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Abstract—This article addresses the planetary landing
problem by considering uncertainties and leveraging the
presence of a detection area where precise measurements
are available. The flight consists of two distinct phases: the
first phase, subject to a high level of uncertainties, and the
second phase, during which the vehicle is feedback con-
trolled to ensure precise landing. We propose a method to
compute the optimal control for the initial phase, aiming to
minimize fuel consumption for the entire trajectory while
satisfying a probabilistic constraint that ensures the vehicle
reaches the detection zone with a specified threshold.

I. Introduction

Planetary landing problems have gained significant atten-

tion recently, driven by the development of reusable launch

vehicles and new space exploration missions that demand

extremely high landing accuracy. Achieving this level of

precision requires careful trajectory planning that accounts

for various factors such as parameter uncertainties, external

perturbations, and measurement errors, all of which can

deviate the vehicle from its intended path. Additionally,

trajectory planning must often incorporate system con-

straints or mission-specific limitations. Fuel consumption,

another critical consideration, necessitates to be optimized,

so that landing trajectories are typically computed within

an optimal control framework.

To address the uncertainties inherent in landing dy-

namics, several robust guidance methods have emerged.

Some approaches specifically target uncertainties in initial

conditions, such as the method proposed by [1], which

minimizes the solution’s sensitivity to these uncertain-

ties. Additionnaly, [2] proposes a replanification method

to account for innacurate modelling and initial state er-

rors. Other approaches model uncertainties using stochas-

tic differential equations, like the algorithm presented by

[3], which computes control strategies for landing under

constraints on both mean and covariance. Similarly, [4]

introduces a method for drone trajectory planning that

includes probabilistic constraints to avoid collisions.

However, many of these methods assume that uncer-

tainties affect the entire trajectory. Under this assumption,

landing accuracy is constrained by the magnitude of these

uncertainties. In practice, precise measurements, such as

those from differential GPS, become available when the
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vehicle is near the target, allowing for greater accuracy.

This lead us to the problem treated in this paper: two-phase

trajectory planning for a vehicle system being subject to

uncertainty until its reaches a designated "detection zone".

Several multi-phase trajectory planning methods already

exist, particularly for spacecraft landings. For instance, [5]

introduces a method to plan consecutive phases of a return

mission using a Toss-back strategy. Similarly, [6] optimizes

the three phases of a planetary landing by reformulating the

problem as a nonconvex quadratically constrained quadratic

program. Then, [7] also tackles lunar landing trajectory

planning, using Model Predictive Static Programming to

optimize the different phases. Another approach, presented

by [8], focuses on minimizing fuel consumption up to a

certain altitude, then applying a suboptimal state feedback

controller to achieve a zero-attitude landing. Additionally,

[9] addresses a multi-phase consensus problem, applied to

interception missions. Our approach differs by considering

uncertainties during a portion of the trajectory.

This paper introduces a novel approach for solving the

planetary landing problem by incorporating a detection

zone and dividing the vehicle’s dynamics into two distinct

phases. The detection zone is defined to guarantee that,

once the vehicle enters it, successful arrival at the target is

ensured. In the first phase, the vehicle operates under uncer-

tainties, modeled using stochastic differential equations. To

address the high computational complexity of this model,

we apply a statistical linearization method, enabling us to

operate within a deterministic optimal control framework.

Once the vehicle enters the detection zone, it gains access to

precise measurements, marking the transition to the second

phase. During this phase, the dynamics are governed by

feedback control, so that the impact of uncertainties is

considered negligible compared with the first phase. Our

focus is on optimizing the control strategy for the initial

phase while meeting a probabilistic constraint of the vehicle

reaching the detection zone. Simultaneously, we aim to

minimize the cost of the entire trajectory. Consequently,

the selection of the second-phase controller plays a crucial

role in determining the overall success and cost-efficiency

of the landing. This aspect is thoroughly discussed in a

dedicated section.

The remainder of this paper is structured as follows. Sec-

tion II introduces the general problem formulation. Section

III applies this framework to the landing of reusable launch

vehicles. In Section IV, we focus on the cost computation for

the second phase, followed by numerical results in Section

V.



II. Problem Formulation

We investigate the trajectory planning problem for a

landing vehicle with the requirement that it reaches a target

S with a probability exceeding a specified threshold p.
We assume that there exists a zone Z surrounding the

target, within which the vehicle has access to precise sensor

measurements. These measurements enable a predefined

feedback control law to be applied from a time t1, which
ensures that the vehicle enters zone Z . Thus, the vehicle’s

dynamics consist of two phases:

• Phase 1 (from 0 to t1): the vehicle operates under

uncertainty, and its dynamics are governed by a con-

trolled stochastic differential equation:

dxt = f(xt, u(t))dt+ g(xt)dWt (1)

where x0 is a fixed random variable representing

the initial state, u(t) is the control input, and dWt

is the increment of a Wiener process modeling the

uncertainties;

• Phase 2 (from t1 to tf ): the vehicle has access to precise
measurements, allowing it to operate in a closed-loop

configuration. As a result, the impact of uncertainties

on the dynamics becomes negligible. The vehicle is

controlled by a predefined feedback law, providing the

control input u, which may depend on the state at the

start of the second phase, x(t1). The dynamics during

this phase are described by the following deterministic

differential equation:

ẋ(t) = f(x(t), u2(x(t))), (2)

where u2(x) = u(x, x(t1)) denotes the controller used
in Phase 2.

We formulate the robust trajectory planning as an opti-

mal control problem, where the objective is to minimize a

total cost that includes contributions from both phases with

a probability constraint that the vehicle enters the detection

zone. Before formally defining this optimal control problem,

several key elements need to be introduced.

a) Definition of t1: A first approach would be to define

t1 as the first time the vehicle’s state enters the zone Z ,

triggering the transition from the dynamics in (1) to those

in (2). In this scenario, t1 would inherently depend on

the randomness in the system, since it would represent a

stopping time for the stochastic process xt governed by

(1). However, in this work, we take a different approach: we

treat t1 as a pre-planned, deterministic time, independent of

the randomness in the system. This allows us to formulate

the guidance problem within a deterministic framework,

as explained later in this section of the article, and to

consider t1 as a free optimization parameter. However,

this requires certain assumptions about the uncertainties

to ensure that the second phase does not start too late. To

ensure the vehicle reaches the precise measurement zone Z
with sufficient likelihood, we impose the constraint that the

probability of being in Z at t1 exceeds a given threshold p.

This constraint is expressed as

Pr[xt1 ∈ Z] > p, (3)

where xt represents the trajectory of the system governed

by (1) under the control law u(·).
b) Definition of Z : The zone where precise measure-

ments are available is denoted by the set Z . This set must

necessarily include the target S . Additionally, to guarantee

that once the vehicle enters Z it remains there, and that

the deterministic dynamics given by (2) govern the system

for all t ≥ t1, we impose the following assumption.

Assumption 1: The set Z is invariant under the dynamics

described by (2).

By the definition of t1, we ensure that the vehicle enters Z
with a probability greater than p. The invariance of Z then

guarantees that the vehicle ultimately reaches the target

with a probability exceeding p.
c) Choice of both the second-phase controller and tf :

The choice of the second-phase controller plays a key

role, as it directly influences the properties of the zone Z
through Assumption 1. In this section, we do not impose a

specific form for the controller, as our goal is to provide a

general framework. However, a detailed comparison of vari-

ous controller options is presented in Section III, specifically

within the context of the landing problem. Moreover, the

definition of the final time tf is intrinsically linked to the

controller design. Since the initial state of the second phase

is a realization of the random variable xt1 , the final time

tf can take several forms:

• it could be infinite, as in the case of an infinite-horizon

LQ controller;

• it may be a function of the random variable xt1 ,

typically dependent on its mean and covariance;

• it could be left free, thus depending on the realization

of xt1 ;

• or it could be fixed, meaning that tf is the same for all

realizations of xt1 . In that case, the cost of the second-

phase controller depends on the choice of tf .

d) Cost expression: We seek to minimize the total cost

of the trajectory, expressed as the expectation

J = min
u,t1

E[C(u, t1)]. (4)

Typically, the cost C represents factors such as fuel con-

sumption along the trajectory. It is often practical to break

this cost into two components corresponding to the two

phases, C1 for the first phase and C2 for the second:

C = C1(u, t1) + C2(xt1). (5)

Since the second-phase control is fixed after t1, C2 depends

only on the final state xt1 of the first phase. The form

(5) allows for different cost criteria in each phase, such as

fuel consumption for the first phase and final error for the

second. In such cases, weighting or normalization terms

may be needed to make the quantities comparable.

The cost (4) is computed as an expectation over all

possible trajectories under control u, including those that



might not reach the target. Note that in theory, only

trajectories that reach the target should be considered,

especially since the second-phase control u2 and cost C2

may not be defined for those that miss the zone at t1.
To account for this, the cost should be reformulated as a

conditional expectation. That said, this refinement is not

necessary here, as we extend the definition of the controller

u2 outside of Z , assigning a higher cost to realizations

that goes outside of Z . Thus, trajectories failing to enter Z
have minimal influence on the optimization, in particular

when the probability threshold p is close to 1. The choice

of a common t1 for all trajectories is crucial to justify this

approximation.

Finally, we formulate the planning problem as follows.

Problem 1 (Stochastic 2-Phase Planning Problem):

min
u,t1

E[C1(u, t1)] + E[C2(xt1)]

subject to the constraints:
xt, t ∈ [0, t1], trajectory of (1),

u(t) ∈ U a.e. on [0, t1],

Pr[xt1 ∈ Z] > p.

This is a stochastic open-loop optimal control problem

on the first phase, with free time t1, a final probability

constraint, and a cost that includes a term distributed along

the trajectory (E[C1(u, t1)]) and a final term (E[C2(xt1)]).
This type of problem is generally very difficult to solve.

That’s why we use here an approach similar to the one

presented in [10], which is based on statistical linearization.

Thus, we approximate the distribution of xt by a Gaussian

distribution with mean m and covariance P , solutions of

the deterministic system{
ṁ = f(m,u),

Ṗ = Dxf(m,u)P + PDxf(m,u)⊤ + g(m)g(m)⊤.
(6)

Let ϕ(t) be the Gaussian distribution associated with

(m(t), P (t)). In this way, we replace the cost (4) by

C = Eϕ[C1(u, t1)] + Eϕ[C2(xt1)],

where the expectations of C1 and C2 are calculated with

the Gaussian density associated with (m,P ). Similarly, we

approximate the constraint (3) by Prϕ[xt1 ∈ Z] > p,
expressed in terms of m(t1) and P (t1). Assuming that the

zone Z is defined by affine constraints, i.e., that

Z = {x | aix ≤ ci for i = 1, . . . , nc},

the constraint (3) becomes

a⊤i m(t1) + Ψ−1(p)
√
a⊤i P (t1)ai ≤ ci, (7)

for i = 1, . . . , nc and where Ψ−1
denotes the inverse cu-

mulative function assiociated to the Gaussian distribution.

Thus, we approximate the solution of Problem 1 by

the solution of the following deterministic optimal control

problem (see [10] for more details on error estimates in this

approximation).

Problem 2 (Deterministic 2-Phase Planning Problem):

min
u,t1

Eϕ[C1(u, t1)] + Eϕ[C2(xt1)]

subject to the constraints :
(m,P )(·) follows (6) ∀t ∈ [0, t1],

u(t) ∈ U almost everywhere on [0, t1],

a⊤i m(t1) + Ψ−1(p)
√

a⊤i P (t1)ai ≤ ci for i = 1, . . . , nc.

This is a standard optimal control problem with free time

t1, a constraint on the final state, and a cost that includes

an integral term and a final term.

III. Application to the Launcher

We now apply the general approach from the previous

section to the problem of landing a reusable launcher. For

simplicity, we focus on a two-dimensional scenario, whose

state vector is defined as x = (r, v, µ), where r = (ry, rz) ∈
R2

is the position, v = (vy, vz) ∈ R2
is the velocity, and

µ ∈ R is the mass. The deterministic dynamics are defined

by

f(x, u) =

 v
T
µu− ga

−q∥u∥

, (8)

where T represents the maximum magnitude of the

thruster, q the mass flow rate, ga = (0, g0), g0 the grav-

itational acceleration, and u ∈ R2
the control variable. The

actuators being constrained in magnitude and direction, the

set of admissible controls is defined by

U =

{
u = (uy, uz) ∈ R2 : umin ≤ ∥u∥ ≤ umax

and uz ≥ ∥u∥ cos(θmax)

}
,

where umin and umax represent the minimum and the

maximum allowable control magnitude, and θmax defines

the limit on the direction of the actuator output.

One of the objective while planning the trajectory is to

minimize fuel consumption. Accordingly, the costs for the

first and second phases are defined as follows:

C1 =

∫ t1

0

∥u(t)∥dt,

and C2 represents fuel consumption or a comparable quan-

tity that needs to be specified. Finally the target S is defined

as the set of states where r = v = 0.

A. Modeling of the First Phase

From 0 to t1, the vehicle is subject to uncertainties. It can

measure its position and velocity, allowing for partial state

feedback; however, these measurements are subject to noise,

which must be incorporated into the modeling using the

stochastic differential equation (1). We consider as control

variable ω = (ρ, θ,Kn,Kd) and express the partial state



feedback control as

uFB(x, ω) = (ρ+Knx)

(
cos(θ +Kdx)

sin(θ +Kdx)

)
,

where ρ, θ ∈ R, Kn,Kd ∈ R4
, and x̄ = (r, v). In the

following, we write uρ = ρ + Knx and uθ = θ + Kdx.
Furthermore, we account for actuator limitations through

saturation in the dynamics, following the method described

in [10]. Thus we express the unperturbed dynamics of the

launcher as f sat
FB(x, ω) = f sat(x, uFB(x, ω)), where the

saturated dynamics are given by

f sat(x, u) = f

x, satumax
umin

(uρ)

 cos(sat
π
2 +θmax
π
2 −θmax

(uθ))

sin(sat
π
2 +θmax
π
2 −θmax

(uθ))

 .

(9)

B. Choice of the Controller for the Second Phase
During the second phase, the vehicle benefits from ac-

curate measurements. We model its closed-loop dynamics

using a deterministic differential equation, which is derived

by substituting u in (8) with a closed-loop control u2(x),

ẋ =

 v
T
µu2(x)− ga

−q∥u2(x)∥

. (10)

Additionally, u2 must make it possible to reach the target

S at time tf , starting from the initial conditions (r1, v1, µ1)
at t1. There are several approaches to design a closed-

loop controller to solve this problem. For instance, an LQ

controller or a ZEM/ZEV controller [11] could be used,

or an MPC method. To ensure Assumption 1, it would be

relevant to use state feedback associated with a Lyapunov

function. We emphasize that an explicit formulation of u2

is not required at this stage, our primary goal is to compute

the cost of the trajectory.

C. Definition of Zone Z
At t1, the vehicle’s state must reach an invariant zone

Z containing S , as per Asumption 1. Thus, we impose the

following constraints to Z .

1) The position r must belong to a zone Zr , containing 0.
We define this zone as limited by a maximum altitude

hmax and a glide-slope constraint of angle γ, i.e.,

Zr ⊆ {(ry, rz) | 0 ≤ rz ≤ hmax and rz ≥ tan(γ)|ry|} .

2) The velocity must be directed towards the ground and

inside the zone, and each component of the velocity

vector should have a norm lower than a maximum

speed vmax. The purpose of this constraint is to

empirically ensure that the zone Z remains invariant

under the dynamics of the second phase. This will be

verified numerically during simulations.

The zone Z is then defined as follows:

Z = {(r, v) | r ∈ Zr, −vmax ≤ vy ≤ vmax ,

− vmax ≤ vz ≤ 0 and ryvy ≤ 0}.

The next step is to approximate Pr[x ∈ Z] > p by a

set of affine constraints. To simplify, we approximate the

constraints on r with the constraint Prϕ[r ∈ Zr] > p. The
latter is equivalent to the constraints on m and P , derived

from expression (7). This allow us to replace the constraint

Prϕ[xt1 ∈ Z] > p by constraints on (m,P )(t1).
Ideally, we aim to ensure that there is enough fuel at

time t1 to carry out the second phase. This could be done

by adding a constraint on the mass at t1, or by verifying

afterward that it is satisfied.

D. Constraint on t1

The constraint Pr[xt1 ∈ Z] > p implies that the confi-

dence ellipse defined by m and P for a given confidence

level p is entirely contained within Z at t1. We tighten this

constraint here in order to ensure that this condition holds

at t1, but also that t1 represents the moment when we enter

the zone Z with a probability p. This amounts to asking

that the ellipse has at least one point of contact with one of

the edges of Z . In practice, for implementation purposes,

we will simplify this constraint by requiring that only the

top of the ellipse, i.e. Pzz , touches the upper boundary of

of Z at time t1. This is expressed mathematically as

mrz (t1) = hmax −Ψ−1(p)
√
Pzz(t1).

In practice, this simplification is justified if Pzz(t1) is

small, i.e., if all trajectories are close at t1.

IV. Estimation of the cost of the second phase

To solve Problem 2, we need to compute Eϕ[C2], which
depends on how we design the controller u2. We propose

two methods for doing this. The first consists un choosing

u2 and C2 from an LQ problem, and the second in deter-

mining them numerically.

A. Exact expression of the value function of an LQ problem

Since the second phase is short, the vehicle’s mass varies

little. Assuming the mass remains constant, the dynamics

(10) become control-affine. Consider the control variable

a ∈ R2
defined by a = T

µu−(0, g0). The vehicle’s dynamics

is then linear and can be expressed as{
ṙ = v,

v̇ = a.
(11)

Choosing a control that solves an LQ problem is efficient

and provides a state feedback. In this case, in Problem 2, we

choose the cost of the second phase as the corresponding

quadratic cost, with a normalization coefficient:

C2 = x̄(tf )
⊤Qf x̄(tf ) +

∫ tf

t1

a(t)⊤Ra(t)dt, (12)

where R ∈ R2
and Qf ∈ R4

are weighting matrices.

There exists an explicit expression for the finite-time value

function associated with the dynamics (11) and the cost (12)

for deterministic initial conditions at t1, which is

C2,det(x̄(t1)) = x̄(t1)
⊤S(0)x̄(t1)



where S is the solution of the Riccati differential equation
dS
dt (t) +A(t)⊤S(t) + S(t)A(t)

−S(t)B(t)R−1B(t)⊤S(t) = 0, t ∈ [0, tf − t1],

S(tf − t1) = Qf .

It follows that for x̄(t1) stochastic with mean m̄(t1) and

covariance P̄ (t1), the expression for the expected value of

the value function is

Eϕ[C2(x̄(t1))] = m̄(t1)
⊤S(0)m̄(t1) + Tr(S(0)P̄ (t1)).

This explicit expression allows for very efficient compu-

tation of the expected cost of the second phase. However, it

relies on the assumption that the mass is constant or varies

little and does not account for constraints on control or

state in the calculations. Moreover, it requires imposing tf
and adjusting the normalization of C2 with respect to mass

consumption. A discussion on how to choose tf is provided

in Section IV-C.

B. Calculation by Numerical Solution of an Optimal Control
Problem

We now consider a case where u2 is only given nu-

merically as a function of the initial condition x(t1). Con-
sequently, we must numerically compute the expectation

Eϕ[C2]. This can be done, for example, using a Monte Carlo

method by calculating C2(x(t1)) for initial conditions x(t1)
randomly generated according to a Gaussian distribution

with mean m(t1) and covariance P (t1). The expectation of

C2 is then estimated by the average of the obtained costs.

This method is flexible as it does not require assumptions

about the dynamics. However, it is computationally inten-

sive as it requires a large number of solutions to obtain

accurate estimates.

We propose another approach using an "unscented" filter,

originally introduced in [12]. The principle is similar to a

Monte Carlo method, with the difference that the initial

conditions are not randomly generated but chosen based

on m(t1) and P (t1) to accurately represent the distribu-

tion of x(t1). Using this method, it is only necessary to

generate 2n + 1 solutions to estimate Eϕ[C2], where n is

the dimension of the state. The initial conditions are called

sigma points and are chosen as follows.

First, a sigma point is placed at the mean: x0
1 = m(t1).

Then, for k ranging from 1 to 2n,

xk
1 = x0

1 ±
(√

n

1−W 0
P (t1)

)
k

,

where the notation (·)k denotes here the k-th column of

the matrix. Finally, an estimate of the expectation of the

cost is obtained by

Eϕ[C2] ≈
2n∑
k=0

W kC2,xk
1
,

where C2,xk
1
is the cost of the second phase for the initial

condition xk
1 , W

0
is fixed, and W k = 1−W 0

2n for k ranging

from 1 to 2n. We will use this method in a case where we

Property Value Property Value

T 1e6N r0 (1000, 4000)m
q 300kgs−1 v0 (−75,−200)ms−1

umin 0.2 µ0 40000kg
umax 0.8 g diag(0, 0, 100, 10, 0)N
θmax 65◦ P 0

diag(100m2, 100m2,
g0 9.81ms−2 1m2s−2, 1m2s−2,
γ 45◦ 1600kg2)

hmax 600m p 0.95
vmax 30m.s−1

TABLE I: Parameters used for numerical results

assume that u2 is obtained by solving an LQ problem with

additional constraints (or another optimal control problem).

C. Choice of tf
In the two methods presented to construct u2, it is

necessary to set the value of tf based on m(t1) and P (t1).
There is no universal method to do this, but heuristics exist.

For example, [8] proposes a calculation approximating the

duration of the second phase to that of a gravity turn,

whose expression is explicit:

tf = k
∥mv(t1)∥

2

(
1 + sin(Θ(t1))

α+ g0
+

1− sin(Θ(t1))

α− g0

)
,

(13)

where Θ(t1) is the initial angle of the trajectory. In this

expression, α corresponds to the acceleration value allow-

ing for a gravity turn with final velocity and altitude being

zero, and it is the solution of the following equation:

α2 +

(
∥mv(t1)∥2 sin(Θ(t1))

2mrz (t1)

)
α

−
(
∥mv(t1)∥2g0(1 + sin(Θ(t1))

2)

4mrz (t1)
+ g20

)
= 0.

The value of tf can also be chosen based on known

numerical values.

V. Numerical Results

In this section, we present numerical results illustrating

the two-phase method and using the sigma-point method

to calculate Eϕ[C2] as presented. The results were obtained
with the parameters and initial conditions detailed in Table

I. The zone Z is defined with a maximum altitude hmax of

600m, a maximum speed vmax of 30m.s−1
. It is represented

in gray in the figures. We first computed the solution of

Problem 2 using the IPOPT library in Python. To regularize

the problem, we penalize the state feedback gains in the

cost of Problem 2, so that it is written as:

Eϕ[C1(u, t1)]+Eϕ[C2(xt1)]+

∫ t1

0

2∥Kn(t)∥2+∥Kd(t)∥2dt.

The solution is used to generate trajectories following the

dynamics (9) from 0 to t1, with random initial conditions

at 0 with mean (r0, v0, µ0) and covariance P 0
. The control

and trajectory of the first phase are plotted in blue. From t1
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to tf , we calculate trajectories as solutions to the following

problem.

Problem 3 (Simplified computation of phase 2):

min
a

∫ tf

t1

a(t)⊤a(t)dt+ 200 x̄(tf )
⊤x̄(tf )

subject to the constraints:
(r, v, µ)(t1) = (r1, v1, µ1),

x̄(·) follows (11) ∀t ∈ [t1, tf ],

u2(t) = (a(t)− ga)
µ
T ∈ U a.e. on [t1, tf ].

We recall that x̄ = (r, v). Additionally, tf is fixed to a value

calculated by (13) from the initial conditions (m,P )(t1).

The control and trajectory samples of the second phase are

plotted in red.

We present results for which we numerically compute

the term Eϕ[C2] by taking m(t1) as the initial condition

at t1. To do this, we computed u2 using CasADi [13] with

the IPOPT solver, and then we compute the contribution

C2 as the fuel consumption for the obtained u2 controller.

The trajectories generated by the obtained solution are

plotted in Figure 1. We observe that trajectories arrive

near the center of the zone at t1, i.e., near ry = 0, and
trajectories obtained in the second phase are more vertical

than those that would be obtained by a one-phase method

[10]. Moreover, during the first phase, the control in Figure

1 has a Min-Max-like shape, which is fuel optimal for the

unperturbed problem [14], but it is smoother and slightly

away from the bounds umin and umax. This comes from

the saturation modeling in the dynamics. The control of the

second phase is far from the bounds umin and umax and

does not correspond to a Max-Min-Max shape, providing

greater maneuvering margin near the landing point to

correct the effects of disturbances.

VI. Conclusions

We proposed a bi-level method for computing robust

trajectories in a landing problem that involves a sensor-

equipped zone. After detailing the process to obtain a

general formulation of the problem, we applied it to the

landing of a reusable launcher. Two distinct approaches

were developed to compute the cost of the second phase

of the trajectory. The first approach utilizes analytical

calculations, which makes it numerically efficient. However,

this method relies on some assumptions and does not focus

on minimizing fuel consumption. The second approach is

numerical, allowing for a more realistic modeling of the

landing problem. The numerical results obtained with the

second approach demonstrate the relevance of the method.
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