, so that most of the experiments of meter-scale
laser guiding were performed at these wavelengths.
Shorter wavelengths require frequency conversion in non-
linear crystals that imply slightly more complex setup and
careful alignment, and may limit the output power due
to their damage threshold. In any case, the choice of the
wavelength stems from a trade-off between multiple con-
straints and factors.

• It has been suggested to use dual- and three-color
schemes using the second and the third harmonic of a
near-IR laser [Produit2019]. In particular, as indicated
by [Schubert2017a, Produit2019, Produit2021] multi-color
schemes might provide a boost to the efficiency of existing
LLC schemes. In spite of efficient production of SHG and
THG with the LLR laser [Andral2022], this technique was
not used in the experimental campaign in Säntis due to time
constraints [Houard2023], so that this question remains to
be clarified at real scale.

• The laser repetition rate is an important aspect for two
main reasons: First, using a laser with a repetition rate
higher than 1 kHz increases the guiding effect of the fila-
ment on small discharges [Walch2021, Löscher2023] and
allows the formation of a permanent low density channel
[Vidal2000, Cheng2013, Jhajj2013, Lahav2014, Point2015,
Rosenthal2020, Walch2021, Isaacs2022, Goffin2023], see
section 2.4. Second, the timescale for the development of
a lightning flash is typically in the millisecond timescale.
A kHz repetition rate, at least, is therefore necessary to
maximize the temporal interaction between the laser and
the lightning precursors, since the appearance of the latter
remains largely unpredictable.

• The filamentation length is obviously an import-
ant parameter. However, it is limited by the beam
focusing [Wille2002], which appears necessary for LLC
[Walch2023a], so that a trade-off had to be found.
Alternative schemes to enhance the effective laser filament
length include the use of a telescope with an actively shift-
ing focus, multiple beams focused at different distances

[Papeer2015, Polynkin2017] or pulse shaping with deform-
able mirrors or diffractive waveplates. Comparative works
gauging their applicability for LLC remains necessary.

• The location of the filamenting region is another obvious
important parameter. Indeed, Houard et al reported in their
model that the distance between the tip of the tower and the
filamentation region was of critical importance for lightning
initiation and development. Using beam steering technique
to induce angle movement but also the longitudinal focus
shift described in the previous item, would bring comparis-
ons between dynamic and static LLC schemes.

• Spatial and Temporal shaping of the laser filamenta-
tion like pulse trains [Liu2012, Wolf2018], comparing fs
and ps filamentation [Dehne2024] or even using plasma-
less quantum wake effect [Zahedpour2014, Rosenthal2020,
Schroeder2020] might be of interest for LLC and remain
for now barely explored at atmospheric scale. Experiments
using spatial shaping like self-healing Airy laser modes
[Zou2023] or using of phase mask [Fu2024a, Fu2024b]
were shown to be beneficial for electric guiding by allow-
ing longer and more uniform energy deposition during
filamentation.

• Different laser shot geometries as described for instance
in [Kasparian2010] could be considered to find out the best
use case of LLC.

5.3. Applicability to downward and negative lightning flashes

Using lasers to initiate and guide upward or downward light-
ning flashes, respectively, is fundamentally different. In the
case of upward lightning, the required filamentation can occur
relatively close to the laser, since the upward discharge starts
at the tip of grounded objects, which are at most several
hundred meters tall. In addition, the tip of a tall object
is well-defined so that aiming the laser at it is relatively
simple.

For controlling downward lightning, however, filamenta-
tion would need to be established in the vicinity of charge
centers in the cloud, which are in general located several km
away from the ground-based laser, and whose precise loca-
tion is not known a priori. The technology needed to reli-
ably establish filamentation at distances measured in km is
not yet available and further research in that respect is needed.
Concerning the polarity of the laser controlled lightning repor-
ted by Houard et al [Houard2023], it is noteworthy, as already
mentioned, that only positive upward lightning were observed
to be influenced by the presence of the laser beam. This is com-
patible with the findings, described earlier in section 2.3.2, that
at meter scale discharges by laser filaments the same tend-
ency of an enhanced effect for positive discharge has been
observed [Comtois2000, LaFontaine2000, Pepin2001] and is
also partially explained by their simulation results predicting
an enhanced laser effect on positive lightning [Houard2023].
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Figure 10. Top lightning hotspots per major continental landmasses. [Albrecht2016] © American Meteorological Society. Used with
permission.

Since most lightning on Earth is of negative downward type
[Rakov2003], this again calls for more LLC research.

5.4. Potential locations for future LLC experiments

The site(s) selected to conduct lightning studies should ideally
allow for testing the influence of a spectrum of parameters
as wide as possible, including, for instance, the effect of the
local ground flash density (i.e. the average number of light-
ning flashes per square kilometer and per year), the field topo-
graphy, the altitude, the latitude, the season, the type of soil,
the presence or absence of a tall structure, etc. Since no single
site allows to test all those conditions (as some of them are
geographical location dependent), at least two approaches can
be utilized:

• The laser system could be installed on a permanent or long-
term basis at an appropriate location with a well-defined
conditions relevant for lightning research, or

• a mobile test setup could be used to investigate the lightning
protection capabilities at different locations in the vicinity of
sensitive installations or relevant lightning active locations.

Besides the scientific case, experimental test locations require
power supply and other services, infrastructure and/or logistics
to set up and run experimental campaigns with a heavy and
sensitive device like a high-power laser and its need for a clean
and controlled operating environment.

5.4.1. Tall structures and dedicated lightning and atmospheric
facilities. The location where LLC integration would be
most straightforward is in existing facilities already dedicated
to lightning studies. Many of those existing or past facilit-
ies are particularly suited for LLC integration and hence, we
encourage the community to embrace and implement LLC
capabilities in several of those. Specifically, we have identi-
fied many facilities worldwide we report these in two tables,
where we comment on each site regarding its relevance for
LLC integration:

• Table C1 in the appendix lists past and active instrumented
towers dedicated to lightning research which would be suit-
able for LLC experiments.

• Table C2 in the appendix lists past and active RTL launch
pads as well as other interesting sites which would be suit-
able for LLC experiments.

5.4.2. Lightning hotspots. Table C3 curates LLC relevant
lightning hot spots across the world (figure 10), sorted by
total lightning density, and discusses the suitability of each of
them for LLC campaigns. Besides the lightning density, this
involves power delivery, access for personnel, the laser, and
other material including lightning diagnostics.

Using such hotspots requires a mobile laser system
comparable to the Teramobile project [Wille2002], or at
least asemi-transportable system like the LLR laser system
[Herkommer2020].
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Figure 11. Curated list of laser sources relevant to LLC. All the lasers are listed in table B1 in the appendix. Blue marker: OPCPA, green
marker: Ti:sapphire, magenta marker: slab, red marker: thin-disk. Round marker: pulse duration <100 fs, diamond shaped marker:
100 fs < pulse duration ⩽1 ps, square marker: pulse duration > 1 ps. The region in pink represents the target region: peak power >200 GW
and repetition rate >1000 Hz. The laser systems marked with an asterisk were already used for LLC experiments.

This approach opens the way to a wider variety of sites,
configurations, and experiment types than only focusing on the
already equipped, permanent stations.

Furthermore, many opportunities also exist for developing
countries since many of the top spots of lightning on Earth are
in developing countries, (see table C3).

The lightning research community seems to be mature for
a more broadening of the community to developing coun-
tries as argued by [Leal2021]. Since many of these loca-
tions are remote, and a local embedding of the research and
experiments is crucial [Wheeler2020], one could take advant-
age of local knowledge embedded in the local communities
[Kolawole2012, Moyo2021, Pabale2006].

5.5. Relevant laser systems

As emphasized in section 3.1, ultrashort lasers are the key
players for LLC technology since they provide extended
plasma channels and as a consequence, the most mature LLC
experiments have been performed using this class of lasers.

In light of those recent experiments, a LLC-capable laser
system should be able to produce multiple filamentation, to
generate a sufficient amount of free charges as well as to
take advantage of the density hole produced in the filament-
ation wake: multiple filamentation increases the air-depleted
volume. Specifically, we estimate that a LLC-capable laser
should at least produce tens of filaments and hence ideally
have a peak power above∼200GW for anywavelength, which
was indeed the case in the latest experiments [Kasparian2008,
Houard2023]. This amounts for instance (in the NIR) to pulse
energies of 20mJ for∼100 fs pulses, and in the∼200mJ range
for ∼1 ps pulses. It has to be kept in mind, however, that the
pulse duration evolves while propagating in the atmosphere,

due to dispersion and non-linear self-steepening, among oth-
ers. Moreover, multiple filamentation should be generated at a
sufficient repetition rate to fully take advantage of the cumulat-
ive air density depletion arising in the wake of filamentation,
which have been shown to be beneficial for electrical purposes
[Vidal2000, Cheng2013, Jhajj2013, Lahav2014, Point2015,
Rosenthal2020, Walch2021, Isaacs2022, Goffin2023] through
Paschen’s law [Tirumala2010].

Repetition rates higher than 100 Hz and preferably 1 kHz
are hence desirable. Recent works indicate that an even higher
repetition rate up to 100 kHz could push these benefits even
further [Löscher2023].

We present in table B1 and figure 11 an extensive, though
non-exhaustive, list of suitable lasers for LLC experiments.We
concentrate in this figure on ultrashort NIR laser systems, as
the offer is the widest. Mid-IR and UV lasers are also possible
platforms, as described in sections 2.3.3 and 3.1.

Specifically, we chose to prune an extensive list of high-
power lasers from different technologies provided by Zuo and
Lin [Zuo2022] by choosing laser sources with a repetition rate
greater or equal to 10 Hz and a peak power between 5 GW
and 500 TW. The latter limit was set to exclude PW laser sys-
tems, which are deemed impractical for LLC due to their size.
Moreover, the laser systems from previous LLC experiments
were also added manually, if missing.

Finally, we want to emphasize that the wall-plug efficiency
is key for high power and high repetition rates lasers, as pro-
gress in average optical power translates into a growing energy
demand. As an example, the laser system used by Houard et al
had an optical average power of ∼720 W (720 mJ ∗ 1 kHz)
and an optical-to-optical efficiency of 8% (720 W/9 kW diode
pumping) [Herkommer2020]. The energy consumption of this
experiment is reported in section A.3 in the appendix.
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Recently, more efficient Yb:YAG thin-disk laser oscillator
with optical-to-optical efficiency of 26% [Fischer2021] or
even 33% [Radmard2022] demonstrated wall-plug efficiency
of 7.3% [Braesselbach1997], leaving the hope for 10% or
more wall-plug efficiency at technology maturity. Still, the
power requirements remain quite stringent.

6. Potential use-cases

Beyond the scientific case stricto sensu, and on-demand light-
ning triggering for scientific research purposes, several applic-
ations have been proposed or envisioned for the control of
lightning using lasers. In this section, we briefly review these
use cases and briefly discuss both their feasibility and relev-
ance in terms of LLC.

6.1. Protection of critical facilities

6.1.1. Power lines. In Canada, Japan, or Malaysia, most of
the power outages affecting the distribution network are due to
lightning [Leal2021]. The cost of these lightning-caused out-
ages in Canada is estimated to 350 million CAD each year
[Mills2010].

The study of lightning-induced damages on power lines,
and lightning protection motivated the constructions of large
lightning test facilities by national electric companies. In the
1970s, the French electric company EDF founded the first
laboratory studies of long air gap discharges, analyzing the
development of lightning leaders at the research center ‘Les
Renardières’ [Renardières1977]. In Canada, the electric com-
pany Hydro-Quebec launched the first project on the control
of lightning using femtosecond lasers with INRS in the late
90s [Vidal2002].

In recent years, there has been a reassessment of the chal-
lenge of lightning protection for both overhead and buried
power lines. This reconsideration is prompted by the grow-
ing demand from customers for high-quality power supply
[Nucci2022].

Direct lightning strikes pose a significant threat to high-
voltage transmission networks. However, in medium-voltage
distribution networks, overvoltages induced by nearby light-
ning are a notable factor contributing to flashovers and
disruptions [Chowdhuri2001]. The main difficulty for imple-
menting LLC for power lines is their spatial extension, com-
bined with the difficult access of most of their length, which
to a large extent prevent both a permanent coverage of the
whole network as well as mobile units moving to thunderstorm
regions identified by the weather forecasts. On the other hand,
protecting specific critical nodes or transformers may be more
realistic.

6.1.2. Effect on power plants. The damages produced by
lightning on nuclear power plants are generally due to indir-
ect effects. A rise of the ground potential, or the loss of trans-
mission lines can cause equipment damage or misoperation,

but they do not appear as a significant risk for the power plant
safety [Rourk1994].

On the contrary, photovoltaic power plants are much more
sensitive to the effect of lightning strikes.

Besides material degradation by direct strikes, overvoltage
can damage the electronic system, and repeated impulse cur-
rent stresses reduce the efficiency of the photovoltaic panels
[Ahmad2018, Omar2022]. In the case of a large photovoltaic
power plant, redirecting the lightning with a LLC at a distance
from the strike could therefore be very useful.

6.1.3. Refineries, and explosive storage structures. Storage
tanks for fuel, or explosives warehouses are particularly
vulnerable to lightning strikes. Lightning can ignite tank
fires, produce toxic releases or explosions. Oil, diesel and
gasoline are the substances most frequently released dur-
ing lightning-triggered Natech accidents (NAtural-hazard
triggered TECHnological accidents) [Renni2010].

A recent event occurred in October 2023 at a recycling
power plant near Oxford, where a massive explosion of a bio-
gas tank was ignited by lightning.

6.1.4. Rocket launch pads. Rockets and launching infra-
structures are highly sensitive to lightning, due to the use
and transport of highly flammable/explosive fuels, as well as
sensitive electronic equipment. Furthermore, being tall struc-
tures in flat environments, often in tropical regions (Florida,
French Guiana, etc), they are particularly exposed. Lightning
strikes can occur during the transport of large rocket ele-
ments from the storage hangars to the launchpad, in flight,
as experienced for example by the NASA Apollo 12 mission
[NASALightningStrike], but also during assembly and park-
ing on the launch pad. Some launchers remain parked on the
pad for several days, limiting the accuracy of risk assessment
based on the weather forecasts. As for airports, launch pads
are equipped with field mills, radiofrequency antenna arrays,
and weather radar. To secure the rockets during the parking
phase, several arrangements using arrays of tall lightning rods
are used [Bachelier2012].

As exemplified by the Soyouz Launch Complex (figure 12)
at the French Guiana Space Center, a typical protecting system
is formed by a square network of 4 metallic pylons of 90 m
height, separated by 60 m, and connected by conductive wires
at their tips. This geometry was optimized not only to avoid
direct strike on the fuselage, but also to reduce electromagnetic
noise. A strike on one of the pylons could induce a current of
up to 200 kA [Rakov2003], and a current variation dI/dt of the
order of 1010–1011 A s−1 [Leteinturier1991], leading to very
high magnetic field transients up to hundreds of H. In turns
these magnetic fields can damage the sensitive electronics of
the launcher and the payload. The simulated distribution of the
magnetic field at ground (figure 12) shows the protected region
around the rocket.

A laser-based lightning rod could potentially have several
advantages as compared to this fixed protection infrastructure:
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Figure 12. Typical spatial distribution of the magnetic field around
the typical arrangement of Franklin-type lightning rods used on
rocket launch pads. Reproduced with permission from [Issac2012].

(1) it could be deployed at will, and thus providing more
flexibility on the localization of the launching equipment, (2)
it could be significantly more cost-effective than a massive
infrastructure made of concrete and tall metallic towers, and
(3) if mobile on a trailer, it could be used for all the three
critical phases mentioned above, i.e. transport to the pad,
waiting phase and after take off. As launch pads are located
in no-flight zones by nature, eye-safety and air traffic con-
trol constraints related to the use of lasers in open-air would
be minimal.

6.1.5. Offshore oil rigs and wind farms. Offshore oil rigs
and wind farms, often consisting of large conducting metal
structures (and/or carbon fiber composite in the case of wind-
mills) grounded to the ocean, are typically situated at varying
distances from the coast, ranging from a few hundred meters
to several hundred kilometers. While the density of lightning
flashes is lower over oceans than over land [Boccippio2000],
the height of these structures increases their susceptibility
to lightning strikes. This risk is more pronounced in trop-
ical regions due to a higher frequency of storms, a factor
that is expected to further increase due to global warming
[Haberlie2022].

New wind power generation units feature increasingly
taller turbines, with blades lengths of 60 m and beyond.
Consequently, they are facing greater exposure to lightning
strikes. They are also triggering a significant number of
upward lightning flashes. Furthermore, carbon fiber compos-
ite materials are now extensively used to reinforce the blades
[IECWindTurbines2019]. The inclusion of these composite
materials impacts the effectiveness of the LPS and thus must
be considered during the design phase [Rachidi2012]. The
integration of a laser-based lightning rod system could be dif-
ficult due to the need to transport the laser to remote offshore
structures. A possible solution would be the permanent install-
ation of LLC protection on the platform itself or, if technically

possible, on a moored barge nearby. Alternatively, for plat-
forms or wind farms located closer to the coast, the system
could be operated from the shore, pointing the laser towards
the structure.

6.2. Protection of wide-area flat facilities

6.2.1. Airports. The occurrence of lightning on airfields
depends on their geographical locations and meteorological
conditions. Airports in tropical regions are more strongly
affected by lightning than others. Lightning implies interrupt-
ing all departures and arrival operations for the whole duration
of the thunderstorm in the vicinity of airports [Bloom2008].
As a result, aviation operators have to find the right balance
between ground handling personnel safety, flight security, and
operational efficiency. Lightning impacts can also set fire to
buildings at airports, damage aircrafts at ground, strike and
knock out air traffic control towers, and directly or indirectly
hit ground crew workers.

Decision making is usually based on lightning detection
systems (e.g. RF antennas, local field mills) and meteoro-
logical data, but also risk assessments involving insurances.
61.4% of all flight delays in the USA are caused by weather
conditions [FAAReport2023], and among them the majority
are thunderstorms. There are no requirements for airports or
airlines in the USA to follow specific lightning alerting rules
[UltimateLightningGuide], but the FAA recommendations are
to issue an alert to the operations team when lightning activ-
ity is detected within 11 km distance, stop fueling and ramp
operations at 8 km, and to resume operations after 15 min all
clear. State-of-the-art lightning detection systems are able to
provide warning information some 15 km away from the air-
fields. This information could thus be used as a trigger for start-
ing laser-lightning protection operational phases. In the con-
text of the possible implementation of LLRs at airfields, sev-
eral deployment options could be considered. For these reas-
ons and as cloud-to-cloud lightning strikes are often detec-
ted before cloud-to-ground, a total lightning detection system
rather than forecast is required, with automated alerts. The
costs of flight delays to the airline industry amounts over 8
billion USD a year [FAAReport2023], which put airport pro-
fessionals under pressure.

Hence, avoiding closing an airport during thunderstorms
or reducing the time of closure would generate a financial
incentive that could make LLC an attractive option to consider
[Arnold2023].

Flat, extended facilities like airports are difficult to pro-
tect due to their wide area, as well as crowded airspace that
prevents using permanent masts and towers as lightning rods.
Thunderstorms are however a key constraint to airport opera-
tions, as a high risk of lightning imposes a pause in operation to
ensure airplane safety at ground and in take-off phases. Laser-
based protection would potentially provide wide-area cover-
age by the combination of the filament length and the sweeping
of the beam, controlled by a real-time measurement of the
electric field at and close to the ground. For the same reason,
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they can protect areas from the side, which is especially rel-
evant for runways and taxiways. Furthermore, lasers do not
impact airplane movements as they can be switched off as
needed while airplanes move in their vicinity. Lasers could be
deployed around airplanes parking lots, or even made mobile
on vehicles that could be moved to zones at risk. Clearing the
airport from lightning strikes by switching on the rod for redu-
cing the dead time might also be possible: Control tower oper-
ators can make decisions based on information from the light-
ning detection system, and control the laser to avoid any dis-
turbance to the air traffic. First, the action could be beneficial
both for reducing damage costs on airport infrastructures and
landed aircrafts and for reducing the delays in flight sched-
ules. Depending on the performances of the future LLR, one
could consider either a network of vertical pointing lasers or
a single laser (or a few) scanning the sky over a large area
above the airport. Fast scanning over a defined solid angle has
the advantage of probing essentially the whole charged cloud
over the airport. Again, the laser would then be switched off
for planes scheduled to take off or to safely land. Finally, LLRs
could also be interesting for defence purposes, where a fixed
metal infrastructure is impractical. That could be the case for
helicopters landing or taking off, as well as aircraft carriers on
the sea.

6.2.2. Protection of large crowds of people in open
areas. Several spectacular incidents or accidents caus-
ing tens of injured or even casualties are regularly repor-
ted in large crowds gathered in open areas for music
festivals [Arnold2023], popular official events [Horváth2007],
sport events at stadions [Makdissi2002] or in the outdoor
[Cherington2001]. Prevention resides in lightning monitoring,
stopping or cancelling the event, and evacuating of the pub-
lic if an active thunderstorm approaches [Walsh2000]. Large
crowds impose specific constraints, with the need of pre-
identified shelters of large capacity as well as long evacuation
time [Makdissi2002] which in turn increases both the dura-
tion of the event interruption and the distance range to monitor
around the event venue, increasing the risk of occurrence of
a thunderstorm activating the evacuation plan. Indeed, for
large stadiums, current recommendations (the so-called 30/30
rule) ask to suspend the event from flash-to-bang time of 30 s
(i.e. approximately occurrence of a lightning strike within
10 km of the area to be protected) until 30 min after the end of
the last flash [Walsh2000, Makdissi2002]. Besides protecting
the crowd against electrification, the buildings and equipment
(lighting masts, trees) surrounding the crowd should also be
considered since they could cause injuries if they burn or fall
after being damaged by a lightning strike.

The typical dimension of a stadion (∼100 m) is commen-
surate with the typical length of laser filamentation, allowing
a single laser (or a reduced number thereof) to cover the whole
area at risk.

However, the main open question remains the ability of
lasers to offer a very high level of protection without being
complemented by a classical lightning rod, to suspending or
canceling the event.

6.2.3. Prevention of lightning-ignited wildfires. Though the
sensitivity to climate change on the occurrence of lightning-
induced forest wildfire is uncertain [Pérez-Invernón2023], hot-
ter conditions could increase the risk that lightning strikes trig-
ger wildfires [Canadell2021, Jones2022]. Other studies report
that climate change is expected to decrease the occurrence fre-
quency of lightning [Finney2018]. Typically, one out of 1000
cloud to ground strikes triggers a forest fire, with a highest risk
in low-intensity precipitationless thunderstorms [Soler2021].
Furthermore, human exposure is also increasing due to the
growing entanglement of habitation zones with fire-vulnerable
forests.

The main challenge posed by forest protection is their
spatial extension, while a dense network of high lightning
rod towers would severely impact landscapes and there-
fore raise questions about their acceptability by popula-
tions. However, even a sparser network of lasers would
require a dense infrastructure for both access and power
supply, let alone the cost. A laser could attract lightning
to a firewall or a clearing. The need would however be a
mobile LLC reaching the sections of the forest most at risk
according to weather forecasts, which would pose access
issues.

6.3. Other use-cases

6.3.1. Protection against indirect (electromagnetic perturb-
ation) effects of lightning. Current protection techniques
relying on lightning rods are highly efficient against direct
(thermal) effects of lightning as they lead the lightning cur-
rent to ground through a down-conductor of adapted cross-
section. However, the high-intensity, fast-varying lightning
return stroke currents are the source of strong electromag-
netic radiation that can induce overvoltages on power lines
and unwanted voltages and currents spikes on electrical and
electronic equipment. These impacts are collectively known
as indirect effects of lightning. Since the electromagnetic
field decays rapidly with distance from the lightning channel
[Rubinstein1989], shifting the transient current away from
the facility to be protected will considerably reduce its indir-
ect effects. For example the four lightning rods protecting
the Ariane 5 launchpad are located 25 m away from the
vehicle, a distance that could be easily doubled or tripled
by guiding the lightning strike away. Such an approach may
also apply to large buildings, or to wind turbine protection
[IECWindTurbines2019], whereby the earthing conductor has
to cross the turbine head, and therefore has a distance to the
sensitive parts limited to themeter range. In either case, the key
parameter is the competition between the elevated point (light-
ning rod, arm of the wind turbine) and the laser launched above
it. Neither available experimental data nor existing models are
sufficient to date to assess the potential success rate, i.e. the
fraction of flashes of either polarity that would be intercep-
ted and deviated or missed in a specific configuration, char-
acterized by tower/lightning rod height, the surrounding topo-
graphy, as well as by the laser location, elevation angle and
filament length. Further investigation in that direction is there-
fore crucial.
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6.3.2. Clouds discharge. Actively initiating lightning
before its natural occurrence, in order to better control and
let the cloud charge flow to the ground [Brunt2000], is often
expected to unload clouds. However the typical charge density
in thunderclouds amounts to some µC m−3 [Amoruso2002]
while a typical lightning strike drives to the ground a total
charge of some tens of Coulomb.

A single strike is therefore able to discharge a typ-
ical volume of 107 m3, i.e. a typical cloud region of
200 × 200 × 200 m3. With typical radii of a few tens
of km, the thunderstorm has a volume of at least 1012 m3

[Rakov2003], so that only a negligible fraction of the active
thunderstorm volume could be discharged. Reasoning from
a temporal rather than volumic point of view yields com-
parable results. Indeed, typical lightning strikes often give
rise to re-illumination, i.e. repeated lightning strikes origin-
ating from the same location in the cloud and following the
same path through the cloud. A typical delay between re-
illuminations is a fraction of a second [Rakov2003], indicating
that the charge-depleted volume due to the original lightning
strike has been replenished within less than 1 s [Rakov2003].
Indeed, the charge buildup in a thundercloud is in the range
of 1 C km−3 min−1 [Ávila2011]. If considering a 10 km-
high thundercloud, typically one discharge/km2 s−1 would
be needed to drain charge to the ground at a rate compar-
able with its generation. Further investigation is necessary
to assess the ability of LLC to offer this rate. We also refer
the reader to section 13.3 and 13.4 of the excellent book by
Uman [Uman2008].

6.3.3. Lightning energy collection. A single cloud-to
ground lightning flash has a total energy of the order of
109–1010 J [Rakov2003]. This is equivalent, for example,
to the consumption of a single average Swiss household for
about one month only (at∼5000 kWh/year/household in 2021
[ConsommationSuisse2021]). Moreover, we expect lightning
energy collection to be difficult for at least four main reasons.
The first difficulty stems from the fact that all this energy
(109–1010 J) is concentrated during the very short duration
of the lightning strike, i.e. of the order of hundreds of µs
[Rakov2003], bringing the power to hundreds of TW. Second,
lightning does not always strike the apex of structures, even
for high structures [Rizk1994, Shindo2015, Shindo2018,
Mikropoulos2019], complicating further the hypothetical
energy flow capture. Third, most energy is dissipated in the
atmosphere during the propagation of the lightning strike, so
that only a small fraction, roughly <1% of the total energy
from a cloud-to-ground lightning flash reaches the strike point
where the energy could be harvested [Rakov2003]. Finally,
capturing a significant number of lightning strikes would
necessitate numerous tall towers (or LLC facilities), render-
ing it impractical as a means of energy collection. All these
limitations are related to lightning itself rather than to a spe-
cific collection technology, so that LLC technology would not
fundamentally change the situation, regardless of its potential
progress.

7. Conclusion

While being considered for over 50 years, lightning control
by lasers has long been restricted to speculations based on
the extrapolation of small to medium-scale laboratory experi-
ments, sparse field experiments, and limited theoretical argu-
ments. However, the relevance of cm-scale to meter-scale
laboratory experiments is limited due to the leader-streamer
mechanism that drastically modifies the behavior of a dis-
charge beyond the length of a single leader step, i.e., sev-
eral meters. On the other hand, integrating the effect of a
high-power laser pulse into lightning initiation and propaga-
tion theories and associated models requires to consider a
wide range of scales. Indeed, spatial scales range from the
micrometer size of the particles undergoing ionization in the
thunderclouds, to hundreds or thousands of meter scale for
the discharge itself. Simultaneously, temporal scales include
the femtosecond scale of the laser pulses, the nanosecond to
microsecond time scales of the plasma evolution, and up to
the second time scale of reilluminations.

From an experimental point of view, the lack of
laser initiation [Kasparian2008] or of inconclusive nature
[Miki2005] of the first field experiments aiming at lightning
control using lasers was attributed to the limited amount of
energy deposited by ultrashort laser filaments in the air, as
well as the insufficient lifetime of the generated plasma and
air-depleted column. The advent of kHz-repetition rate, high-
power lasers based on Yb thin-disk technology changed this
context by offering for the first time the opportunity to deposit
both high energy and average power densities in the air, at a
rate sufficient to imprint a permanently depleted air-depleted
region over more than 100 m, prone to discharge propagation
due to the Paschen effect. This progress provided the basis
for a field campaign at a particularly well-instrumented site
with a very high local density of lightning strikes: Mount
Säntis and its telecommunications tower, where guided light-
ning strikes were stereo-imaged by fast cameras, located and
tracked via their radio-emission, and recorded in a sufficient
amount to ensure statistical significance. The positive polarity
of the observed laser-guided discharges, which contrasts with
the negative polarity of discharges occurring when the laser
was not fired, might even suggest a possible triggering by the
laser. This interpretation was further supported by a model
indicating that the observed electric field during these strikes
exceeds the threshold for positive laser-triggered events but
not that for negative ones [Houard2023].

This demonstration, however, calls for further investigation
and raises new challenges. The most obvious one is the optim-
ization of the laser conditions, in particular the wavelength
or combination thereof, which as a trade-off between atmo-
spheric propagation, ionization efficiency, and the energy
carried per laser filament is not straightforward to decide
from theoretical arguments. Pulse duration and repetition
rates are easily accessible, although the full desirable range
requires new substantial laser development towards combined
ultrashort pulses in the 100 fs range and below, multi-kW repe-
tition rates, and, overall, versatility. Future lasers also need to
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be much more mobile and rugged, to allow field operation at
a reasonable effort and cost.

From the point of view of the lightning physics, various
geographic and geometric configurations allowing to invest-
igate upward and downward flashes of either polarity will
help characterize the versatility of the LLC. This will require
intensive efforts to provide data from numerous locations
across the world and seasons, as well as various cloud heights.
A careful characterization of the lightning flashes under laser
control will also be necessary to determine to which extent
they can be considered as perfect counterparts of the natural
ones, and, conversely, how they differ. The highest similarity
is favorable to the lasers as a trigger for on-demand flashes for
lightning studies. Conversely, differences would provide more
information about the mechanism of the laser-lightning inter-
action and help elucidate it, as well as assess the magnitude of
the effect of the lasers.

The latter assessment is critical to the development of LLC.
Besides the mentioned slight differences in the flash char-

acteristics, such as branching and X-ray emission as men-
tioned in [Houard2023], long-term recordings and randomized
schemes of laser operation would optimize the statistical dis-
crimination of the laser effect. This is especially critical for
the question of the triggering of lightning flashes by laser fila-
ments, which is still an open question and cannot be decided on
the basis of the discharge geometry only. Finally, the investig-
ation of various use cases will drive the LLC research towards
more technology readiness. Research will probably start with
the applications where failure rate is not critical, as in the
case of on-demand lightning for research, then evolve towards
domains like EMC enhancement where the laser complements
a classical lightning rod, while protection exclusively relying
on lasers would require an extremely high confidence in a suc-
cess rate close to 100%. Here specific comparisons with the
existing state-of-the-art lightning protection measures tailored
to each case will be necessary.

We therefore believe that, after half a century, LLC is about
to bloom in the next years and will offer both the communit-
ies of ultrashort laser and lightning physics with fascinating
challenges.

Data availability statement

The data that support the findings of this study are available
from the corresponding author, J-P Wolf, upon reasonable
request.

Appendix A. Logistical aspects of the Laser
Lightning Control field campaign by Houard et al
[Houard2023]

The LLC experiment by Houard et al [Houard2023] was con-
ducted at the Säntis telecommunication tower located at the
top ofMount Säntis near St. Gallen in Switzerland (figure A1).
The tower, operated by Swisscom Broadcast AG, sits at more
than 2500 m above sea level and is accessible by cable car.

Figure A1 also displays the locations of the measurement
devices used during the campaign.

The research team installed their equipment in the hall host-
ing telecommunication antennas (aka Radome). The general
layout of the experiment is shown in figure A2. The high peak
power, high average power laser [Herkommer2020] was oper-
ated during a total of 6.3 h of thunderstorm activity occurring
within 3 km of the tower over the course of a 71 d period dur-
ing Summer 2021 (21 July–30 September) [Houard2023].

The interested reader is referred to [Houard2023,
Produit2021] or Chapter 4 of [Produit2021a] for more logist-
ical and experimental details. Moreover, the preliminary
experiments of the LLC campaigns can be accessed in
[Andral2022, Walch2023a].

A.1. Choice of location

The location choice was primarily guided by the local occur-
rence of lightning. Indeed, the telecommunication tower is
hit by lightning more than 100 times per year [Romero2013,
Rachidi2022, Houard2023]; it is one of Europe’s most light-
ning struck structures. The second reason is that the tower in
question is already equipped with monitoring devices tailored
for lightning research and has been the subject of monitoring
for many years by Swiss scientists [Rachidi2022].

A.2. Logistical challenges

The first logistical challenge of this experimental campaign
was to deliver all mechanical, optical and electronic ele-
ments, and assemble the bulky (10 m × 2.5 m) laser
[Herkommer2020] on site, at the top of Mount Säntis. The site
is equipped with a cable car with the upper station close to the
experimental spot, which was used for most of the material.
Nevertheless, two stacked 10’ containers housing the sending
telescope, had to be lifted to the summit by helicopter.

A.3. Power consumption

The total power consumption of the whole LLR setup is
∼80 kW. A total energy consumption of 45 272 kWh was
recorded over the whole campaign, out of which 24 181 kWh
was supplied by the grid and 21 091 kWh by on-site Diesel
generators. The latter was used during the thunderstorms to
prevent a failure propagation from the main grid, so as to
ensure continuous operation.

A.4. Environmental conditions

The second operational challenge was to safely and reliably
operate the laser in the harsh weather conditions prevailing at
the summit, and even in the Radome where the temperature
can vary by 10 ◦C over the day, and reach down to 2 ◦C even
in summer [Produit2021a] whereas high-end lasers require
well-controlled clean and temperature-stable conditions. An
air-tight tent was therefore installed inside the Radome, with
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Figure A1. Situation map of the LLC experiments by Houard et al [Houard2023], showing all the experimental instruments and the
mandated airspace closure area (no-fly zone)—background map by Swisstopo. Reproduced from [Produit2021]. CC BY 4.0.
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Figure A2. (a) General layout of the implementation at Mount Säntis, Switzerland of the LLC experiment by Houard et al [Houard2023]
(not to scale). (b) Schematic drawing of the sending telescope, the last optics before the free space propagation of the ultrafast laser.
Reproduced from [Produit2021]. CC BY 4.0.

overdimensioned air conditioning and filtering so as to reach
laboratory-like conditions.

Furthermore, the site is obviously subject to thunderstorms,
and the associated heavy rain or snow, while due to its power
the laser requires specific hardened mirror coatings, where
contamination can lead to irreversible damage and cannot be
transmitted throughwindows. The sensitive optics used to emit
the laser into the atmosphere and align it onto the tower tip is
therefore in open air and exposed to precipitation. It was there-
fore protected by two stacked 10” containers equipped with an
oblique 2 m long tube preventing direct exposure of the tele-
scope top-facing primary mirror to precipitation. This setup
was complemented by a high-power (2700m3 h−1 air flow) fan
blowing the remaining water off the optical path. Furthermore,

the surface of the mirror was permanently monitored during
operation, so as to immediately stop the laser beam and clean
the optical surfaces in case of contamination.

Finally, in order to ensure eye-safely during the laser oper-
ation, a temporary airspace closure (no-flight zone, figure A1)
of 5 km radius was defined and activated upon expected
laser operation, in coordination with the Swiss national air
traffic control (Skyguide Swiss Air Navigation Services Ltd)
and Zürich International Airport. This regulatory measure
was complemented with automated detection of flying objects
in the neighborhood via a receiver for ADS-B transponders
directly connected to the laser interlock, visual monitoring
of the airspace, and permanent contact with the air traffic
control.
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Appendix C. Curated list of locations suitable for LLC experiments

C.1. Instrumented towers dedicated to lightning research

Table C1. Curated list (in no particular order) of instrumented towers dedicated to lightning research which would be suitable for LLC
experiments. Active sites by the time of writing have their name bolded.

Infrastructure
name

Location (name,
coordinates)

Geographical
characteristics
(altitude, elevation
over neighborhood)

Lightning
characteristics (spatial
density, seasonality,
polarity)

Existing equipment
(laser facility,
diagnostics, access)

Suitability for LLC
integration

Säntis tower 47.24944◦ N,
9.34369◦ E, Säntis,
Switzerland

124 m tall tower at the
top of the Säntis
mountain at an altitude
of 2502 m above sea
level (ASL) near
Urnäsch, Switzerland

On average, about 100
flashes/year strike the
tower annually
[Romero2013,
Rachidi2022]. About
90% of the flashes are
negative and almost
100% of the flashes are
of the upward type.
Ground Flash Density
in the region: about
3 flashes km−2 yr−1

[Manoochehrnia2008]

Multiple lightning
measurement
instruments located at
different stations, as
described in
[Rachidi2022].
Ultrashort laser was
installed in 2021 but is
not there anymore

Already proven its
suitability for LLC,
see [Produit2021,
Produit2021 a,
Houard2023].
However, the laser
facility was
dismounted from the
Säntis tower. But a
new installation with
permanence in sight
could be planned.
Access only via cable
car

Monte San
Salvatore tower

45.97673◦ N,
8.94621◦ E, Monte San
Salvatore, Switzerland

70 m tall TV tower at
the top of Mount San
Salvatore at an altitude
of 912 m ASL near
Lugano, Switzerland

Ground flash density in
the Lugano Lake
region :
3.8 flashes km−2 yr−1

[Smorgonskiy2013]

No longer used for
lightning research. The
pioneering
experimental
characterization of
lightning performed by
the late Prof. Berger
and co-workers was
carried out here
[Berger1967]

Easy access (road and
funicular). Already
proven its suitability
for lightning studies
but may be lacking
shelter and power
access for lasers

Gaisberg tower 47.805◦ N, 13.112◦ E,
Mount Gaisberg,
Salzburg, Austria

100 m tower located on
the top of a 1287 m
mountain (Mount
Gaisberg) near
Salzburg, Austria. The
mountain top is
approximately 800 m
ASL above the city of
Salzburg

The tower is struck by
lightning about 60
times a year on
average, with very
large year-to-year
variations. Almost
100% of the lightning
to the Gaisberg tower
is of the negative
upward type.
Ground flash density in
the region of Salzburg:
3.8 flashes km−2 yr−1

[Smorgonskiy2013]

Multiple lightning
diagnostics as
described in
[Diendorfer2009]

Very similar to the
Säntis tower location
in terms of lightning
statistics. Hence LLC
implementation can
be envisioned. Has
road access

Fukui chimney 36.2109◦ N,
136.1346◦ E,
Mikuni-chō (三国町),
Fukui (福井県)
Prefecture, Japan

200 m high chimney of
the Mikuni cooperative
power station located
at the Fukui (Mikuni)
Thermal Power Station
near Fukui, Japan

Experimental site
selected to maximise
the possibility of being
hit by Japanese winter
thunderstorms, which
are prone for lightning
[Miki2005]

Multiple lightning
diagnostics as
described in
[Miki2005]

Close to Mikuni-chō
and has easy road
access easing
logistics. This site
was already used as
an experimental site
for lightning research
[Miki2005], hence
implementation of
permanent LLC
capabilities can be
envisioned

(Continued.)
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Table C1. (Continued.)

Mihama tower 35.62081◦ N,
135.90013◦ E
Mihama-chō
(美浜町), Fukui
(福井県) Prefecture,
Japan

Lightning tower on the
top of a ∼180 m hill
near the coast of the
Wakasa bay (若狭湾),
Japan

Experimental site
selected to maximize
the possibility of being
hit by Japanese winter
thunderstorms, which
are prone for lightning
[Uchida1999]

Multiple lightning
diagnostics as
described in
[Uchida1999] were
installed but are now
dismantled

Close to Mihama-chō
and has easy road
access easing
logistics. This site
was already used as
an experimental site
for [Uchida1999],
hence implementation
of permanent LLC
capabilities can be
envisioned

Peissenberg
tower

47.80113◦ N,
11.02453◦ E, near
Peißenberg, Bavaria,
Germany

160 m tower on top of
the Hoher Peißenberg
ridge at about 950 m
located near Munich,
Germany

118 lightning strikes
were recorded on the
tower between 1992
and 1998. Nearly all
lightning strikes to the
tower are of negative
polarity (negative
charged cloud)
[Fuchs1998].
Ground Flash Density
in Southern Germany:
2.8 flashes km−2 yr−1

[Finke1996]

Multiple lightning
diagnostics as
described in
[Fuchs1998]

Very similar to the
Säntis tower location
in terms of lightning
statistics. Hence,
implementation of
permanent LLC
capabilities can be
envisioned. Has road
access

Shenzhen
Meteorological
Gradient Tower
(SZMGT)

Shí yán (石岩)
Residential District,
Bǎo’ān Qū (宝安区),
north of Shēnzhèn
(深圳), People’s
Republic of China

356 m tall tower for
meteorological studies
north of Shēnzhèn
(深圳)

Total flash density :
>15 flashes km−2 yr−1

[Qiu2015]

Lightning observation
site located 440 m
away from the tower
base [Gao2020]

This location is
already equipped for
meteorological
studies and already
has some basic
lightning observation
capabilities. Hence,
implementation of
permanent LLC
capabilities can be
envisioned, subject to
adding some
lightning detection
capabilities

Sentech Tower
(Brixton tower)

26.19245◦ S,
28.00687◦ E,
Johannesburg, South
Africa

250 m tall tower in
Johannesburg

Between 2009–2013,
66 flashes have been
photographed attaching
to the Brixton tower
[Hunt2014]
Ground Flash Density
in Johannesburg: 11–
18 flashes km−2 yr−1

[Smit2023]

Multiple lightning
diagnostics maintained
by the Johannesburg
Lightning Research
Laboratory and
described in
[Hunt2014, Smit2023]

Implementation of
permanent LLC
capabilities can be
envisioned as this
tower is already used
for lightning research
purposes. This
location has a road
access

Morro do
Cachimbo

20.000◦ S, 43.580◦ W,
Belo Horizonte, Minas
Gerais, Brazil

60 m tall tower,
1430 m ASL

Between 2010 and
2014, 61 flashes were
recorded, including 9
upward flashes
[Guimarães2014]
Ground Flash Density
in Brazil:
7 flashes km−2 yr−1

[Pinto2008]

Current measurements,
high-speed camera
[Visacro2004,
Guimarães2014]

Implementation of
permanent LLC
capabilities can be
envisioned as this
tower is already used
for lightning research
purposes. This
location has road
access

(Continued.)
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Infrastructure
name

Location (name,
coordinates)

Geographical
characteristics
(altitude, elevation
over neighborhood)

Lightning
characteristics (spatial
density, seasonality,
polarity)

Existing equipment
(laser facility,
diagnostics, access)

Suitability for LLC
integration

Eagle Nest 42.321◦ N, 1.892◦ E,
Catalonia, Spain

25 m tall tower,
located, 2537 m ASL

Ground Flash Density
in the region:
1.8 flashes km−2 yr−1

[Shindo2015]

Current, High speed
camera, two high
energy detectors, a
E-field antenna and a
VHF antenna
[Montanyà2012]

Implementation of
permanent LLC
capabilities can be
envisioned as this
tower is already used
for lightning research
purposes.A cable car
arrives very close to
the site, which is also
accessible by car
except in snow
conditions

Tokyo Skytree 35.71004◦ N,
139.8107◦ E, Tōkyō
(東京), Kantō-chihō
(関東地方), Japan

634 m tall freestanding
broadcasting tower,
37 m ASL

35 flashes recorded in
2012 and 2013 (11
upward flashes)
[Shindo2014]
Ground Flash Density
in Tokyo:
2 flashes km−2 yr−1

[Miki2012]

Lightning current,
high-speed camera,
electric fields
[Miki2012]

Implementation of
permanent LLC
capabilities can be
envisioned as this
tower is already used
for lightning research
purposes.The dense
city area location
might complicate
logistical ease and
eye safety for LLC
implementation

CN Tower 43.6426◦ N,
79.3871◦ W
Toronto, Ontario,
Canada

553 m tall
telecommunications
tower, 76 m ASL

During the 1991
lightning season, the
tower was hit with 72
flashes, 24 of which
occurred within
100 min during the
early morning of 7
July. [Hussein2004]
Ground Flash Density
in Toronto:
2 flashes km−2 yr−1

[Hussein2010]

Lightning current
measurements at two
different heights
(509 m and 474 m),
electromagnetic fields
at different distances,
two high-speed
cameras [Hussein2004,
Shindo2015]

Implementation of
permanent LLC
capabilities can be
envisioned as this
tower was already
used for lightning
research
purposes.The dense
city area location
might complicate
logistical ease and
eye safety for LLC
implementation

Empire State
Building

40.7484◦ N,
73.9857◦ W
New York, New York
State, United States of
America

410 m tall building,
10 m ASL

Annual number of
flashes to the structure:
22–6 [Shindo2015]
Ground Flash Density
in the region:
2.9 flashes km−2 yr−1

[Shindo2015]

Lightning current and
photographic
observations were
obtained for more than
a decade from 1935 to
1949 [Hagenguth1952]

Site of the first
characterization of
upward lightning
[McEachron1939,
McEachron1941,
Hagenguth1952]

Implementation of
permanent LLC
capabilities can be
envisioned as this
tower was already
used for lightning
research purposes.
The dense city area
location might
complicate logistical
ease and eye safety
for LLC
implementation

(Continued.)
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St. Crischona 47.571944◦ N,
7.687222◦ E
Bettingen, Basel-Stadt,
Switzerland

250 m tall
communications tower
on Mount St.
Chrischona, 493 m
ASL

Relatively low
incidence: about 10
flashes per year
[Manoochehrnia2008].

Ground Flash Density
in the region: about
2 flashes km−2 yr−1

[Manoochehrnia2008]

Two current loop
antennas at 248 and at
175 m, and an
additional current
probe at the top

Implementation of
permanent LLC
capabilities can be
envisioned as both
towers were used for
lightning research
purposes. Has road
access but is situated
in the middle of a
village complicating
an eye safe
implementation.

Monte Sasso di
Pale, Monte Orsa

Sasso di Pale, near
Foligno, central
Italy and Monte
Orsa, near Varese,
northern Italy

Two TV towers
respectively at the top
of Monte Sasso de Pale
(980 ASL) and Monte
Orsa (998 ASL)

Most of the flashes
were of upward type
[Garbagnati1974,
Garbagnati1982]
Ground Flash Density
in northern Italy: about
4 flashes km−2 yr−1

[Bernardi2004]

Lightning current and
photographic
observations

Implementation of
permanent LLC
capabilities can be
envisioned as both
towers were already
used for lightning
research purposes.
Monte Orsa has a
road access reaching
to the top.

Eriksson Tower Pretoria, South Africa 60 m tall tower on a
hill 80 m above
surrounding terrain,
1400 m ASL

More than 50% of the
measured flashes are
downward negative.
[Eriksson1978]
Ground Flash Density
in Pretoria:
7 flashes km−2 yr−1

[Eriksson1979]

Rogowski coil at the
bottom of the tower

Implementation of
permanent LLC
capabilities can be
envisioned as this
tower was already
used for lightning
research purposes.
The dense city area
location might
complicate logistical
ease and eye safety
for LLC
implementation

Ostankino Tower 55.8197◦ N,
37.6117◦ E
Moscow, Russia

540 m tall
telecommunications
tower in a flat region,
124 m ASL

A total of 90 upward
flashes in a span of two
years of observation.
[Gorin1984]
Annual number of
flashes to the structure:
30 [Shindo2015]

Lightning current
installed at three
different locations
(533 m, 272 m and
47 m. Two optical
cameras were installed
at 385 m and 550 m
from the tower.
[Gorin1975,
Gorin1977,
Gorin1984]

Implementation of
permanent LLC
capabilities can be
envisioned as this
tower was already
used for lightning
research purposes.
The dense city area
location might
complicate logistical
ease and eye safety
for LLC
implementation

(Continued.)
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Infrastructure
name

Location (name,
coordinates)

Geographical
characteristics
(altitude, elevation
over neighborhood)

Lightning
characteristics (spatial
density, seasonality,
polarity)

Existing equipment
(laser facility,
diagnostics, access)

Suitability for LLC
integration

Euskalmet Tower
(M)

42.766◦ N, 2.538◦ W
Basque Country, Spain.

50 m tall tower on top
of the Kapildui
Mountain, 1169 m
ASL

Severe weather
conditions are usual as
described in
[López2012]

The Euskalmet tower
lightning initiation was
monitored using the
meteorological and
lightning
characteristics inferred
from these data, as
described in
[López2012].

The tower is not
directly instrumented
for lightning research
and some upgrades
would be necessary to
make it a proper
lightning research
station. Nevertheless,
implementation of
permanent LLC
capabilities can be
envisioned.
Logistically
complicated since
there is no direct road
access to the top.

C.2. Launch pads instrumented for lightning research

Table C2. Curated list of launch pads for lightning triggering rockets and other sites which would be suitable for laser lightning rod
technology (LLC) experiments. Active sites have their name bolded.

Infrastructure
name

Location (name,
coordinates)

Geographical
characteristics
(altitude, elevation
over neighborhood)

Lightning characteristics
(spatial density, seasonality,
polarity)

Existing equipment
(laser facility,
diagnostics, access)

Suitability for LLC
integration

Langmuir
laboratory

South Baldy, New
Mexico USA

133.5 km2

(33 000 acres) wide
research area
(Langmuir Research
Site) in the middle
of the Cibola
National Forest
located at an
elevation of 3240 m
(10 630 ft) in the
Magdalena
Mountains near
South Baldy, New
Mexico USA

Ground flash density : up to
0.55 flashes km−2 yr−1

[Fosdick1995]

Multiple lightning
diagnostics as
balloons, rockets,
Doppler radar,
aircraft, lighting
instruments and
ground-based
electric field mills
[LangmuirWebsite].

Already proven its
suitability for LLC
see [Schubert1979,
Kasparian2008]. No
tower or specific
lightning hotspot.
Would require a
mobile LLC facility
like the Teramobile
experiment
[Kasparian2008].

Lightning Center
for Lightning
Research and
Testing (ICLRT) of
the University of
Florida

Camp blanding near
Starke, Florida,
USA

Rocket-triggered
lightning centre over
mostly flat ground.

10–12 flashes km−2 yr−1

[Hodanish1997]
Fully equipped
rocket triggering
facility but facilities
have been closed
since 2017.

Studies of lightning
triggering with
rockets have been
performed from
1994 on
[Rakov2005] but the
facility has been
closed since 2017.
Hence, LLC
implementation can
be envisioned. Has
road access.

(Continued.)
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St Privat d’Allier St Privat d’Allier,
France

Mounted 24 m
tower over a flat
region at 1100 m
above sea level

Selected location fulfilling
certain security criterions (at
least 500 m from any
dwelling or road or power
and telephone lines) and
situated on a plateau where
the local keraunic level is
high (> 30 thunderstorm
days/year)

Fully equipped
rocket triggering
facility described in
[Fieux1978], closed
in 1993.

This location
already showed
suitability for
rocket-triggering
capabilities and
could be potentially
interesting for LLC
applications.

VEGA and
SOYUZ rocket
launch pads

5.23◦N, 52.76◦W,
Centre spatial
guyanais (CSG),
northwest of
Kourou, French
Guiana, France

Rocket launch pad
on flat ground with
high buildings and
infrastructure

Total lightning density:
3.3 flashes km−2 yr−1

[VaisalaInteractiveMap]

Tested for lightning
strikes, hence some
lightning
recognition
capabilities
[Bachelier2012,
Issac2012].

Location might be
interesting due to
logistical ease but
launch pad activities
might hinder smooth
LLC activities.

Mobile Ultrafast
High-Energy
Laser Facility
(MU-HELF)

Townes Institute
Science and
Technology
Experimentation
Facility (TISTEF),
Merritt Island,
Florida, USA

7–9 flashes km−2 yr−1

[Roeder2017].The region
over the John F. Kennedy
Space Center is well studied
in terms of lightning
characteristics see for
instance [Fisher1993,
Willett1999, Roeder2017]

Ultrashort laser
dedicated for
outdoor physics.
Ultrashort laser
dedicated to
atmospheric laser
propagation studies.

Various
rocket-triggered
lightning
experiments have
already been
conducted at the
John F. Kennedy
Space Center
[Fisher1993,
Willett1999]
meaning that
lightning studies
capabilities are
already onsite.
Moreover, the
MU-HELF facility
[Thul2021,
Richardson2020]
could be adapted to
host a LLC capable
laser.

GCOELD
rocket-triggering
facility also named
Guangzhou Field
Experiment Site
for Lightning
Research and
Testing
(GFESLRT)

North of Cónghuà
(从化), Guǎngzhōu
(广州) province,
People’s Republic
of China

Rocket triggering
facility on flat
ground

77 thunderstorm days per
year on average in
Guǎngzhōu (广州) province
[Zhang2014].Total lightning
density:
34.4 flashes km−2 yr−1

[VaisalaInteractiveMap].

Rocket-triggering
capabilities
[Zhang2014,
Zhang2016,
Qie2019,
Wang2022] and
many lightning
research equipment.

Studies of lightning
triggering with
rockets have been
performed here.
Hence, a LLC
implementation can
be envisioned.

SHATLE
rocket-triggering
facility

37.7◦N, 117.8◦E,
north of B̄ınzhōu
(滨州), Shandong
(山东) province,
People’s Republic
of China

Rocket triggering
facility on flat
ground

50 thunderstorm days per
year on average near
B̄ınzhōu (滨州)
[Qie2009].Total lightning
density:
11.7 flashes km−2 yr−1

[VaisalaInteractiveMap].

Rocket-triggering
capabilities
[Qie2009, Qie2017,
Qie2019] and many
lightning research
equipment.

Studies of lightning
triggering with
rockets have been
performed here.
Hence, a LLC
implementation can
be envisioned. Has
road access.

(Continued.)
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Infrastructure
name

Location (name,
coordinates)

Geographical
characteristics
(altitude, elevation
over neighborhood)

Lightning characteristics
(spatial density, seasonality,
polarity)

Existing equipment
(laser facility,
diagnostics, access)

Suitability for LLC
integration

Cachoeira Paulista
test facility

22.683◦S,
44.983◦W, near
Cachoeira Paulista,
São Paulo, Brazil

625 m altitude.
120 m × 70 m flat
area of a hilltop.
This location inside
the meteorological
observation area of
the Brazilian
National Institute
for Space Research
(Instituto Nacional
de Pesquisas
Espaciais—INPE)
near Cachoeira
Paulista, São Paulo,
Brazil

Keraunic level: 80
thunderstorm days/year
[Saba2005]Total lightning
density:
19.8 flashes km−2 yr−1

[VaisalaInteractiveMap].

Fully equipped
rocket triggering
facility described in
[Saba2005] as well
as various
meteorological
equipment on site.

Dedicated natural
and triggered
lightning test facility
as described in
[Saba2005].
Lightning triggering
tests performed in
1998–2003. The
area already hosts
various
meteorological
measuring
equipment. Hence, a
LLC
implementation can
be envisioned.

C.3. Lightning hotspots on Earth

Table C3. Curated list lightning hotspot promising for LLC, ordered by descending total lightning density.

Location (name,
coordinates) Lightning characteristics Accessibility Suitability for LLC integration

Relámpago del
Catatumbo(9.75◦ N,
71.65◦ W)

First lightning hotspot on
Earth.
Total lightning density of
232.52 flashes km−2 yr−1

[Albrecht2016].

This lightning hotspot region
is easily accessible due to its
proximity to the
second-largest city in
Venezuela, Maracaibo.The
central part of the hotspot
however is situated
approximately in the center of
the lake of Maracaibo,
potentially augmenting the
logistical burden of
experimentation.

Due to the predictable nature of the
Relámpago del Catatumbo phenomenon
[Nelson2003, Muñoz2016], it could be an
interesting location for mobile LLC. The
proximity of the La Chinita International
Airport ensures good quality weather
forecasts as well as natural candidate
location for LLC operationalization
experiments, tailored e.g. to diminish
operational shutdown of the international
airport due to lightning, as suggested by
[Arnold2023] and described later in
section 6.2. Moreover, the proximity of
various scientific universities (like for
instance University of Zulia (www.luz.edu.
ve) in Maracaibo or Universidad de Los
Andes (www.ula.ve/) in Merida) could play
a key role to coordinate all the actors and
drive the scientific relevancy of these
proposed deployed LLC experiments.

(Continued.)
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Kabare (1.85◦ S, 27.75◦ E) Second lightning hotspot on
Earth.
Total lightning density of
205.31 flashes km−2 yr−1

[Albrecht2016].

Situated ∼150 km north-west
of the city of Bukavu,
Sud-Kivu, Democratic
Republic of Congo (DRC)
with no direct road access.

The proximity of the city of Bukavu,
Sud-Kivu, Democratic Republic of Congo
(DRC) could serve as a logistical
centrepoint. Moreover, this city is also
situated ∼150 km from the third lightning
hotspot on Earth (Kampene) and hence
Bukavu could become an interesting
lightning research convergence point. For
instance, there is recent interest in the
literature investigating more in depth
lightning activities in this region
[KaserekaKigotsi2018,
KaserekaKigotsi2022, Emmanuel2022].
At time of article writing though, a conflict
in neighbouring North Kivu (Nord-Kivu)
province could, in the short-term, constrain
the accessibility of the region.

Kampene (3.05◦ S,
27.65◦ E)

Third lightning hotspot on
Earth.
Total lightning density of
176.71 flashes km−2 yr−1

[Albrecht2016].

Situated ∼150 km away from
the city of Bukavu, Sud-Kivu,
Democratic Republic of
Congo (DRC) with no direct
road access.

The proximity of the city of Bukavu,
Sud-Kivu, Democratic Republic of Congo
(DRC) could serve as a logistical
centrepoint. Moreover, this city is also
situated ∼150 km from the second lightning
hotspot on Earth (Kabare) and hence
Bukavu could become an interesting
lightning research convergence point. For
instance, there is recent interest in the
literature investigating more in depth
lightning activities in this region
[Emmanuel2022, KaserekaKigotsi2018,
KaserekaKigotsi2022].
At time of article writing though, a conflict
in neighbouring North Kivu (Nord-Kivu)
province could, in the short-term, constrain
the accessibility of the region.

Cáceres(7.55◦ N,
75.35◦ W)

Fourth lightning hotspot on
Earth.
Total lightning density of
172.29 flashes km−2 yr−1

[Albrecht2016].

Situated ∼150 km away from
Medellín, Antioquia,
Colombia, which is the
second-largest city in
Colombia and only ∼3 km
away from the city of Cáceres,
Antioquia, Colombia.

The proximity of the city of Cáceres,
Antioquia, Colombia (30 000 inhabitants)
makes this lightning hotspot very interesting
for a LLC implementation. Indeed, the
proximity ensures logistical ease and since
the region is not very dense this could also
help for an eye-safe implementation.

(Continued.)
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Location (name,
coordinates) Lightning characteristics Accessibility Suitability for LLC integration

Singapore(1.36◦ N,
103.78◦ E)

Total lightning density of
127.6 flashes km−2 yr−1

[VaisalaInteractiveMap]

Situated in the city-state of
Singapore.

Singapore is a good candidate for LLC
since an unpublished LLC experiment has
been conducted by one of the authors
(Houard) in 2011 [Houard2011]. This
location was selected due to its high
lightning activity as well as proximity to a
big city infrastructure. Moreover, the exact
location chosen ensured an eye-safe
operation despite the dense area around.
The proximity of Singapore Changi Airport
ensures good quality weather forecasts as
well as natural candidate location for LLC
operationalization experiments, tailored
e.g. to diminish operational shutdown of the
international airport due to lightning, as
suggested by [Arnold2023] and described
later in section 6.2. Moreover, the proximity
of various scientific universities (like for
instance National University of Singapore
(https://nus.edu.sg/) or Nanyang
Technological University (www.ntu.edu.sg/)
could play a key role to coordinate all the
actors and drive the scientific relevancy of
these proposed deployed LLC experiments.

Rodas(22.35◦ N,
80.65◦ W)

Total lightning density of
98.22 flashes km−2 yr−1

[Albrecht2016].

Situated ∼30 km from
Cienfuegos, provincia de
Cienfuegos, Cuba,

This is situated at ∼30 km from
Cienfuegos, provincia de Cienfuegos, Cuba,
which might be of interest for LLC. Indeed,
Cienfuegos is a relatively big city (180 000
inhabitants) and possesses good
infrastructure and at the same time the area
around is not very densely populated, which
would allow for an eye-safe LLC
implementation. Moreover the proximity of
an international airport, the Aeropuerto
Internacional Jaime González ensures good
quality weather forecasts as well as natural
candidate location for LLC
operationalization experiments, tailored
e.g. to diminish operational shutdown of the
international airport due to lightning, as
suggested by [Arnold2023] and described
later in section 6.2.

(Continued.)
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Table C3. (Continued.)

Kuala Lumpur(3.15◦ N,
101.65◦ E)

Total lightning density of
93.96 flashes km−2 yr−1

[Albrecht2016].

Situated just 5 km from the
capital city of Malaysia,
logistical accessibility is
ensured. Nevertheless, the
dense city area location might
complicate eye safety for LLC
implementation.

We expect this hotspot to be highly
interesting for LLC. Indeed, it is reported
that more than 70% of power outages are
due to lightning in Malaysia [Leal2021].
Hence, there is a great interest in this region
to mitigate lightning induced damages. The
proximity of Kuala Lumpur International
Airport ensures good quality weather
forecasts as well as natural candidate
location for LLC operationalization
experiments, tailored e.g. to diminish
operational shutdown of the international
airport due to lightning, as suggested by
[Arnold2023] and described later in
section 6.2. Moreover, the Centre for
Electromagnetic and Lightning Protection
Research (CELP) at the nearby University
of Putra Malaysia could play a key role to
coordinate all the actors and drive the
scientific relevance of these proposed
deployed LLC experiments.

Derby(15.35◦ S,
125.35◦ E)

Total lightning density of
92.15 flashes km−2 yr−1

[Albrecht2016].

Situated at ∼300 km from
Derby, Western Australia,
Australia

The Kimberley region of Western Australia,
especially the area west of Kununurra and
east of Derby is host to most of Oceania’s
lightning hotspots. Since the region is
sparsely inhabited it could be interesting in
terms of eye safety but challenging in terms
of logistics for an LLC implementation.
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