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Analyse asymptotique de fonctionnelles de formes

Résumé : On considére dans R", n > 3, une famille de problémes définis dans des domaines
Qe) = Q\ w: avec des trous w, dépendant d’un parameétre ¢ € (0,¢9]. On obtient une ap-
proximation U(e, z), x € 2(e), de la solution u(e, z), x € 2(¢), & ce probléeme en appliquant les
méthodes asymptotiques combinées a la procédure de réarangement des résidus. On construit
le développement asymptotique et on établit des estimations a priori pour les solutions et les
restes dans des espaces de Holder, c’est-a-dire des estimations ponctuelles. La fonction U(e, x)
est utilisée afin de dériver par rapport a ¢ le premier terme du développement asymptotique de
la fonctionnelle J(€2(e)) = J-(u). On obtient en particulier la dérivée topologique 7 (z) de la
fonctionnelle J(£2) en un point z € Q. On consideére également dans cet article des fonctionnelles
de volume et de surface.

Mots-clés : analyse asymptotic, développement asymptotique raccordé, développement asymp-
totique composé (ou multi-échelle), optimisation de forme, fonctionnelle de forme, dérivée topo-
logique
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1 Introduction

1.1 Asymptotic analysis in domains with singularly perturbed boundaries

For the first time, the asymptotics of solutions to boundary value problems in domains with small
holes (cavities in the three dimensional case) were constructed in [14], [15] (see also the book
[16]) in the case of second order scalar equations by an application of the method of matched
asymptotic expansions.

A different approach, using the method of compound asymptotic expansions combined with
the specific procedure of rearrangements of discrepancies is proposed in [35]. The method is
applied to systems of equations, elliptic in the sense of Douglis—Nireneberg, in domains with local
geometrical perturbations in the form of holes and cavities or caverns and bulges near isolated
boundary points and conical points. Full asymptotic expansions of solutions are constructed and
precise a priori estimates in Sobolev spaces for solutions and remainders are established using
the special construction of almost—inverses of boundary value problem operators.

A description of asymptotic algorithms can also be found in the books [37], [38], [39], [43],
where many examples are provided in addition to the general theory of perturbations of geo-
metrical domains.

Let us briefly describe some applications of the approach introduced in [35] and applied to
many different singularly perturbed problems. Nonlinear equations are considered in [34], [46],
spectral problems in domains with small holes are investigated in [40], [63], [36], [47], [48], [20],
the asymptotics of energy functionals for general boundary value problems are constructed in
[33], for isotropic elasticity in [71], [72], and for anisotropic elasticity in [55]. We refer the reader
to [54], [8], [7], for other applications in elasticity theory. On the other hand, the problems
with artificial boundary conditions, which are close to the subject of the paper, are studied in
[56], [57], [58]. Finally, the method of asymptotic analysis has been applied, which is somehow
surprising, for construction of selfadjoint extensions of differential operators in [53], [50], [20],
[65], (see also chapter 6 in [43]), and for the description and modelling of elastic bodies with
small defects in [5], [60] and other papers.

The formal asymptotic analysis performed in the present paper uses similar methods and it is
described in a similar framework as in references [50], [20], but for different purposes. However,
the estimates of asymptotic remainders are derived in weighted Héolder norms.

1.2 Preliminaries

Let Q,w be two domains in R” with compact closures , @ and smooth boundaries 0, Ow. We
assume that both domains {2 and w contain the origin, and we have the following inclusions
0 =(0,...,0) e wCB; CB CQ, where Bg = {z € R” | |z| < R} denotes a ball of radius R.
It is easy to achieve these inclusions by shifting the origin and rescaling. We introduce the sets

(1) we={zeR" | ¢ :=c'zcw}, Q) =0\a,,

where € € (0,1] is a small parameter. By ¥ we denote a smooth surface of dimension d < n,
in the case of d = n we have ¥ = R", in the case of d = n — 1, ¥ becomes a hypersurface.
denotes the part of ¥ included in €2, i.e., = = X N (), and we always assume that O € =.

We shall consider the set

[1]

2(e) = 2N Q(e)

depending on the small parameter £ and we introduce the integral shape functional

(2) Je(u) = F(z,u(e, ), Vule,x))ds, ,

(€)

T
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4 Serguei A. Nazarov, Jan Sokotowski

which depends first of all explicitly on ¢ since the integral is defined on the set Z(e), and
also depends implicitly on ¢ since the integrand is a function of the trace of a vector function
u = (uy,...,ur) and of its gradient V,u on E(e). Here u is a solution to the boundary value
problem

(3) ,C(Vw)u(s,x) = f(&?,l‘), RS Q(g) ’
(4) Bz, Vi)u(e,z) = g(e,z), =€,
(5) BY(e 'z, Vo)ule,z) = ¢“(e,2), = € Ow: .

The operator £(V;) is a T' x T—matrix of homogeneous second order differential operators with
constant coefficients,

(6) L(Ve) = L(e'Vy) = e2L(Va) -

Operator (6) is assumed to be formally self adjoint. Boundary operators (4) and (5) are suf-
ficiently general, however should be chosen in such a way that problem (3)-(5) remains self
adjoint, i.e. the Green’s formula stays valid

(7) (Lu,v)a() + (B, TW) 90 + (Bu, TVv) g, =
(u, Lv)oe) + (T, BM)aq + (Tu, Bv)a, -

for all functions u,v € C®(Q(e))T. Here (-,-)p stands for the scalar product in Lo(D). A fairly
used method of construction of operators B? and B“ is described in [30]. The following Green’s
formula is supposed to be valid in Q(¢)

(8) (Lu,v)qe) + (N, )0 + (N4, v) g, = a(u,v;Q(e)) ,

where N2, N are T x T matrices of the Neumann boundary operators on 99 and Ow,, respec-
tively. The sesquilinear form a(-,-; (¢)) is symmetric and non negative, i.e.,

(9) a(Au, pv) = Aga(u,v), a(u,v) =a(v,u), a(u,u)>0.

As usual bar denotes complex conjugation. The rows B?, 7;* of the T x T matrices B, T are
selected in one of the following ways, separately for each row with index j =1,...,T,

(10) Biu = (SN); , T'u=(S); ,
(11) or ngu = (8%); , 7;Qu = — (SN ), .

Here S? € C*®(00Q)T*T is orthogonal matrix function on 9. Similarly, the matrices B, 7%
are defined by replacing S%*(z) by S“(¢) which depends on the fast variable ¢ € Ow. From
(8),(10)—(11) the full Green’s formula (7) follows.

Let us point out that we establish general properties of the linear mapping associated to
problem (3)-(5) and to this end we should consider general right hand sides f, g and ¢* for
the problem. However, for evaluation of functional (2) we need only the particular form of the
right hand sides. Actually, we assume that ¢¢ = 0 and f = f© is independent of £ and defined
everywhere in (2, in particular in the cavity w.. In addition,

(12) g(e,z) = ¢%(z) + (e, )

where ¢}(z) is a function independent of &, and § a small correction, which serves to ensure
the fulfilment of compability conditions (39). In the particular cases of the explicit solvability
of problem (3)-(5), i.e., if the unique solution exists, or with the condition suppf® N w. = () the
function g = 0 is admissible. Condition (12) is physically acceptable, since e.g., the appearance
of a cavity in the elastic body in the state of the static equilibrium must diminish the exterior
loading by the decrease of the weight.

INRIA



Asymptotic analysis of shape functionals 5

1.3 Shape and topology optimisation

Let us outline the usage of the topological derivatives for numerical solutions of shape optimisa-
tion problems. In the classical theory of shape optimisation [65] necessary optimality conditions
are given at the boundary of an optimal domain. The optimality conditions are derived applying
shape calculus and shape gradients describing the boundary variations. Shape calculus is used
as well in order to improve the value of shape functionals during the process of optimisation.
Unfortunately, there is no result which could be applied in order to establish the optimality
conditions in the interior of an optimal domain and could be used to improve the topology of
the domain. Such results require the analysis of topology variations. In [66] asymptotic analy-
sis is used in order to derive the explicit form of the so—called topological derivatives of shape
functionals in two dimensions. The topological variations are defined in the form of small disks
in two dimensions and constructive formulae are established for scalar elliptic equations as well
as for the two dimensional isotropic elasticity system. The method of proof was based on shape
calculus, and asymptotic expansions of solutions to elliptic boundary value problems with re-
spect to the radius of a small hole were used. Similar results for the three dimensional elasticity
system are given in [69] for topological variations defined by cavities in the form of balls of small
radii. The formulae obtained for the three dimensional elasticity system are still constructive
and can be used for numerical computations, however the formulae are no longer explicit in
contrary to the two dimensional case.

Similar results are used for numerical solutions of inverse problems for the identification of
small holes or inclusions [17], [18], [68]. The homogenization method in topology optimisation is
presented e.g., in [1], [4]. Theoretical and numerical results related to the topology optimisation
problems in two dimensional elasticity are given in [9], [11], [19], [26], [29].

We refer to papers [33], [71], [72], [55], where the energy functionals for elasticity problems
are evaluated, and also to papers [13] and [48], [50], [55] concerning mathematical modelling
of imperfections (microfissures, cracks, inclusions, etc) in elastic materials. The relation of the
cited papers with our investigations are commented in sections 6.5, 6.6, where, besides that,
methods of defect modelling in solids are discussed.

The asymptotic solution U(e, z) to (3)-(5) constructed in this paper is used in order to derive
first terms of the asymptotic expansion with respect to e for the shape functional J (Z(e)) = J.(u)
in (2). In particular, we obtain the form of the topological derivative T (O) of the shape functional
J(E) at the point O € Q
o TEE) - IE)
e—07+ M(wg) ’
where M(w,) is a measure of the cavity w.. The appropriate choice of the term M (w.) follows
directly from the asymptotic expansion and it depends on the shape functional and on the
boundary conditions prescribed on the cavity w.. For example, if £ = Q and E(e) = Q(¢), then
M(w,) = (diamw, )™ can be used for evaluation of the topological derivative of the integral shape
functional J(£2) defined in 2 and depending on solutions to elliptic boundary value problems
with Neumann boundary conditions prescribed on the cavity surface. In the case of Dirichlet
boundary conditions on dw, the classical capacity of w. can be used, rather than the volume of
the cavity, to define M(w,). Surface shape functionals are also considered and the proper choice
of M(we) is clearly made for such functionals.

1.4 Structure of paper and description of results

The construction of the asymptotic expansions is performed in few steps. In the first step
the objective is to establish the asymptotic solution to problem (3)-(5) using the arguments of
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6 Serguei A. Nazarov, Jan Sokotowski

[38] and some other papers, complemented for our specific purposes. In the second step the
integral functional (2) is evaluated at the asymptotic expansion of solution. The most suitable
framework for such a procedure is the scale of Holder spaces which are used to establish the
pointwise estimates of asymptotic accuracy for the solutions as well as for the derivatives of the
solutions with respect to the spatial variables. Taking into account the singular perturbation
of the geometrical domains, the most adapted setting includes the appropriate weighted norms
in function spaces where solutions live. Actually, the linear operators of limit boundary value
problems defined in domains 2\ O and R" \ @ become isomorphisms in weighted Holder spaces,
Theorems 2.2 and 2.3.

The linear operator A% of the singularly perturbed problem has the crucial property, for our
purposes, of uniform boundedness in the appropriate operator norm. This, together with the
uniform boundedness of (A°)~! is shown in Theorem 2.4. As it was mentioned above, up to
now the elliptic boundary value problems in singularly perturbed domains are investigated to
the full extend (see, e.g., monographs [37], [16], [25], [38], [39]), however the uniform a priori
estimates, to the best knowledge of the authors, are not established in the existing literature in
such a generality which is required for the purposes of the paper. The estimates in weighted
Sobolev spaces are sufficient for most of applications, so there was no need for more complicated
setting and more involved estimates which have to be used in the paper. Let us recall that in
Sobolev spaces and in more general weighted Sobolev spaces, by an application of the Hardy
inequality, the boundary value problems admit variational formulation.

For limit problems, independent of small parameter e, the general results of [31] (see also
[43], section 3.6) are used to establish properties of boundary value problems in weighted Holder
classes based on the corresponding properties in Sobolev classes. Such developments can be
found in three subsection of section 2, in addition we exploit the so-called polynomial property
of problem (3)-(5). The property is common for most of the boundary value problems of math-
ematical physics with symmetric bilinear forms (see [45], [52] and sections 5-7 in [43]). In last
subsection 2.4 the main auxiliary result for the norm of the inverse linear operator associated to
the singularly perturbed boundary value problem is proved. The argument applies the procedure
of gluing of inverses of limit problems operators combined with the crucial trick of the removal
of kernel and co-kernel of the mapping .A° by means of introduction of some nonlocal compact
perturbation. It results in new boundary value problems (46)-(48). Such approach allows us to
minimise the technicalities connected with the analysis of problem (3)-(5) which is not uniquely
solvable, and arbitrariness of the solution selection in such a case.

The asymptotic analysis of (3)-(5) is performed itself in section 4. However, all necessary
auxiliary results are collected in section 3, where we also introduce the special singular solutions
to homogeneous limit problems which are used to construct the proposed approximation of
u(z,€). The most important object in the analysis, the so-called polarisation matriz is introduced
and some properties of the matrix are established. The polarisation matrices are present, either
in explicit forms or implicitly in all asymptotic formulae obtained in the paper. The polarisation
matrices are attributes of boundary surfaces 02, Ow and differential operators £, B%, B“. Such
matrices are in fact generalisations of classical objects in harmonic analysis like the capacity, the
polarisation tensor and the tensor of virtual masses due to Polya, Schiffer and Szego [62], [61].
In section 3 we recall only the known results necessary for our purposes, we refer the reader for
details to papers [49], [20] in the case of general boundary value problems, and to [71], [55] in
the case of elasticity system.

The specific matrix notation used for construction of asymptotic solutions, first introduced
in [50], can be explained and justified as follows. First of all, the special solutions of first and
second limit problems, used throughout the paper are collected in rows, see e.g. section 4.

INRIA



Asymptotic analysis of shape functionals 7

The matching procedure applied for derivation of asymptotic approximation I results in two
columns a(e), b(e) which contain the coefficients of linear combinations of special solutions.
Formal description of the procedure and coefficients can be relatively complex, see e.g. [16], in
our notation such procedure is restricted to elementary operations on matrices and columns.
The notation is used in final formulae (102), (103) given by Lemma 4.1 for columns a(e) and
b(e). The columns are constructed from the columns of coefficients of Taylor expansion written
for the solution of the first limit problem in  in terms of the polarisation matrices m‘, m* and
the diagonal normalising matrix £ = £(¢) defined in (98). For our specific purposes, the required
accuracy of asymptotic approximation is discussed in section 4.4. The estimate of the norm for
the difference u — U between the exact solution and its approximation is given in Theorem 4.1.
We point out that the simplicity of the argument in the latter theorem is partially due to the
matrix notation, which simplifies the evaluation of the discrepancies of the asymptotic solution
U in problem (3)- (5). The principal role is played by the uniform estimates for solutions to
problem (3)-(5) in section 2.

Asymptotic analysis of shape functional (2) is performed in section 5. The structure of
asymptotic solution U (e, z) readily indicates two different cases which result in different asymp-
totic expansions of shape functionals.

1° The boundary conditions prescribed on the interior surface dw, (the boundary of cavity)
are different from the Neumann conditions and the resulting perturbation of the solution v to
the first limit problem in 2 is O(1) with respect to €. Since in such a case the gradient V u(e, z)
of the solution to singularly perturbed problem is of magnitude (1 + |z|)~!, thus becomes equal
to O(e ') near to the cavity and grows boundlessly with ¢ — 0+. For such a solution the
method of linearisation devised in the paper is not applicable to functional (2). Therefore, we
have to restrict ourselves to the particular case of shape functional

(13) Je(u) = /:( )F(z,u(s,x))dsw ,

such that the integrand F depends only on the function u.

2° The Neumann boundary conditions conditions are prescribed on the surface dw.. In such
a case some terms of the derived asymptotic representation vanish, some of left columns and
upper rows of the polarisation matrix m* reduce to the null columns and rows and the solution
u(e,z) and its gradient V, u(e,z) are approximately equal to v(z) and V v(z), respectively.
Hence, the linearisation of shape functional (2) can be performed at the solution v of the first
limit problem. Simultaneously, the lower order terms of twofold expansion should be taken
into account, we mean here the solutions to the first and the second limit problems, so the
procedure of evaluation of topological derivatives becomes quite technical. Thus, all details of
the procedure including the evaluation of asymptotic discrepancies are relegated to the proof of
Lemma 7.1 in Appendix.

The main results of the paper include Theorems 5.1 and 5.3 which present the leading terms
of asymptotic expansions of functionals (13) and (2) and therefore the topological derivatives
in cases 1° and 2°, respectively. The last section 6 concerns anisotropic theory of elasticity for
a body with small cavity. The matrix form (without any tensor notation) of elasticity problem
is fully consistent with the notation already used in the previous sections of the paper. In
section 6 we provide the formulae for topological derivatives of volume functional (184) similar
to the energy functional, and of surface functional (185) appearing by the Neuber-Novozhilov-
Weighardt fracture criteria. In supplementary subsections of section 6 it is shown that our
general results include as particular cases and generalises all former results [71], [72], [55], [69],
[13].

RR n° 4633



8 Serguei A. Nazarov, Jan Sokotowski

2 Polynomial property and existence of solutions to boundary
value problems

We start with a brief description of the general theory of elliptic boundary value problems with
symmetric bilinear forms.

2.1 Polynomial property and solvability of the first limit problem

We say that a pair {L£,a} has the polynomial property [45],[52], if the following assertion holds
for an arbitrary domain D C R”,

14 ue C®°MD)", L(Vy)u(z)=0, zeD, a(u,u;D)=0& ue P|, .
D

Here P is a finite dimensional linear space of polynomials in z = (z1, ..., z,) with coefficients in
CT'. In particular, for the elasticity system, P is the space of rigid motions (see section 6.1).
We denote

(15) PQ)={peP : Bz, V,)p(z) =0, z €09},

(16) Pw)={peP : Bc 'z,Vy)px) =0, z € Ow.} .

We introduce two limit problems in order to define the expansions of the solutions to problem
(3)—(5) with respect to e.

The first limit problem is obtained by filling the cavity w,, so it is formulated in the unperturbed
domain 2,

(17) L(Vz)v(z) = fHz), z€Q,
(18) Bz, Vy)v(z) = ¢(x), =€ dN.

As usual C**(Q) denotes the Holder space for s € Ny := {0, 1,...}, a € (0,1), with the norm
S
|z Co Q)| =Y Sup |Vhz(x)| + SUp sup lz =y ¥ Viz(z) — Vyz(y)| -
k=0

We associate with problem (17)-(18), for I € N := {1,2,...}, a € (0,1), the linear and
continuous mapping

T
(19) A% : OHLe@)T - Q)T x [ O 00) = REC(9,89)
7j=1

where 7";7 stands for the order of the differential operators in the row B;, thus TJQ =1or TJQ =0
depending on the definition (10)—(11).

Theorem 2.1 (cf. [45], [52]) The ellipticity of the boundary value problem defined by operators
{L£,B%} in Q x 0Q follows from the polynomial property (14). The operator (19) is Fredholm of
index zero, its kernel ker A defined as the linear space of smooth solutions to the homogeneous
problem (17)—(18) coincides with the linear space P(Q2) given by (15). There exists a solution in
the space C'TH2(Q)T to problem (17)-(18) with the right hand side {f?, g%} € R-*C(9Q,09), if
and only if the following compatibility condition is satisfied

(20) (f%p)a+ (g%, TP)aa =0 Vpe P(Q) .

INRIA



Asymptotic analysis of shape functionals 9

2.2 Weighted Holder spaces and solvability of the second limit problem

The second limit problem is formally derived by replacing in (3)—(5) the slow variable z by the
fast variable £ from (1) and by setting € = 0. By this inflation the set Q(¢) becomes Q1 \ @,

and the boundary of Q1 disappears at infinity with ¢ — 07. The second limit problem takes

the form
(21) L(Vew(§) = f“(§), (€G@=R"\w,
(22) B (¢, Ve)w(§) = g”(§), £€0G =0w.

In order to establish the solvability of (21)-(22) we introduce function spaces with weighted
norms.

The general theory of elliptic problems in domains G C R" with piecewise smooth boundaries
0G (see, e.g., [43], [23]) is developed in the weighted spaces V(G) of Sobolev type as well as in
the weighted spaces A*(G) of Holder type.

These spaces are defined as the completion of the linear space C§° (Q) of arbitrarily smooth
functions with compact supports in the following norms

(23) Iz VY (G = (Z ||p7s+kV§2;Lz(G)ll2) :

k=0
S
(24) I3 AZ*(G) | = D sup pP K| VEz(€)]
k—0 S€EC
+sup sup PPIE =l *IVEz() — Vaz(n)],

€€G {neqG : 2/t—n|<|¢|}

respectively. Here, 3,7 € R are the weight indices, and p = |{|. Since O € w, the inequalities
0 < ¢y, < p<C, hold on dw and therefore, the space of traces on dw of functions from the
space Ay“(G) coincides with the standard Hélder space C**(0w).

The exponent X of the function p* = |¢[* in (23) and (24) influences the behaviour of the
function z for large ||, at infinity.

The space A;’Q(Q) is obtained by the completion in the norm given below, of the space
C§°(22\ O) which contains smooth functions vanishing in the vicinity of the origin O. The norm
in A;’Q(Q) is defined by the same formula as (24) with G, &, p replaced by Q, z,r, respectively,
where r = |z| is the distance to the origin O,

S
(25) Jlw; AF*Q)N =Y suprf == |\ VEw(z)| +
k=0 €N
+ sup sup rﬁ|x —y| Y Vaw(z) — Vyw(y)| .

z€Q {yeQ : 2z—y|<|z|}

In the case of the space A;’Q(Q), the exponent A of the weight function r* = |z|* influences the
behaviour of the function w for small r, i.e. in the vicinity of the origin.
We shall also use the Holder space A;’O‘ (©(e)) of functions defined in the domain Q(e) = Q\w..

Since Co > r > cye > 0 in Q(¢), the norm [Jw; A% (Q(e))]| is equivalent to the usual norm
|lw; C**(Q(e))||. However, at least one of the equivalence constants Cy in the inequalities,

CZl iz O Q) < Nl AZ* Q) < Cillzs C**( Q)

RR n° 4633



10 Serguei A. Nazarov, Jan Sokotowski

necessarily depends on the small parameter ¢ and tends to infinity with & — 07.
The following theorem establishes the existence of a solution to the exterior problem (21), (22).
By 77 we denote the orders of the differential operators in the row Bg.

Theorem 2.2 Letl € Nya € (0,1). The operator associated to problem (21)—(22),

T
(26) A ASPE)T o AT x [ T (0w) = RGPA(G, dw) |

j=1
is an isomorphism if and only if
(27) 0<p—-Il-1—-a<n-—2.
Remark
Heuristic way of adjusting constraints (27) can be described as follows : The space Alﬂﬂ’a(G)T

should contain fundamental solutions, with the decay O(r?>™™) at infinity, but the constant vec-
tors should be excluded from the space. Both, the finiteness of the norm in the first case and
unrestrictedness of supremum in the second case define exactly the lower and upper bounds in
(27). The same argument applies to constraints (29) for mapping (28) of problem (21)-(22) in
the weighted Sobolev classes.

On the other hand, the same constraints (27) serve to assure the following feature of opera-
tor (37) of the first limit problem (17)-(18) in weighted Hélder classes : Fundamental solution
belongs to, and the constant columns are excluded from the space Alﬁﬂ’a(Q)T. The change of
inclusions to reverse when replacing the exterior domain G by the bounded domain Q is justified
by the fact that in such a case r — 0o becomes r — 0+.

Proof(of Theorem 2.2) In ([43]; §6.4), (see also [50], [52]) it was shown that

1° The operator associated to problem (21)—(22),

T
(28) AY VTG 5 V@) T x [ BT (0w) = RIV(G, )
j=1

is an isomorphism if and only if

n n
2 ——+1 —s<——1
(29) g Tl<r-s<g5-1,

where H*™"/ 3 (Ow) is a Sobolev—Slobodetskii space.

To check up the declared properties of operator (26) we will use the relations between oper-
ators of boundary value problems in the scales of the weighted Sobolev spaces and the weighted
Holder spaces obtained in [31] (see also [43] §3.6, §4.1, [23]).

To this end we also need the following facts which were established in [31] and which were
presented in [43] as well.

2° (Theorems 3.6.11, 4.1.8 in [43]). The linear mapping A“ defined by (26) is Fredholm if
and only if the linear mapping A¥ defined by (28) with the weight index

(30) ’)’Zﬁ—l—a+s—g

is Fredholm.
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Asymptotic analysis of shape functionals 11

3° (Theorems 1.1.7, 3.6.11, 4.1.8 in [43]). If the operator A% in (26) is Fredholm, then the
following inequality holds

(31) Jlw; AT Q)| < e(|[{Lw, Bw); RE*A(Q, 09)]| + [|w; Lo (Br \ w)])

for any function w € A?l’a(Q)T, where Bp = {{ : || < R} and R > 1, i.e. w C Bg.

It is easy to see that the transformation 5 — + defined by (30) maps the interval (27) onto
the interval (29). Therefore, in view of 2° and 1°, the operator (26) is Fredholm if condition
(27) is satisfied.

Let us denote by u € Alﬂ+1’a(G) the solution to problem (21)—(22) with the right hand side
{f,g9} € RgaA(G,aw). Then u € ijﬁ(G)T for any s < and p > 0, with v defined by (30).
Besides, there holds the estimate

s+1
(32) lw; VFL (@) = Z/G92(7_“_3_1+k)lv'§w(§)l2d5
k=0
- 5 s 9)
S sup —l-1—-a+k V’“w{ :| / 2(y—p—s+a— df
kZZO[G{p who@l}| [

< Ollw; Ag (@)

The last integral over G' converges since y —pu —s+a—f=—5 — pand p > 0.
We select p small enough, so that v — p satisfies (29), thus we can write the upper bound
given by 1° as follows,

(33) s V323 (G| < ell{f, 9} R5-, V(G 0w)l| < CII{S, 9} REEA(G, dw)]| -

The second inequality in (33) is obtained by the same argument as in (32).
The first inequality in (33) implies the uniqueness of the solution, i.e. the equality dimker.A¥ = 0
since the operator A“ in (28) is an isomorphism.

For indices ¢ >l +a+ g and x = -l —-a+¢— 3,

Vi (G) c ASH(6)

we refer the reader to [32], ([43], §6.6) for the simplest proof of the above embedding; see also
[6]. Let

(34) {f,9} € C(G)T x C®(0w)T Cc RLV(G, dw) .

Since ¢, 5 are related by (29), in view of (27), 1° assures the existence of a solution w to (21)—(22)
such that

(35) we VT (G)! c A (6) .

On the other hand, there exists a solution w' € ij'ﬁ(G)T to (21)-(22), since in view of (34)
the right hand side of (21)—(22) is in R:V (G, dw) for any s,0. By the embeddings Vi1(G) C
ViR (G) = Viti@) V,ffj(G), the uniqueness of the solution established in 1° implies that

w = w’ with the estimate (33) for w. Furthermore, 3° applied to the solution of (35) gives the
relation

(36) lw; A < e(I{f; 9% REAG, 0w) | + lw; L (Br \ w)|))
< c(1+Cep)|{f, 9} REA(G, 0w)]|,
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12 Serguei A. Nazarov, Jan Sokotowski

where the latter inequality results from (33) combined with the inequality
lw; La(Br \ w)|| < crllw; V221(G)] -

Theorem 2.2 follows in the standard way by completing the space C§°(G)? x C®(0w)! in the
norm ||; RlﬂA(G, Ow)||, which means that solutions which satisfy (36) do exist for all right hand

sides {f, g} € ’R%A(G,@w). 0

2.3 Solvability of the first limit problem in weighted Holder spaces

The following result which is useful for further applications is established for the operator of the
boundary value problem (17)-(18),

T
(37) A% AP@T o AL @) x [ O (00) = REA(R,69) .
=1
The proof of this result is similar to that of Theorem 2.2 and, thus is omitted here. The

properties of the operator A in weighted Sobolev spaces required for the proof are given e.g.,
in ([43], § 6.4), [52].

Theorem 2.3 If condition (27) is satisfied, then the operator (37) is Fredholm of index zero,
kerA? = P(Q) and cokerA® = {(p|, , TQp|BQ) : p € P(Q)}. In other words, the only solutions

to the homogeneous problem (17)—(18) in the space Alﬂﬂ’a(Q)T are polynomials from P(Q). The
compability conditions for problem (17)—(18) with right hand side {f, g%} € RZO‘A(Q, oN) are
given by (20).

2.4 Solvability of perturbed problems and
uniform estimates of solutions

Problem (3)—(5) is elliptic by the polynomial property (14). In spite of the presence of the small
parameter ¢, the following general result [45], [52] applies to (3)-(5).

Proposition 2.1 The operator associated with boundary value problem (3)—(5),

(38) Cl+1’a(Q(E))T N Cl_l’a(Q(g))T x H Cl—l—l—r?,a(ag) % H Cl—l—l—r;",a(awa)

is Fredholm with index zero, its kernel is given by the intersection P(Q2) N P(w). The compability
conditions are necessary and sufficient for the ezistence of a solution to problem (3)—(5),

(39) (f:P)ae) + (9, T p)og + (¢, T*P)aw. =0 Vp € P(Q) N P(w) .

We recall that the estimates in standard Hélder norms established in Proposition 2.1 for the
solution u(e,-) to (3)-(5) cannot be asymptotically sharp since the standard Hoélder norms are
not adapted to reflect the dependence of the solution u(e, -) with respect to the small geometrical
parameter. Furthermore, it will become clear after the proof of Theorem 2.4 is completed, that
even in the case of the trivial kernel, P(£2) = 0, which implies the uniqueness of the solution
to the limit problem (17)—(18), the norm of the inverse of the mapping (38) is unbounded, i.e.
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it tends to infinity, as ¢ — 0. Therefore, instead of the mapping (38), the following operator
associated with problem (46)—(48) is considered in Theorem 2.4,

(40) A AR Q()T = REAQ(e), 09, 0w, ) =

T _a T o
AR x TT AT 09) x [T Ay 7 (0w -
j=1 j=1

The norm of the operator (40) is bounded, uniformly with respect to € € (0, 1]. Furthermore,
under the additional assumption

(41) P(Q) C P(w),

the operator A€ restricted to the complement of its kernel in the space Alﬂﬂ’a(Q(e))T is invertible,
with the norm of inverse uniformly bounded with respect to € € (0, 1], provided that [, @ and g
fulfill relation (27).

Let us point out the following facts which are used in the analysis of problem (3)—(5):

IH1—r¢, ) —pw . . .
1° The norm ;A "72%(69)| in the space C'*17(99) is equivalent, with respect to
g, to the standard Holder norm without weights. Moreover, for any function g, the norm

+1—r¢, . . . .
llg; Aﬂ+ g a(8w5)|| is uniformly equivalent to the following norm, dependent on the small pa-

rameter ¢,

l+1—r;"
(42) o IR qup V()]
k=0 TEOwe
8 —a l—I—l—r}f’ l+1—7‘f
+e” sup [z —y| *Vs  Tg(z) -Vs  g(y)l.

T,y EOwe

In the sequel we shall use for function spaces the notation introduced in (40).

2° Tf assumption (41) is not satisfied, the norm of the inverse operator (A€)~' grows with
e — 01. This fact can be deduced from the general results of [35] (see also chapter 4 in books
[37], [38]). Avoiding to discuss this situation in general, we mention here that in [7], for the
Kirchoff plate problem, a finite dimensional but unbounded (with ¢ — 0+) component of the
inverse operator (.Ae)_1 is extracted, such that the remainder becomes uniformly bounded with
respect to € € (0, 1].

In order to simplify the derivation of uniform estimates, boundary value problem (3)—(5) is
reformulated in such a way that the resulting problem enjoys a unique solution. From Proposition
2.1 it follows that the dimensions of kernel and co-kernel of operator (38) coincide. Therefore,
the new formulation of the problem can be obtained by direct annulation of the kernel and
co-kernel of the linear mapping. To this end, a basis {p!, ..., p’} in the linear space P(Q) of the
dimension £ :=dim P(f2) is introduced, and the functions {h!, ..., he} bi-orthogonal for the basis
are selected,

(43) W W) =0k, k=10,
Observing that, by Theorems 2.1, 2.3 and Proposition 2.1 (see (41)), the orthogonality conditions

(44) (,W)a=0, j=1,..,¢
(45) (U’a hJ)Q(E) =0, j=1,..4¢
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14 Serguei A. Nazarov, Jan Sokotowski

provide the uniqueness of solutions to the problems (17)—(18) and (3)—(5), respectively. We
replace problem (3)—(5) by the problem

Y4
(46) 'C(Vl‘)u(gam) + Z hj(m)(uahj)ﬂ(a) = f(s,:z:), T € Q(E) )
j=1
(47) Bz, Vi )ule,z) = g(e,z), =€,
(48) BY(e 'z, V) ule,z) = ¢“(e,2), = € Ow: .

The above problem is not any more purely partial differential equations, however the additional
terms are compact. Therefore, the associated linear operator considered as mapping (38) remains
Fredholm.

We point out that due to the uniqueness of a solution to problem (46)-(48) we can forget
about the small correction g in (12). All along the asymptotic analysis performed in the sequel
we suppose that g(e,z) = ¢*(z). We return to the correction g only when dealing with the
formulation of final result for problem (3)-(5).

Lemma 2.1 1) Operator (38) associated with the boundary value problem (46)—(48) is an iso-
morphism.

2) If the orthogonality condition (39) is fulfilled, then any solution to (46)—(48) coincides
with the solution to (3)—(5) subject to (45).

Proof
1) Assuming that conditions (43) as well as (45) and (39) are satisfied, we introduce the orthog-
onal decomposition, with respect to the scalar product in Ly (€2(¢)),

(49) oL Qe)T = D) @ £(h, ..., hY),
(50) RFLC(Q(e), 89, 0w, ) = Ry @ {L(h}, ..., k"), 0,0},

where £(h!, ..., ht) denotes the linear hull of the set h', ..., h*. From Proposition 2.1 it follows that
the restriction D — R, of the operator associated to problem (3)—(5) is an isomorphism. The
operator associated to problem (46)—(48) is an extension of such a restriction, and in addition
its finite dimensional component

V4
LY, B D us ¢ B (u, b)), 0,0 3 € {£(h', ..., h),0,0}
Jj=1

turns out to be the natural identification of the last subspaces in (50). This completes the proof
of 1).

2) We write the Green’s formula (7) for the solution u to problem (46)—(48) and for a polynomial
p*, which leads to the equality

Y2
= W (u,)g), p* + (97, T )00 + (9°, TP )ow. = 0 .
=1 Q(e)

Using bi-orthogonality (43) and condition (39) the above equality becomes (u, hk)Q(g) = 0, which
completes the proof of 2). [
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Theorem 2.4 Let the indices of regularity I, and the weight index (8 satisfy the inequalities
(29). Then the norm of the operator (.AZ)_I, the inverse of the mapping associated to problem
(46)—(48),

(51) A5 0 AE(Q()T = RETA(Q(e), 09, O ),
is bounded by a constant independent of € € (0, 1].

Proof
We construct an almost-inverse R; of the operator A;,

(52) R, : REEA(Q(e), 09, 0w:) — AL (Q(e)T
i.e. such an operator that for some § > 0 the following inequalities hold true,

(53) 1RG; RETA(QUe), 09, dwe) — A (Q(e)) | < C
(54) A5 R;, — 15 RE*A(Q(e), 09, 0we) += || < Ce?

with the constants C, Cy, independent of ¢ € (0,¢9]. Here I denotes the identity operator. In
this way we show that the operator Aj R is invertible and we have (‘AZ)*1 = R; (AiRi)fl.
The norm of the operator (,42)_1 is bounded, in view of (53)—(54), by the product of the norms
of operators Rj, and (.AZRZ)A.

Using the continuity of the norm of the operator (.Afl)_1 with respect to the parameter € > 0
the result can be extended for € € [gp, 1].

Let dp be sufficiently small, such that inequality (27) holds for the index [ replaced with
B + 26y, and for [ and a remaining unchanged. For given {f,g,g%} € ’R%’O‘A(Q(s), 00, dw,) we
introduce the elements,

fl(g,x) = (1_X%(E’$))f(5’$) ’ 91(5’37) Zg(&‘,l‘);
(55) f2(8a€) = €2X% (8,€€)f(6,$) ’
9 = (g8, 07) , 92(e,8) =7 g%(e,8),

where, with a cutoff function x € C§°(R) such that x(z) = 1 for |z|] < 1 and x(z) = 0 for
|z| > 2, we put

(56) Xa(€,§) = x(e7%z) , @ €[0,1] .
Clearly
(57) fle,z) = fl(e,z) + e 2f%(e,e ) .

0 o
The inclusions /1 € AL 52(Q), g} € Ay 57 (09, 12 € AL L2(G), ¢ € Ay sy “(8w) hold

true with any § € [0, ] since f! = 0 in a neighbourhood of the origin z = O and f2 = 0 outside
a ball.
We have for f1,
-1, -1,
(58) 175 Mg Zs5 (D =111 = x 1) Mg 35 (Q\ Bl <
_ -1, _ -1,
< e’ll(1 = xa) S5 A5 QI < Cue I3 A5 (e
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16 Serguei A. Nazarov, Jan Sokotowski

and for gjl-,

l—|—1—7‘§2,a l—I—l—rjg,a

(59) lgji Agag” " O < ellgzhg (@]

Finally for f2,

(60) 1725 855 (Gl = ¥llxy (6, €) £ (e, 2°); Ay 35 (B2 \ w)] <
< (49)7xy (e,0)f (e ) A (B, \w)| =
= (4) %Dy £ AL B, \w)| <

ce~0e 10 1 AL ()

and for g7,
+1—7¥,a +1—7¥,a
(61) 195 Agras” " (Bw)ll < cllgfs Ay 77 (0w)| =
w +1-1r% C(B_]_1_ +1-1%,a
=T |lgg ()i Ay 7T (Ow)|| = cemPTIITI g Ay (0w )| -

The following properties are used, besides the definitions of weighted spaces, in order to establish
(58)-(61),
1°r=|z| > €2 on the support of the cutoff function 1 — X1 (e, x);

2° p=[¢ < 2¢3 on the support of the cutoff function X%(e, e€);

3° the change of variables £ — z = & transforms norms (23)—(24) into the expression

e=B=s=)||z z(e7 x); A% (Ge)ll, where G = R" \ w.
Remark The properties 1° and 2° allow for changing the weight indices of function spaces, and
to include the appropriate multipliers in the form of the powers of €. Due to property 3° the
additional multiplier e~ B~11-9) gppears in (60)-(61).

We return to the proof of Theorem 2.4. Let w be the solution of the second limit problem
(21)—(22) with the right hand side {f2, g%}, such a solution exists by Theorem 2.3. Since the

support of f? is compact and AlﬁJ’l’a(G)T C Alﬁfé?(G)T, the unique solution w belongs to the

spaces Alﬂ’;lé?(G)T for all § € [0,dp]. An application of (60)—(61) leads to the estimate:

(62)  Jlws AYLNG)TI < el {2 0%} RESp5A (G, 0w)|| < ce~0e~FI-1-0IN,

where
N = [[{/,9,9" } RE*A(Q(e), 09, 0w )| -

We denote by v a solution to the boundary value problem

0
(63) Lo+ hi(w,W)g=f" inQ,
j=1
(64) B =g' onoQ,

which is obtained by the perturbation of the first limit problem using the same finite dimensional
operator as in (46). Repeating the arguments from the proof of Lemma 2.1(1) we can extend
Theorem 2.3 to problem (63)—(64). In this way, the existence in the space Al;'_lg’?(Q)T of the
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unique solution v to (63)—(64) is established for any d € [0,dp]. In particular, definition (55)
implies that the support of f! is disjoint from the origin O. Using (58)-(59), the estimate for
the solution to (63)—(64) is derived

(65) o3 A5 ()] < ell{f7,9' 1 R 05A(2, 09 < e *N .

Following [35] (see also [37]) we construct an approximation to the solution to (3)—(5),
(66) U=Ri{f 9,9},

by gluing the solutions v and w of the first and the second limit problems :

(67) Ule,z) = (1 —x1(g,2)v(e, ) + xo(e, z)w(e, e 'x)

Remark The supports of cutoff functions overlap each other:

(68) 1—xi(e,z) =1 for|z| >2¢, butl—xi(e,z) =0 on dw,,
xo(e,z) =1 for|z| <1 or|f/<e ', but xo(e,z) =0 on Q.

Using formulae (62) and (65) with ¢ = 0 leads to

17; AL(Q(e)) ] < el — xa)vs AL @) + lIxole, Jwe, ) A5 (G|
< c([lo; AL (@) + OOy A (@) <
< ¢(1 4 gT(B-lm1ma) ~(f--1-0))N — 2¢N .

Therefore, the linear operator R; defined by (66), satisfies (52) and (53). Now, we estimate the
norm of the operator A} R; — I, or equivalently, the norm of the difference A;U — {f, 9,9} in
the space RZO‘A(Q, 0f) , i.e., the discrepancy of the approximate solution U relative to problem
(563)—(54). In view of (68), (64) and (55), boundary condition (47) is fulfilled. It can be also
verified that boundary condition (48) is satisfied. We return to equation (46), which is rewritten
as follows,

£l
LU+ WU WM)ge — f =
7=1
e . .
= L{(1 = x1)v + xow) + >_ B ((1 = x1)v + xow, W)a() — f =
j=1
(69) = (1 —x1)Lv + xoLw — f + Zhﬂ v, W)a = [£, xa]v + [£, xolw
j=1
N _ 101

-~

0

I
¢
Z {((@ = x1)v + xow, M) gee) — (v, h)a},

J

-~

I1

here we denote by [A, B] = AB — BA the commutator of operators A and B. Some comments
on the underbraced terms are listed below.
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18 Serguei A. Nazarov, Jan Sokotowski

e (I) By (55), (57), (6) and (63), taking into account the identities for cutoff functions,
(1 =x1)(1 =x1) = (1 = x1) and x1x1 = X1, We obtain

l
(1 =x)Lv+ > b (v, W)o+x0lw=f+e’f>=f.
j=1

Thus the term (I) vanishes.

e (II) Since w. C By and h? = 0 in the ball By, we have

(U, ) o) = (v, h)a + (xow, M )o\g, -
The last term is bounded as follows

g)ﬂ—l—l—a+26

. diam Q
(0 W | < esuplp? Byl [ (S i <

T
< e INgh1-lma 20 < (oON |
N
<1

where the exponent § — 1 — [ — « is positive by (27). In this way, an upper bound for the
norm Al[;l’a (©2(e)) of the underbraced term (II) is determined.

o (III) Let us consider the commutators [£, x1] and [£, xo]- The supports of coefficients of
the differential operator [£,x1] are included into the annulus {z : & < r = |z| < 2},
therefore by (65), (58),

-1, -1,
1L, xaJos Al ()| < elfos A (Bae \ B) | <
< ce™lo; A 55 (Bae \ Be)l| < e l|o; A 55(Q) | < ee'N .

In a similar way, the supports of coefficients of the differential operator [L, x¢] are included
in the annulus {z : 1 <r < 2}, or equivalently {¢ : ¢! < p < 2¢ !}, therefore by (62),

(60),
I1£, xolw; A (e | = I£(Va), Xo(e, )w(e, e ); A B (By \ By) | =
T ol e, AL (B B: \B)| <
< Cgﬁ—l—l—an;Alﬂ—H,a(B% \IBIE)H < ce[j—l—l—a825” A[lg—Hng( 2E\ )”

1
chﬂ—l—l—a€258—(5€—(ﬂ —1— a)N < ce JN

Finally, we combine the above estimate to derive

V4
1£U + S WU, W)ag — £ AL 5(Q() | <

i=1

< ce|[{f,9,9"}; RE*A(U(e), 09, 0w )| -

In order to complete the proof, for any § € (0,dg], we select sufficiently small ¢ < €(dy) such
that (54) follows. Therefore, the operator R; is the almost-inverse of the operator Aj. O
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3 Power solutions and polarisation matrices

Operators (37), (26) are isomorphisms merely under conditions (27). When increasing (resp.
decreasing) the weight index (@ in the first (resp. in the second) limit problem, it can be
observed that the domain of the associated operator is growing, the kernel of the operator
becomes nontrivial. Therefore, the operator looses the property of being an isomorphism and it
turns out to be only an epimorphism. Elements of the kernels are involved into the subsequent
asymptotic formulae. In this section we describe in details the form of such elements.

3.1 Power solutions of homegenuous system

The precision of the approximation of the true solution u(e,-) by the asymptotic solution (e, -)
depends on our choice of integer J. How to select the appropriate value of J becomes clear after
estimating the discrepancy in terms of J. At the moment, the value of J € N is assumed to be
fixed. For the linear space of vector-valued polynomials p = (py, ...,pr) " such that £(Vz)p =0
in R*, R" 5 z + p;(z) € R and degp; < J, we introduce the basis {U?,...UN} of homogeneous
polynomials such that

(70) Ul(zz) = 27UM(z) Vz€R, degU" =14 ; 7 < Tyt

(71) Z US (Va)U} (x) oo = Ok -

Let ® = (®!,...,®T) be the fundamental matrix of the operator £(V,) in R", i.e., the columns
@', ..., ®T are given as the solutions to the systems of equations

(72) L(Vy)® (z) =e'é(z), zeR",
where j = 1,...,n; €/ = (§;1,...,0;,r) " is the j—th vector of the canonical basis in R", §;  denotes
the Kronecker symbol and § € D'(R") is the Dirac mass concentrated at z = 0.

It is well known, that for n > 3 the fundamental matrix satisfies the relation

®I(zx) = 227D (x) VzER, .

The power functions U~*, homogeneous of degree degU % = 2 —n — 73, are defined in terms of
the columns @/ and the polynomials U*

(73) U™a) =) UF(-V,) () .

It is clear that the functions U*!, ..., U*Y, defined by (70) for +k and by (73) for —k, are the
power solutions of the homogeneous system in punctured space

(74) LV)U(z)=0, zeR'\O.

As it is shown in ([43], § 6.1, 6.4), [50], [52], these functions form a basis in the linear space of
power solutions with the degree A € C such that the real part ReA € (1 —n — J, 1+ J).
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3.2 Special solutions to second limit problem

The proof of the following Proposition 3.1 can be found in references ([43], § 6.1, 6.4), [50], [52].
Remark In [50], [52] the results on the existence of solutions to elliptic boundary value problems
are given in weighted Sobolev spaces. Such results can be established in the weighted Holder spaces
by applying the general method of [31] in the same way as in the proof of Theorem 2.2.

Proposition 3.1 1) The linear space of solutions to the homogeneous problem (21)—(22) in the
space A£,+1’a(G)T with the weight index

(75) vye(l+a—Jl+14+a—J)

is given by the linear hull of the set of functions C1,....,¢YN, of the form (I = UJ + 27, where
2 € A%H’O‘(G)T is the solution to problem (21)-(22) with the right hand sides f“ = 0 and

g¥ = —BYUJ (Theorem 2). Furthermore, the functions (7 admit the representation
. . N ~ .
(76) &) =TI(E) + Y _miU ™ME) + ()
h=1

where (3 belongs to the space Af;l_l’a(G)T with the weight index
(77) ce(l-1+a+J+nl+a+J+n),

and the coefficients m‘j‘-’h form a symmetric N x N polarisation matriz m®.

2) If BY is the Dirichlet boundary operator, i.e., BYw = w, then m¥ is a negative definite
matriz.

3) If BY is the Neumann boundary operator, B = N'“, then m¥ is a non-negative matriz
which gives Tise to a positive linear operator while restricted to the subspace II¥ C CN. The
subspace 11* is defined as the orthogonal complement to the linear hull of the family of columns
(v, ..., bZ]’\,)T consisting of the coefficients defined by the decomposition

N
(79) p(e) = Y BU@)
h=1
of polynomials in Pj(w) = {p € P(w) : degp < J} (see (16)).

3.3 Special solutions to the first limit problem

Let us consider first limit problem (17)—(18). As before, we replace (17)—(18) by (63)—(64)
and denote by ', ...,n" the generalised (cf. [64]) Green’s functions, and their derivatives with
respect to the second argument,

l
(79) L(V2)nk(z) + > (@) (n*, h)q = UF(-V.)i(z) , z€Q,
g=1

(80) Bz, Va)i(z) =0, €02,
the poles of all functions 7’ are located at the origin z = O.

The following proposition is but the same as Theorem 2.9 in [50], the only difference is the
presence of the non—local term in (79). We provide the proof for convenience of the reader.
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Proposition 3.2 The linear space of solutions to the homogeneous problem (63)—(64) in the
space AlUH’a(Q)T with weight index (77) is the linear hull of the functionsn',...,n™. The solution
7 of (79)—(80) can be represented as the sum 17 (z) = Ul(z) + v/ (z), where y/ € Afyﬂ’a(Q)T
denotes the solution to problem (63)—(64) with the right hand sides

¢l
(81) == WU, eCr@\0)", ¢=-BTU7eC0o0".

p=1

In addition, we have the representation
. . N .
(82) W (z) =U (@) + ) mHU"z) +7 (2)
h=1

where the remainder 77 belongs to the space Alfl’a(ﬂ) with weight index (75), the polarisation

matriz m*® with the coefficients myk defined by formula (82) is a symmetric N x N matriz. The

Q

matriz m’* is positive definite in the case of the Dirichlet boundary conditions on 0.

Proof
It can be verified, by direct evaluations of the norms, taking into account (23)-(24), (77) and
(27), that the function U~/ belongs to the space Af,“’a(Q)T but does not belong to the space
Afyﬂ’a(Q)T. In particular, U7 + 4/ € Af,“’a(Q)T, and U7 4+ ¢ Al7+1’a(Q)T. Furthermore,
owing to (72), (73) and (81), the sum 7/ = U~7 414/ solves the problem (79)—(80) with the Dirac
mass 0 in the right hand side. Let us point out that for any boundary value problem posed
in weighted spaces, the specific problem can be defined properly only in the punctured domain
2\ O, and in general it is not the case in the whole domain Q. This is due to the fact that in
the punctured domain the distributions supported at the origin O are ignored and actually, the
function 7 is a solution to homogeneous problem (63)—(64) in the class A5™*(Q)7

Since the set {U*!,...,U*"N} constitutes the basis in the linear space of power solutions of
degree determined by the required precision of approximation, we regard the point O as the
vertex of the complete cone R" \ 0. Therefore, we can apply the general theorem on asymptotic
expansions of solutions to elliptic problems near conical points (see [22], [31], and also Theorems
3.5.6, 4.2.1 in [43]) to the solutions n € Ag""*(Q) and y € A"*(Q) of problem (63)~(64) with

the right hand sides {f,g} = 0 and {f, g} € ’le‘A(Q,BQ), respectively. In this way we derive
the expansions

N
(83) n=Y b;U+7, by €C, feA Q)7
7j=1
N .
(84) y=> biUi+7, breC, FeAtte@)T.
j=1

From (83), taking into account the uniqueness in the space A?’l’a(Q) of the solution to (63)-

(64), we can conclude that 7 is given by a linear combination of the functions 1!, ...,n". On the
other hand, representation (82) follows from (84). Therefore, in order to complete the proof, we
should establish the symmetry of the polarisation matrix m*?.

Let us note, that by the definition of the functions i/ and according to equation (79), it

follows that £L(V,)nF(z) = U *(—V,)é(z) for z € B;. Integration by parts in  \ B,, where B,
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is a ball of radius ¢ < 1, leads to

0
(85) (7,0 + (¢, T )oa = (Ly + Y WP (7, h)a,n")ong, +
p=1
. . ‘e .
+ (BQy],T“nk)m = (', Ln" + Zl W (7, B)0) g, +
p:
=0
+(TQy]a Ban)aﬂ + (yjaNSan) - (ngyja nk> )
hny S ve

where S, is the sphere 9B,, N’ Se is the Neumann operator in the Green’s formula (8) with
replaced by Q \ EQ, and the normal vector on S, is directed inside the ball B,. The left hand
side of (85) is independent of p. After neglecting terms o(p) the limit as o — 01 of the right
hand side becomes

N N N N
> mGUh NS U+ " mp UP — [N m U U+ mur | =
h=1 p=1 S, h=1 p=1 S,
N N N N
=LY m{Uh U+ " mur | - [ mf Ut LU+ mLUP =
h=1 p=1 B h=1 p=1 B
(4 (4
N N
(86) =— (Z myhUh,cUk> ==Y mjUu” /B (Up(=V4)é(z)) U (z)dx
h=1 B, h=1 4

N
= miUR(V,) UM ()
h=1

N
N 26—
=0 = ijhék,h = 'm]k .
h=1

Remark

1) The remainders 37 and 7* in the representations of y/ and n¥, respectively, give rise to
integrals vanishing with o — 0. For ezample,

/ ﬁk(a:)TNS‘-’(x,Vw)nk(x)dsw SC/ ‘ﬁk(w)‘TZ_”_J_ldsw
SQ SQ

< ”,ﬁk;Al7+1,a(Q)HQ—('y—l—l—a)QQ—n—J—lgn—l _ CQ—'H-H-H-OH-J :

where we take into account that the leading singularity of the function n¥ is of the order r2—"=7
and the exponent —y +1+1+a+ J >0 by (75).

2) We have used the Green’s formula inside the ball B,, therefore, the sign of the Neumann
operator NS¢ in the formula should be changed.

?

3) The Green’s formula in general is applied in the sense of the theory of distributions.
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We transform the left hand side of (85) which equals to —m?k by (86). Using (81) it follows
that

(87) m$k = —(f1,7%)a — (¢, T")oq =
l
(88) =
o

(U7, 1WP)o(h?, U *)q + (B 1, T%F) 00 —
1

V4
— Ly + D P R, R e + (B, T an
p=1

We have to verify that myk = m?j. For the first term in the right hand side of (88) such a
symmetry is straightforward. For the second term, first, the integration by parts over R" \ Q is
performed. Then, we observe that the integral over R* \ Q converges since U~/ (z)| < er?—",
altogether it leads to
(B, T )oq = (TOU, B F)oq + (LU, U F gy —
—(U, LU g = (TU, B )on -
Finally, an application of the Green’s formula in the interior of € yields

l
(Ly? + Y WP (7, hP)a,vF)a + (B, TOF)aq =
p=1

l
= (7, Ly" + D WP, WP))a + (T, BYF)aq
p=1

which completes the proof of the symmetry of the polarisation matrix.

For the Dirichlet problem, B = u and 7% = —N, we have £ = 0 and the sums with
respect to p vanish in (88). Therefore, writing Green’s formulae (8) in R” \ Q for the functions
U—J,U~F with the required change of the sign of the normal vector, and in Q for the functions
47, 9*, we obtain

mgy, = —(U 7, NU*)aq + (47, Ny*)oq =
a(U 7, U MR\ Q) +a(y, 4" Q) = Qj + Q% -

Each of the matrices Q' and Q? is non-negative definite (it enjoys the structure of the Gram
matrix and the bilinear form satisfies a(u,u;Z) > 0). For example, if €' Q'c = 0 for some
c€ CN\0, then

N N
a ZCjUfj,chUfk;]R"\Q =0,
j=1 k=1

the equality means, according to (14), that Z;VZI ¢;U™7 is a polynomial, which is impossible.

Q

Therefore, the matrix Q' as well as the matrix m® are positive definite. O

4 Asymptotic expansions of solutions

It is natural to assume that functional (2) is invariant with respect to addition of polynomials
from the kernel P(f2) of boundary value problems (3)-(5) and (17)-(18) (see (15) and Theorem
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2.3, Proposition 2.1)
(89) Je(u) =J:(u+p) VpeP(Q), e€l0,1].

Thus in (2) we can replace a solution to problem (3)—(5) by the solution to problem (46)—(48).
In order to determine the first term of asymptotic expansion of J.(u) we are going to use the
method of matched asymptotic expansions, in the framework developed in [50].

4.1 Asymptotic ansatzen

For simplicity, it is assumed that in (46)-(48) and (3)-(5) ¢* = 0, {f%, ¢} does not depend on
¢ (see comments before Lemma 2.1), and

(90) {£%,9"} € RE*A(Q,09),

i.e., by (75) the right hand side f is defined in the whole domain Q but decays, sufficiently
fast, with z — (. We determine the first and the second expansions of the solution u(e,z) to
problem (46)—(48) in the form

N
(91) u(e,z) ~ V(e,z) = v(z) + Y aj(e)n’ (z),
=1
NJ .
(92) ule, ) ~ W(e,e ) = Z bi(e)¢I (e ).
j=1

Here v € Alﬂﬂ’a(Q)T denotes the solution to problem (63)—(64) with right hand side (90), 5’
and ¢/ the solutions defined in Propositions 8 and 7, respectively. The vectors in C,

a(e) = (a1(e), - an(e) ", ble) = (bi(e), b (e))

are to be determined below. We introduce the rows of solutions (i.e., matrices of sizes T' X N)

lr’ = (nl""ﬁnN)’ C: (417"'7CN)7
and rewrite (91)-(92) in the condensed form
V(e,z) = v(z) +n(z)ale), W(e €) = C(§)b(e) -

For a function y € Af,“’a(Q)T which is represented as

N

N
Wa) = S d U @) + 34 U @) + i), e AT,
j=1 j=1

we introduce the operators 7% (projections) given by the columns of complex coefficients,
- — —\T N
mty = (df,...d)  eCV, 7 y=(d],...dy)T eCN.

The Taylor expansion of the solution v to problem (63)—(64) with right hand side (90) is defined
in (83)-(84), namely

N

(93) v(z) = chUj(a:) +v(z), ve€ AfyH’a(Q)T,
j=1

(94) c=(clyemey) =atveC, 77v=0,
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with the estimate
(95) 7t o; €V + |55 ST < ell{ 7, 671 R AR, 89) | -
From the expansions (93) and (82), we find that
(96) TV =c+mfale), 7 V=ale).

Let us point out that according to (70) and (73),
(97) V) =V (), ETIUTI(E) =UT(a).
Therefore, we use the same notation

mte=(df,....d})", 7z=(d],..,dy)"

for any function z € A5™*(G)T of the form,

N N
2(&) = HdiUI(E) + > 2 A U (€) +2(E), Ze AT .
j=1 j=1

We introduce the diagonal matrix
(98) € =diag{c™,...,e™} .
From (76) and (92) it follows that the coefficients of W satisfy the relations
(99) TTW =E7b(e), TW =" 2Em¥b(e)

which are used below in order to determine b(e).

4.2 The matching procedure

In general, an application of the method of matched asymptotic expansions necessitates the
verification of the so-called matching conditions, we refer the reader e.g. to [73], [16], [37],
[38], [25], for detailed description of the method. This means that the global approximate
solution is constructed by combining the first and the second asymptotic expansions (91) and
(92). As a result, an application of the matching conditions assures the admissible error of the
approximation of the same magnitude as the required precision of the approximation. The error
can occur in the intermediate region {r ~ /e}, the region can be defined equivalently by the

. 1 . . . .
relation p ~ % In our case it means that in the matching procedure we can restrict ourselves
to the coefficients of polynomials U',...,U" and of the derivatives U™, ...,UN of the columns
of fundamental solutions, and neglect the remainders 7,77, ¢/ in the expansions (93), (82) and
(76), respectively. In view of the equalities (97) and taking into account the definition of the
projections ¥, we can conclude that the required matching conditions imposed by the method,

are equivalent in the particular case to the equalities
(100) TV =1TW, 7 V=1W.

The equalities ensure the approximate consistence of expansions (91) and (92) in the intermediate
region. The equations (100), according to (96) and (99), take the form of the system of 2N linear
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algebraic equations for the unknown vectors a(¢), b(e) € CV, with given column ¢ = 7 v defined
in (94),

(101) c+mTa(e) =E70(e), ale) =" 2Emb(e) .
From (101) we readily derive

a(e) = e 2Em E(c + mTale)),
b(e) = E(c+mfale)) = E(c + " 2mEMb(e)) ,

whence, with the N x N identity matrix Z, the unique solution to (101) takes the form

(102) a(e) = {T — " 2Em@EM} "L 2Em¥Ee,
(103) ble) = {T — " 26mSEm¥} Ec,

Lemma 4.1 The matrices T — " 2Em¥Em® and T — " 2EmEmY are invertible for small
e > 0. If the columns of coefficients of linear combinations (91) and (92) are defined by (102)
and (103), then the first and the second expansions of the solution u(e,z) to problem (3)-(4) are
matched, i.e., the asymptotic terms detached in V and W according to decompositions (93), (76)
and (82) coincide and relations (100) are verified.

4.3 The global approximation

We choose the simplest construction of the global asymptotic approximation

(104) Ue,z) = V(e,z) + W(e,z) — {UT(z)n"V+ U (z)7~ V},

where we denote by U*(z) the rows (U*!(z),...,U*"N (z)) with the power solutions U*/(z),
j=1,..N.
In view of (100) the expression

Ut()n"V+U (o) n V=U"(2) st W+ U (z)n~ W

is common asymptotic term in both approximations V(e,z) and W(e,e 'z) and that is the
reason why it has been subtracted in (104).

Remark The perturbation of domain Q by the removal of a small cavity is of simple geometrical
nature, and this implies the lack of cutoff functions in (104). In the case of a perturbation of
the domain near a conical point, the functions V and W may not be defined everywhere in Q(¢)
so the global approximation is determined as follows

(105) U(e’;‘, .’B) = (1 - Xl(‘E; .’E))V(?’;‘, iE) + X()(IE)W(S, 671:6) -

(1= x1(e,2))x0(@{UF ()7 V + U (z)7 V},
where x1 and xo are cutoff functions in (56) Construction (105), which takes form (104) if we
put 1 —x1 =1, xo =1, is proposed for the first time in [49], we refer also e.g. to ([38]; Chapter
2), ([43];Chapter 6), [50] and many papers where the method is applied. We point out, that using

formula (105) or (104) does not lead to any loose of asymptotic precision in contrast to the usage
of the partition of unity 1 — x1 and x1 (see (56)) and the global approzimation
2 2

(106) (1 —X%(E,.’L‘))V(E,SE) —i—X%(E,SE)W(&‘,.’IJ)
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(see [16], [14], [15] and others). We emphasise that definition (67) of the approzimate solution
U(e, x) is not founded on any complex construction, neither (105) nor (67). It is possible since
both auziliary solutions v(e,x) and w(e, &) decay sufficiently fast with x — O and £ — oo,
respectively. The same form of the global approzimate solution is used in (109) below.

Including to W(e, z) or to V(e, z) the terms subtracted in (104) we arrive at the expression
for global approximation (104), respectively

(107) Ule,z) = v(w) +n(x)ale) + (e w)b(e),
(108) U(e,z) = o(z) +n(z)ale) + (e 2)b(e),
where the matrix functions 7 and 5 stand for the rows (71, ...,n) and (Z“l, . Z ~) of remainders

in the expansions (82) and (76), respectively. Formulae (107)—(108) follow from (104), taking
into account the equalities (96)—(100), which leads in particular to

Vie,z) —UT(2)n"V - U (z)7 V = 9(x) +~ﬁ(w)a(6)

W(e,z) — Ut (z)n™W — U~ (z)m~ W = ((£)b(e) -

On the other hand, in Proposition 11 below, we determine the third representation of the
approximate solution U (g, z) exactly in the form used for the approximation of shape functionals,

(109) U(e,z) = v(z) + y(z)ale) + z(e ' z)b(e),
where, by definition, y(z) = n(z) — U~ (z) and z(£¢) = ((&) — U (¢).
Theorem 4.1 If g* = 0 and the data satisfy the condition (90), then the norm of the difference

between the solution u(e,x) to problem (46)—(48) and its asymptotic approzimation (104) satisfies
the estimate

(110)  Jlu = Us A (Q(e)) || < ce™PE o | {19, g2} RECA(Q, 00)]|,

where [3,7,0 are the weight indices defined by (27), (75) and (77), respectively, the constant ¢

depends on the choice of weight indices, while ¢ is independent of € € (0,1] and of {f, g%} in
l,a

RE* (0, 69).

Proof We estimate the discrepancies of the approximate solution I/ in the boundary conditions
(4)-(5) and in equation (3). Note that, e.g. the discrepancy of U in (4) implies, by definition,
the difference Bu — B = ¢ — BU.
Using the representation (107)-(108) we obtain
(111) BSU = B% + BMa(e) + BXb(e) = ¢ + BUb(e),

B“U = B“v + B“na(e) + BYCb(e) = B“v + B“na(e)

Thus, the discrepancy in boundary condition (4) satisfies

T 2.,
(112) 1B2(e ) [ Ay (00
j=1

T
~ 14H1—r,
=Y e B e, V)G A, (00 <
j=1

< eI G AL (000 \ By )| < e G AL (@)

oc—l—1—a

S Cce
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Similarly, two terms of the discrepancy in boundary conditions in (5) are estimated by

T
(113) 185 [T A @wa)ll <
7j=1

< cf[o; A (B < e AV (B)) < e 7[5 ASQ) < N

and
T
(114) 1845 [ Ay (@)l <
j=1

~ AL+, Y , _
< cflii; A (B < e |7 AL (BL)]| < epef

where N denotes the norm of the right hand side in (90).
By (102)-(103) and (95)

(115) ¥ "la(e); C || + [Ib(e); V|| < el|mFv; CV| < eN .
From (102)—(103) and (112)—(114) it follows now that
(116) {0, B — g, BUY; Rg" (e), 02, dwe) || <

< cemin{ﬁ_%a_l_l_a}N '
We transform system (3) using the representation (107),

d d
LU+ B UR )0 = Lo+ B (v, 1) +

p=1 p=1

d d
Ln+ Y BP(n,hP)q ¢ a(e) + LCb(e) + > hP(C, BP)ayg, b(e) =

p=1 p=1
d ~
=f2+0+0+0+ Y BP((b(e), W), -
p=1

The scalar products are bounded,

~ = o l4la diam r\ +1lta—c -

(€ WP)ang, | < ellG AGH (@)l / (2) " ldr <

1
ccso'flflfa
and we can estimate the discrepancy in system (3) as follows
d
(117) leU + 3" 1P U Yo — 7 A () S ee” FHON
p=1

To complete the proof it is sufficient to apply the uniform estimate of the norm of the inverse
operator (A°) ' (Theorem 2.4),

(118) I — s A ()| < ell AU — Afus RETA(e), 02, dwe )l

and establish an upper bound of the right hand side in (118), using (117) and (116). O
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4.4 Asymptotic formulae of required precision

The asymptotic approximation I/ of the solution u, depends on the integer J which determines
the precision of the approximation. Our goal is to determine the first term of the asymptotic
expansion of the associated integral functionals by an application of the Taylor formula, which
can be quite involved (we refer to the Appendix for details), with the solution u replaced by the
approximate solution /. Such a procedure requires the appropriate precision of the asymptotic
solution . We address the question of the appropriate choice of the integer J.

Since the restrictions (27), (75), (78) read as follows

0<p—-l—-1—a<n—-2,
—J-1l<y—-Il-1—-a<—J,
J+n—-2<oc—-Il—-1—-a<J+n—1,
we find that
J<B—-y<J+n-1,

which means that the exponent of £ in the upper bound from the formula (110) is located in
the interval

(119) (S, J+n—1).

For example, with a small §, 0 < § < %, and assuming the equalities

(120) B—(l+1+a)=n—2-94,
(121) y—(l+14a)=—-J—-24,
(122) o—(l+14+a)=J+n+2+6

the upper bound in (110) takes the form
(123) ce™ TR {f2, g REPA(Q, 00)|| =2 e THN,

It is clear now, how to select the integer J in order to assure the required precision of approxi-
mation of the functional (2) while replacing the true solution u(e, z) by the asymptotic solution
U(e, T).

Proposition 4.1 Assume that the weight indices are given by (120)—(122) and
g<min{l+1,J} .
1) If for any € € (0,¢¢9] and x € Q(e) the following estimates hold
(124) [VPU(e,z)| <Ny, p=0,1,....q,
then for € € (0,¢9] and = € Q(e),
(125) |VPu(e,z)| < C,Ny, p=0,1,..,q.
2) If the coefficients in (91)—(92) satisfy the inequalities
(126) laj(e)] <eNy, |bj(e)] <ce’Ny, j=1,..,N,

then the inequalities (124) and (125) are obtained with the constant Ny defined by (123).
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Proof
1) Since r > ce in Q(¢), taking into account (120), (110), and (123), it follows that for z € Q(e)

\VPu(e, ) — VPU(e, )| < cetTIHaBppblizl=atp|gPy e 2) — VPU(e, )|
< ee® PP |lu — Us A (Q(e)) || < ce” PN

2) We use representation (109) of the approximate solution (104), which can be obtained directly
from (104) and (100). To complete the proof let us observe that

(127) [VEv(2)] < ep(lm ol + [[o5 ATH(@Q)),
VEy(@)] < cpy  [VE2(E)] < cpléP7P,
hence, we can differentiate (109) taking into account that Vi = E*I’Vé’ . Therefore, using (126),

it is easy to see that (124) and (125) follow. O
The equalities (102)—(103) can be rewritten in the form

(128) a(e) = e"2EMC{T — " 2EmEMP Y} e,
(129) b(e) = Ec — EMMHT — " 2EMEMP} T EMP e,
whence

130 a;(e) <ce" T nTw i) <ce|mTw
(130) laj ()] < ce” * Hntul,  [bj(e)] < ceTmtol,

which means that conditions (126) are satisfied for ¢ = 0 and we have the following corollary.

Corollary 4.1 Under our assumptions, for any J,

(131) lu(e,z)| + |U(e,z)| < CNy,
(132) |Vou(e,z)| + |Vold(e,z)| < Ce™INy |

where the constant Ny is defined by (123).

Note that inequality (132) follows from (127).

5 Asymptotic expansions of shape functionals

Now we are in position to provide the first terms of asymptotic expansions of shape functionals.
The asymptotics of the functional (2) are derived, by replacing the exact solution u and its
gradient V,u by its approximations U and VU, respectively, and by subsequent evaluation of
the asymptotics of the resulting functional

(133) L) = /ﬁ T U(e,w), Vulh(e,2))dss

Such an approach is applicable in view of formulae (131)—(132) and (101), however it requires
additional explanations due to the presence of the factor e~! in the right hand side of (132).
Since the leading term of asymptotics for solution u(e, z) substantially depends on the type
of boundary conditions on the interior boundary dw,., two different cases are considered, the
second concerns the Neumann boundary conditions BY = N for which the upper bound in
(132) changes for CN ;. We point out that for any other boundary conditions, the Dirichlet or
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mixed conditions, on Jw,, estimate (132) cannot be improved due to the growth of the gradients
Viu(e, z) and ViU(e, x), therefore we restrict our considerations to the functional (13), namely,
to the resulting functional

(134) L) = /H | Fte)dss

with the integrand depending exclusively on the asymptotic solution .

5.1 Boundary conditions different from Neumann conditions on dw.

In this section we deal with either the Dirichlet boundary conditions or the mixed boundary
conditions on Ow.. The Neumann conditions are considered in the next subsection.
We suppose that the linear space P(w) from (16) excludes the constant columns

(135) Ut,..U”,

but includes the columns U**!, ..., U”, where for s = T the Dirichlet condition is prescribed on
Owe, the case » = 0 leads to to the Neumann conditions which are not allowed in the section, so
T > 3 > 0 and condition (71) is satisfied (without differential operators for constant columns),
ie.,

(136) UNTU* =6k, Gik=1,0.

Let us set [ = 1,J = 0 (i.e., the minimal admissible) and for § € (0, 3) we introduce, according

to (120)—(122),
(137) B=a+n—-6, y=2+a—-25, o=a+n+94.

For such a choice of indices, conditions (27), (75), and (77) are satisfied. The upper bound in
(110) takes the form

(138) ce"PH{f2, g RYCA(R, 09)| = ce" PN .

Since, owing to the choice J = 0, only the constant vectors U',...,U”, are taken into account,
it follows that N = T and m“ is a T x T matrix. The matrix (—m®) is the so-called capacity
matrix in the case of the Dirichlet boundary conditions on dw and it becomes positive definite.

Furthermore,

(139) & =Trxr,
(140) v =c=(c1,...,cr) =v(0),
(141) la(e) — € 2m¥v(0)| < 2™ |u(0)],
(142) [b(e) —v(0)] < ce"?[u(0)] -

Note that (140) becomes true, provided we have U’ = (,1,...,6;r)", which can be obtained
after appropriate choice of the basis.
By Corollary 4.1 and Theorem 4.1,

[Je(u) = J(U)] < Cf(maXIU\,maXIUI)/: |lu(e, z) —U(e, z)|ds, <

E(e)

< C(No)Ju -~ Us A (@) [ 7P Pds, < CNg)en 20
E(e)
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Here, we use the convergence, for d = n and d = n — 1, of integrals

/,,,Q-I-a—ﬁ :/r2—n+6 ]

The required precision O(e"2) of the approximation is bounded by O(g?), therefore, employing
representation (107) the asymptotics of the integral

1) = [ Flaole) +n()ate) + (e 2)b(e) ds
=(e)
can be determined by direct evaluations

(143) T (U) — Jo(v) — "2 | Fl(z,v(z)) " n(z)dsy;m“v(0)| <

T

< C(N) { [, e m@dse + [ inteate) e v o))dsa

| Iﬂ(:vav(w))Tn(af)Idsmlv(Oﬂ} =

= O(N){I'+ >+ 3 +1*},

+/~\~<E) Fav(ldss + 2 [

=\ E E\E(e

where F) (z,u) stands for the column of height T' with the components 8%,-‘7: (z,u). The right
hand side of (143) can be estimated by using formulae (76), (77) for I; and (82) for I, I3. As a
result we obtain

n—1
T < c|v(0)] [( | (;) dsy < cNoe" (1 + dan—1|1nel),
=&

72 "dsy < Noe22) |
(€
|I3| < Cx(Ng)measy(Z \ E(€)) < Cr(Np)e?, ( note that d >n —1)

c
|I4‘ < C}:(N())ERQ/ ,erndsaU < CN06n72+27n+d,
0

12| < c|o(0)[e*" =)

T

U

and |Ine| is present in the first line only for d = n — 1. In derivation of the upper bounds for
|I'| and |I?|, inequalities (141)—(142) are used.

We are in position to establish the asymptotic formula valid for functional (13), i.e., with
the integrand independent of the gradient V u, and for all boundary conditions on 952 and Jwk,
constructed according to (10) and (11). Unfortunately, such result is useless for the Neumann
conditions on Jw, which generates null T' x T' polarisation matrix m®, we refer the reader to
subsequent section for this case. The first statement of Theorem 5.1 concerns both cases of
d =n and d = n — 1, but the second statement with the appropriate definition of the adjoint
state [66], [70] is limited only to the case E = Q. Otherwise, a minimal regularity with { =1 of
the right hand sides is required and at the very end we can forget about the weighted Holder
classes. The latter is possible in view of the embedding R:*C(R, 8Q) C RY“A(R, 8), which
follows from the second condition in (137) combined with the fact that the powers of r in the
norm ||f?; AY*(Q)|| (see (25)) are positive. Finally, taking into account the properties (89)
of functional (13), the compability conditions are imposed in order to assure the solvability of
problem (17)-(18) thus we can dispose the nonlocal terms of problem (63)-(64).
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To ensure the existence of a solution to problem (3)-(5) with g = 0, i.e. the fulfillement of
compability condition (39), a correction § is added to compensate the diminution by (f%,p)..
of the first term in (20) owing to the appearance of the cavity w. and the passage from problem
(17)-(18) to problem (3)-(5). Since

|(f%,p)we| < Ce™[lFHCH QN

the correction g can be taken so small
(144) Ig; CH* (09| < C™| % CO*( Q)]
that can be ignored when constructing the asymptotic solution U.

Theorem 5.1 1) Let {f%, g%} € RLC(Q,090) and {f, g} = {f?, ¢"+7} € RMC(Q(¢), 00(e))
satisfy compability conditions (20) and (39), respectively, where g fulfils (144). Then for func-
tional (13), where u € C**(Q(e))T is a solution to problem (3)—(5) with g* = 0, the following
inequality holds,

(145) Je(u) = Jo(v) — "~ [ Fi(@,v(x)) "'n(z)m v(0)ds,| < CF "+ .

The constant C‘s depends on the norm ||{f%, g*}; RVA(Q,09)|| and § € (0,1/2), v € C>*(Q)T
is a solution to problem (17)—(18), any solution is admissible in the case of nontrivial kernel

P(Q) (see Theorem 2.1), n = (n',...,nT) denotes the Green’s matriz for boundary value problem
(63)-(64), and m¥ is the polarisation matriz of size T X T.

Ve
By (135) the left upper » X s blocs (m k) Lt of the polarisation matriz m* is non—trivial. If

the Dirichlet condztzon is prescribed on Ow, then (—m¥) is the positive definite capacity matriz.
2) In the case E = Q, formula (145) turns into

(146) |Je(u) — Jo(v) — e"_QV(O)Tm“’v(O)| < C}S’gen_ﬂ‘s,
where by V € C2*(Q)7T is denoted a solution to the problem

(147) L(V)V(x) = F,(z,v(z)), =€,
(148) BYz,V,)V(z)=0, z€d.

Proof To complete the proof it is sufficient to show that (146) is valid. The required formula is
obtained from (145), taking into account the equality

— [ Fuavla)n(a)ds

which, in turn, implies the basic property of the Green’s matrix 7).
We point out that compability conditions for problem (147)-(148),

(Fi,p)a=0 Vpe P(Q),

follows from property (89) by differentiation with respect to ¢ of the equality

/]:(m,v(w)—i—tp(a:))dx:/}"(x,v(x))dx
Q Q
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Finally, the term V(0) "m“v(0) is independent on the choice of the solutions V and v, since by
assumption (41) the polynomial p € P(Q2) C P(w) verifies the condition B“p = 0 on dw, thus
m“p(0) =0. O

Remark The generalised Green’s functions 17, i.e., the solutions of problem (63)-(64) with
gt =0 and fl(z) = e/6(z) (cf. (72)) are used in formula (145). The existence of all Green’s
functions for problem (17)-(18) is not assured in the case of nontrivial kernel P(QY). However the
linear combinations n(x)b are always defined for all columns b € R which are orthogonal to the
columns p(O) with p € P(Q) (cf. compability condition (20)). The specific property of matriz
m¥ which is indicated at the end in the proof of Theorem 5.1 makes it possible to evaluate the
integral in (145) even in the case of nontrivial kernel P(2).

5.2 Neumann boundary conditions on Ow,

For B¥ = N¥ the linear space P(w) defined in (16) contains the constant vectors which means
that the polarisation matrix is of the special structure with zeros in the first 7" rows and columns.
This implies that the integral with factor €” 2 in the formula (145) vanishes and the formula

(145) does not furnish any useful information. Let us suppose that there exists at least one
T(n+1)

linear function p1(z) such that N%p; # 0, i.e., the submatrix (m‘J"k) - of the polarisation
Jok=

matrix is non trivial. We consider general functional (2) which has the intrinsic property (89)

and therefore, we can consider problem (46)—(48) instead of problem (3)—(5), with g = 0.

Let us set [ =1, J = 2, and define for ¢ € (0,1/2),

(149) B=a+n—-40, y=a—2§, oc=2+a+n+9,

so it is easy to see that conditions (27), (75), and (77) are satisfied. The vector ¢ = 7Tv € CV
contains N coefficients of the Taylor expansion at the origin of the solution v to (63)—(64) with
the right hand side

(150) (%97} e Ry*A(Q,09),

where N is decomposed in the following way, taking into account the degrees of polynomials,

constants linear  quadratic
T T T
N= T + Tn+TH-1)

which results in the following decomposition of c,

c(0) (o)
(151) c= ey | =7tv= ﬂa)v
2 (o)

and we denote

Furthermore,

_ a3 2 2 _
& =diag{l,...,1,&,...,€,€% ..., } = diag{&(0), £1), E2)

T Tn  T(n2-1)
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and the polarisation matrix is decomposed into blocks as follows

m‘("oo) m“al) m“’02) 0 0 0

w w
(152) m* = | Mg My My | = 0 m‘(ull) m‘(um)
My Moy M (22) 0 migy Mg

Moreover we denote
me — (m‘(vn) m‘(um))
[ m¥ mY .
(21) (22)
The vector function n(z) is also decomposed into three parts n)(z), n(1) (), 1(2)(z), respectively.

We denote for brevity ne(z) = (1(1)(7),n(2) (7)), thus () is a vector function with values in

2 _ . . .
RT(n*+n=1) Qimilar notations are used for columns as well.

Formulae (102)-(103) and (129) imply that the columns a(g) and b(e) —E7 T v are independent

of ¢c(g) = WEB)U. Besides that, in view of (128) the equalities a1(e) = ... = ar(e) = 0 follow. We

recall that m‘(‘i)o)’ m‘("m),m‘("oz) are null matrices. Taking into account the relations

(153) =0, d=7=0, j=1..T,
we derive the first simplified representation (107) of the approximation I, namely

Ule, ) = v() + ne(@)as(e) + Gl T)bo(e) =
= 0(2) + yo(z)ae(e) + 2o (2)bs (€) -

Inequalities (124) and (125) for the functions u and U and theirs gradients follow from Propo-
sition 4.1 with ¢ = 1. Furthermore, the following estimate is obtained

Je(u) =Je@) < cr | {lule,x) =U(e, 2)| + [Vaule, ) — Vil(e, )| }ds, <

E(e

< ¢(No)|lu — U; AZ*(Q(e)) | 5 ){rﬂa_ﬂ + ritePlds, < C(Ny)e™t? |
= €

where cr = cr(max |ul, max |U|, max |V u|, max |V, U|). Here, we exploit the convergence of
integrals over = of functions, r2T® # = 2740 and plteB = pl-ntd for d =pand d =n — 1,
and observe that the value of the upper bound in (110) is obtained taking into account (149),

e N{£9, g7} RGUA(Q, 0Q)|| =: ce" TN

We are going to apply Lemma 7.1 to the integral J.(U), and to this end we derive the following
inequalities,

‘ &( )-7:(3:,11(:1:) + e (2)ae(€) + Co(e 2)ba(€), Vall (e, 7)) dsy—

— Flz,v(z), Vi l(e,x))dsy —
Z(e)

—en /H( )-7:1/1(117,’0(117),VzU(E,.’E))Tn(l)(x)m‘("il)wa)vdsz <

< c(lol, [U], [VU) {L( | 74 ()as () + Co(e™"2)ba (€) "ot
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tf [ ) dsw}

< ¢(Ny) {62n62—2n+d 4 g2nt2—2ntd | 4 —2-2n+d
+€n+167n+d + €n+2€fn71+d} S C(N2)€d+1

In the case of d = n — 1, the term &" fﬁ(s) (a:),VwU(e,w))Tn(l)( ym?, may T )vds;lc can be
also included in the remainder O (e@+1).
For d = n, it follows that

‘/:( )]—'L(ﬂc,v(w),VwU(s,x))Tn(l)(:v)dx — 8 )fé(wa”(ﬂﬂ)aVz’v(x))Tn(l)(m)da:
< elfol, [Vael, [VoU) / [Vane(2)ae(e) + 7' Vela(e™ 2)ba(0) 1) () e

n+2
< C(Ng)/ (en,r—n + £n+1 —n—1 ( ) ) ’I‘l_nd.’l,‘ <
E(e) "

< C(NQ) ( n_1—2n4n + En—l—lE—Qn—l—n + En+26—1—2n+n) S C(NQ)E,

/ F (2, 0(x), Vo(z) Ty (o) da Sc(|v\,|va(x)|)/ Py < ce .

We

Therefore, in the case n = d,

En fia('T?U(‘T)?V.’L‘Z/{(an))—rn(l)( ) (11) ()Ud.T—

S C(N2)6n+1 ,

and for E = Q, by the general property of the generalised Green’s function (see (79)-(80)), it
follows that the subtrahend in the left hand-side is equal to

-
oo Fila,v(e), Vall(e,2)) Ty (@)miyymiyode = & (w3, V°) - mihyayo
where V0 is a solution to the problem of form (147) with a slightly modified right hand side,
(154) ) + Z WP (z)(VO, hP)q = F! (z,v(z), Veu(z)), z€Q,
(155) B%(z,V,)V(2) =0, z€09.
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Finally, let us consider the integral, with the notation of Lemma 7.1 in Appendix,

(156) - F(z,0(z), Vou(z) + Vaye(z)as () + £ 'Veza (7 T)ba(€))dsy -
E) S~~~ ~~ N ~~ 4
. B(z) V(e 'z) + 3 o)

Since the columns a4 () and be(€), included in 0, 9), 3, depend smoothly on the parameter ¢ (see
Lemma 4.1), in the final formula (222) from Lemma 7.1, we are allowed for further simplifications
taking into account the relations

V(z) = Vyo(z) + 5"sz(1)(x)m‘("u)7ra)v

+ small smooth terms of order O("*)

= Vyo(z) + 6”V$y(1)(m)m‘al)7ra)v + ...

(&) = ViU, (§)(m‘("11)7r(41)'u + small columns of order O(¢))

= V.U, (f)m‘("n)wa)v + ...

3¢ = Vgg(l)(f)(wa)v + small columns of order O(¢))

-l—erZg(bounded columns) = VfZ(l)(f)W(JE)’U + ...

In the case d = n — 1 simple considerations based on formula (223) from Lemma 7.1 lead to the
result.

Theorem 5.2 Letd =n—1 and BY = NVY, i.e., the Neumann conditions are prescribed on the
surface Qwe. Consider the solution u(e,z) to problem (3)-(5) for the particular choice of g¢¥ =0
and with {f,g} = {f?, ¢ + g} which verify formulae (150), (149) and (20), (12). Then for
functional (2) the following representation is obtained

(157) \Te(u) — Jo(v) + ™ L F(0,v(0), V4v(0)) meas, 1(w NTII) —
_egn1 " {F(0,v(0), Vv (0) + Vez) (E)Wa)’v) — F(0,v(0), Vzv(0)) }dén| <
0}5 gen—1—|—6 ’

where the constant C‘?,g depends on the norm | {f?, ¢2}; RY*A(Q,8Q)| and § € (0,1/2), v €

AZ’D‘(Q)T is a solution to problem (17)-(18), any solution is admissible in the case of nontrivial
kernel, P(Q) (see Theorem 2.3), w?i)v is the column of derivatives of components v; at the origin

=0 (see (151)), and 21y = (2T, ...,zT("+1)) the row of energy components 27 = (I — U7 of
the special solutions to the second limit problem defined in Proposition 3.1. Integration in (157)
is performed over the hyperplane II tangent to the surface X.

Let us consider the case = = (), i.e., d = n. An application of Lemma 7.1 gives
Je(u) = Jo(v) — e"F(0,v(0), Vzv(0)) meas,w +
v [ | EFO0(0), 950(0) + Ve ) — F(0,00) Vav(0)
T\w
(158) ~Fiu(0,9(0), Vo(0)) " VU, (E)mfyy (s v}dé +

(
+6"(7r(41)V)Tm‘("11)7ra)v +e™M(e) 4+ o(e"*’), §>0,
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where we denote

I(e) = /Qf’vu(x, v(2), Vau(2)) ' Vayq) (@)myyvdz +

+/Q(s) Fou(@,v(z), Veu(z)) TV, 6)(x)m‘(’11)ﬁa)vdx.

Remark In (158) and in the sequel the matriz notation is continued to be used. The matriz
VU, of dimension n X T'n, here Tn is the length of rows U(le) (see (151)), contains the rows

%U(E) ,4 = 1,...,n. The entries of the rows are simply the T-columns of power solutions. The
same meaning have the terms Vzy1), an(l)(m). The n-column Fg,,, consists of T-columns

3.7'“(3:,11,V$u) af(mavavl‘u) i =1
0(Ou1/0z;) ' O(Our /o) yi1=1,..,m.

Such a notation is consistent with the matriz notation used in the paper and allows for standard
by parts integration of terms with the gradient V. In particular, the term

P (,(0), V40(0)) TVl (€)
is a row of the length T, and the expression
Va Fou(@,0(2), Vio(z))

exploited below, denotes a column of the height T.

The term ¢™(e) can be rewritten in the following way. Integration by parts leads to

.
I(e) = — /Q (VI f’vu(x,v(w),vzv(w))) v ()miymiyyvde —

-
_/Q( | (V;—}"'Vu(m,v(z),vzv(a:))) U(_l)(x)m‘("u)wa)vdx—l—

. S

~~

replacing Q(e) with Q

+ [ (n0) Feue0(@). Var@)) (v (@) + Uy &) iy

J

=) (z)
T

o\ T — w oo+
+/8w5 n(E) fVu(w,v(m),va(m))J U(l)(a:)m(n)w(l)vdsgg,

freezing at z = 0

where replacing Q(e) with Q results in an error of the order O ( / rl_"dx) = O(e), and freezing
We

the coefficients at z = 0 in the last line leads to an error of the order O |x|r1_"d3$> =0(e).
Owe
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In this way we obtain

I() = Oe) — / (Vi Foulw,0(2), Vav()) ) T n(@)miy ) vde -

. J
-~

I
-
+\/BQ (n(w)T}"'vu(:B,v(:v),V;w(ac))) Ny (z)m (11)7r( )vdsgC

J

~~

11
+ [ (O Feul0.000), Varl0))) U (€)m s vise

From basic properties of the generalised Green’s functions 7(;) = (n1+T, ...,nT(”+1)), see (79)-

(80), the equality follows
I+ = (V) Tmé e,

where V! is a solution to the problem

(159) +th YV P)q = =V FL (z,v(z), Veo(z)), z€Q,

(160) Bz, V)Vi(z) = J(z,v(z), Veu(z)) ,

with the right hand side § = (J1, ..., J7) in the boundary condition defined by :
3 =0, if B} = S see (11) ,
(161) 3i(a,v(2), Var(@)) = (S°(@)n(@) Fou (o, v(z), Var(e))
if B = (SQNQ) see (10) .

For the Dirichlet or Neumann boundary conditions on 92 we have

3=0, or J(z,v(z), Vou(z)) = n(z) " Fo,(z,v(zx), Viv(z)) , respectively .

In this way we find that the adjoint state is given by the sum W = V°? + V!, where V° and V!

are solutions to problems (154)-(155) and (159)-(160), respectively.

We complete now the evaluation of the leading terms of asymptotic expansion for functional
(2) in the case of = = Q and BY = N¥. We want to relax in Theorem 5.3 the presence of
nonlocal terms in problem formulation, to this end some properties of the adjoint state W are

useful.

Lemma 5.1 Let v = a — 20 and the right hand side (150) verify compability conditions (20),

so that there exists the solution to problem (17)-(18)
(162) v(z) = Ugymgyv + Unym iy + Ugymhyv + ()
with the remainder ¥(z) € A2*(Q)T. Then the problem

(163)  L(Va)W(z) = Fy(z,v(z), Vov(z)) — Vg Foy(z,0(z), Voo (2)) , z €9
B (z, Vo)W (z) = 3(z,v(x), Vev(z)) , z € 0N,

where J is a column with the components (161), admit a solution W € C?>*(Q)7T, defined up to

the elements from the kernel kerA? = P(Q).
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Proof From representation (162) and by the choice of the index v we inherit that the solution v
and its gradient belong to the space C%(Q). In addition v and Vv are in C1*(99Q), see Section
2.2. It means that the right hand sides in (163) are sufficiently regular to obtain W € C%<(Q)7
and it remains to check compability conditions (20) which takes the form

(164) 0= (F, — ViFou,n)a+ @ TWa = (Fi,p)a + (Fou, Vap)a
Vp € P(Q) ,

where after integration by parts we take into account the equality B%p = 0 on 09Q. Since
functional (2) enjoys the property (89), by the differentiation with respect to ¢ of the identity

/ng(w,v(x) + tp(z), Vou(z) + tVep(x))dz = /glf(x,v(:c),vzu(x))da;

(164) follows and the proof is complete. O

Now, we pass to the formulation of the obtained result. The accuracy of asymptotic formulae
will be o(e™) and therefore, inequality (144) is not sufficient to ignore the correction g, however
by formulae (150)-(149) in view of r < ce for = € w, it follows

[(F P | <™ f5 AT Q) < e fH AT Q)]
which means that, as before, the correction is sufficiently small,
(165) Ig; CP(0Q)|| < ce™ || £ A Q)] -

Theorem 5.3 Let E = Q and BY = NV, i.e., d = n and the Neumann conditions are prescribed
on Ow.. Let g¢¢ = 0 and for {f,g} = {f%, ¢ + g} formulae (150), (149), (20) and (165) are
fulfilled. Then functional (2), evaluated at the solution to problem (3)-(5) satisfies the estimate

[Je(uw) — Jo(v) + " F(0,v(0), Vzv(0)) measpw —

e /Rn\ {F(0,v(0), Vav(0) + Vez() (§)m(;yv) — F(0,v(0), Vov(0)) —

(166) (& (0,0(0), V40(0))) " VU, (€)meyymsyv}de -
T

—en /a ] (n(6) T Fou (0,0(0), V20(0))) UG (€)misymfs vdse —

0

—e”(ﬂa)W)Tm‘("n)wa)m < Cf "0,

where the constant C‘?’g depends on the norm ||{fQ,gQ};R},’a(Q, oN)|| and 6 € (0,1/2), v is a
solution (162) to problem (17)-(18), any solution is admissible in the case of nontrivial kernel
P(Q) (see Theorem 2.3), W € C>*(Q)T is the adjoint state given by a solution to problem (163),
finally m‘("n) is the part of polarisation matriz defined by (152) and 71'?1) 1s the corresponding part

of the projection ©™ in (151).

6 Three dimensional elasticity

We specify the results obtained in the case of elasticity system. Both volume and surface shape
functionals are discussed in this section.
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6.1 Anisotropic elastic body with a small cavity

Let us consider the elasticity problem written in the matrix/column form

(167) Lu=D(-V,)TAD(V,)u = 0 in Qe),
(168) N =D(n)"AD(Vy)u = ¢% on 09,
(169) N“u=D(n)"AD(Vy)u = 0 on Ow,,

where A is a symmetric positive definite matrix of size 6 x 6 consisting of the elastic material
moduli (the Hooke’s matrix) and D(V;) is 6 x 3-matrix of the first order differential operators,

& 0 0 0 afs b 1
(170) DO '=]0 & 0 a&3 0 & | , a=—F7;
0 0 & ofr ofy O V2

u is displacement column, n = (n1,n2,n3)' is the unit outward normal vector on 9Q(¢), i.e.
unit column. In this notation the strain and stress columns are given respectively by

.
(171) D(Vg)u = e(u) = (611,622,633, V2623, V2631, \/5612) ,

.
(172) AD(Vz)u =o(u) = (011,022,033, V2093, V2031, \/5012> -

The factors a and /2 imply that the norms of strain and stress tensors coincide with the norms
of columns (171), (172), respectively. From the latter property in matrix/column notation, any
orthogonal transformation of coordinates in R? gives rise to the orthogonal transformation of
columns (171)-(172) in RE.

The linear space P in polynomial property (14) becomes the space of rigid motions ,

(173) P={d(z)c : ce R}, dimP =6,
where
1 00 0 —Qar3 Qo
(174) dz)=10 1 0 axz3 0 —an
0 0 1 —azxy ar 0

Using the above notation and the Taylor formula we can represent any smooth vector field u as
follows

(175) u(z) = d(z)a + D(z) T e(w; 0) + O (j=[2) ,

where a € RS is the rigid motion of u at the point z = O € R® and €(u; O) € R® is the strain
column evaluated at z = O.

The load ¢* is supposed to be self equilibrated in order to assure the existence of a solution to
the elasticity problem,

(176) /{m d(z) T g% (x)ds, =0 € R
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6.2 Readjustment of the problem

The readjustment of the Neumann problem to uniquely solvable problem of the form (46)-(48) is
very useful in many applications and therefore we construct explicitly the functions {h!, ..., h®}
in (43) and (44)-(45), which also makes our presentation of the results in the case of elasticity
self-contained.

We denote by h the matrix [hl,...,hG} with the columns h?,j = 1,...,6. We start the

construction of h by introduction of the columns hi., j=1,...,6, with h, = [hi, - hf], where

1 00 0 —a(r3—z3) a(zry—z5)
(177)  hy(z) =x«(r«) | 0 1 0 a(zz—x}) 0 —a(r —z3) | ,

0 01 —a(zg—15) afz)—z7) 0
and z* is a point in 2 such that the ball B* C R3 of the radius R, with the centre at z* satisfies
B* C Q(e) for all € > 0 and sufficiently small. The cutoff function x, is supported on B*, and
Ty = |z — z¥|.
We find the transformation d such that h(z) = d 'h,(z) and [, h(z)d(z)dz = I, where I is
the identity matrix in R®, or in another words, (h?,p*)q = 6 ik, while p', ..., p%, are columns of
d(zx).

To this end we evaluate the Gramian d,,

(178) dy = : d(x — z) "d(x — )X« (r:)dz |

d. is a 6 x 6 matrix. By symmetry arguments it follows that d, is a diagonal matrix, d, =
diag{t1,t1,t1,12,t2,t2}, where

R
(179) t = / X« (ry)dz = 47r/ X (r4)r2dr, >0,
. 0

(180) ty = a2/ (2 — 232 + |2 — 2312) xa(ra)dz > 0 .
B

Let ¢ = (¢}, ch, ch, ¢, ch,ci)T bea given column in RS, where ¢/ = (¢}, ch,c5) T, ¢’ = (!, ci, )T e

R? and d(z) = (I3,d"(z)), where d”(z) is a 3 x 3 matrix. Taking into account the form of d(z)
we have

(181) d(z)c=d'(z —x*)c+d"(z*)" .

Hence,

(182) / X (m)d(z — z,) " d(x)edz = dyc + / X« (rs)d(z — z,) " d" (z) " dx

* *

Again, by symmetry arguments the last three elements of the column [, x. (ry)d(z—z,) T d"(z)"dx
vanish. Thus, the matrix

(183) d, = / Yo (r)d(z — 3.) T d(z)cdz

is an upper triangular matrix, with the diagonal {t1,t1,%1, %2, t2, %2}, thus invertible, and enjoys
the required property d; ' [, hi(z)d(z)dz = I .
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6.3 Shape functionals

The general theory presented in the paper can be applied for broad class of shape functionals,
however, to fix the ideas we deal only with two representative examples.
Let us consider the functionals

(184) T(u) = /Q ( )o(u;x)TB(x)a(u;z)dac ,

(185) 12(u) = /_ ., Hahosa(os 0

where b is a function on the plane I = {z : z3 = 0}, 2’ = (21,22) " and E(e) = Q(e) NI
The functional J?(u) is related to the integral fracture criteria of Neuber-Novozhilov-Weighardt.
Functional (184) looks like the elastic energy functional

1 1

(186) E(u; Q(e)) = 5 /Q( )6(u;w)TAe(u;:1:)d:1: =3 /Q( )J(u;a:)TA_la(u;w)dw

but can contain a certain symmetric 6 x 6-matrix function B. In the case of constant, diagonal
matrix B functional (184) is related to square of the Ly(€2)—norm of the stress tensor or of its
components. On the other hand, if A(z)"'B(z)A(z)~! becomes a constant diagonal matrix
with our choice of B, then in (184) the similar strain norms are obtained.

For problem (167)-(169) the exclusive dependence of the integrand on the displacement
vector u(e, x) makes no sense, since such a displacement field is defined up to rigid motions (cf.
Proposition 2.1 and (173)). On the other hand, if a part I'p with measy(I'p) > 0 of the exterior
surface 09 is clamped, (let us note that the clamped interior surface dw, is not acceptable from
the engineering point of view), i.e. by the change of condition (168) by the new condition

u=0onTp, D(n)TAD(Vy)u=0onTy =0Q\Tp,

then functional (13) makes sense for the applications in optimum design. In particular, in the
theory of bracing, when admissible fixations of the elastic body on the supports is considered, the
following functional which describes the mean value of settlement of the body can be introduced

(187) J.(u) = d~'(e) /Q  dne s, die) = /Q ( )d(:Jc)Td(ac)da:

(compare with (183)). Our results can be applied to scalar functionals defined in terms of (187),
but the dependence of such a functional on the cavity is inconsiderable, hence such a functional
would not be interesting for applications. Therefore, we restrict ourselves to the particular case
of functionals (184), (185) issuing from the fracture mechanics. Let us mention only, in relation
to (187), that the dependence of the constant in Korn’s inequality on the number and disposition
of small parts (of the diameter O(g)) of the surface 92 is considered in [51].

6.4 The polarisation matrix (tensor)

We use the columns of d(z) and D(z), namely the basis of polynomials is composed of the
functions U7, j =1,...,12,

(188) yl,...,Uﬁ , y7,...,U12

J J

columns of d columns of D
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The functions U %, k = 1,...,12, are defined by the formulae
3
(189) U™ =Y Uy (-Ve)@r() ,
p=1

where ® = (®!, ®2, ®3) denotes the fundamental matrix (the Kelvin-Somigliana tensor).

Since N¥UJ = 0 on w, for the rigid motions U, ..., U, the polarisation 12 x 12-matrix m®
defined in (76) contains the first six null columns and the first six null rows. The remaining right
lower 6 x 6-matrix is denoted by m¥. In the same way we redenote U/ = U+(6+7) ¢J = (36,
Thus,

(190) ¢I(¢) = UI(€) +2(€) +ZmWUJ O+, &E© =0(¢?

(see [72], [55] for the details), and the energy components z/ are given by the solutions to the
exterior elasticity problem

(191) Lz =D(~Ve)"AD(Ve)z=0in G =R*\w,
(192) N¥z = D(n(¢))T AD(V¢)z = g on dw

with the special right hand sides
(193) g'(¢) = —D(n(¢)) "AD(Ve)U! () = —D(n(¢))" Ae’

where j = 1,...,6 and & = (§;1, ..., 6j,6)T is an element of the canonical basis in RS.

When the tensor notation is used, in contrary to our matrix notation, it turns out that
m“ becomes the fourth rank tensor of the same structure and form as the Hooke’s tensor.
The polarisation matrix is involved in all asymptotic formulae, in particular in the topological
derivatives obtained in the paper. Therefore, the explicit evaluation of m* is of importance for
practical applications.

For an arbitrary shape of w this matrix, of course, is not determined explicitly. The same
situation occurs even for the fundamental matrix which is not known for an arbitrary anisotropy
(see [24]). However, in some particular cases the polarisation matrix can be evaluated.

e For canonical two dimensional and three dimensional bodies, such as a ball, an ellipsoid,
ellipsoidal crack, the polarisation matrix is known e.g., in the case of isotropy.

e For two dimensional case the simple formulae obtained by Movchan [41] and reproduced
in [42] and the book published by the author are unfortunately not correct. The mistake
occurs at the very beginning: formula (6) in [41], has been found by Argatov [2].

Proposition 6.1 The following integral representations hold true

(194) mij, = — (D(n) T Ae’,¢*)
(195) m), = (AD(Vg)zj,D(Vg)zk)G + Ajpmeassw ,
(196) m, = 3 (1”7 9AD(Ve)d, D(Ve)H),
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Proof

Formulae (194) and (195) are derived in [72] (for isotropic bodies), and in [55] (for anisotropic
bodies), formula (196) is given in [28], where the question is raised on the equalities between
the above formulae. For the convenience of the reader we derive formulae (194) and (195) and
show the equivalence with (196), using the known integral representation

(197) o = (&:¢")
ow

of the coefficients ¢, of U7%(¢) in the decomposition at the infinity of the solution z to problem

(191) (cf. calculations (85), (86) in the proof of Proposition 3.2 and see [55]). In view of (190)

formula (194) is nothing else but representation (197) in the case of special right hand side (193).

Besides,

miy = (gh U 4 ) =

ow

(198) (D(_n)—l—AD(Vg)Uj,Uk)6 + (D(n)TAD(Vg)zj,zk> =

w ow

(4D(ve)U? ,D(Vg)Uk)w + (AD(Vg)zj,D(Vg)zk)Rs\w .

Here, the Green’s formulae are applied for the domains w and G = R3 \w, taking into account the
opposite directions of the normal vectors on dw for w and G, respectively. Since D(Vg)Uj =e,
equalities (198) and (195) coincide.

We turn to identity (196), which needs much more complex verification. The representation
of the operator £(V¢) in the spherical coordinates (p, ¢),

L(Ve) = D(=Ve)TAD(Ve) = p°L(¢, Vg, 9y)
leads to the commuting equality

(199) L(Ve)pd, = (pdp + 2)L(Ve) |

0
where pd, = p— = §TV§.
op
Let us consider the surface integral

(200) Ir (¢7,¢*) = (D(m)TAD(Ve)C,p8,¢*) = (¢7, D(m)TAD(Ve)pdpc*)

r .

By (199) the derivative pd,¢* still satisfies homogeneous system (191), i.e. (200) is an invariant
integral independent of the integration surface I' which encloses the cavity w.

We now fix I' = Ow and develop (200), employing the boundary condition N“¢/ = 0 on dw.
Integration by parts, with the cutoff function x € C§°(R? \ @) equal to one in the vicinity of the
body w, leads to

Iy, (Cj’ck) - (ﬁCj’pa”XCk)G B (Cj’ﬁpa”xck>(; -
= (£¢7, ppxct) (&7, (o + 21 ex¢H)a =
PO+ 2HEXE
by(199)
= (£¢%p0px¢") , + (1005~ 1367, £x¢F)
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We use here the facts that d,p = pd, + 1 and furthermore, £x¢* = 0 in a neighbourhood of dw.
All integrals are convergent due to the presence of the cutoff function X- To develop further, we
take into account the homogeneous boundary conditions on dw for ¢’ and ¢¥, so we obtain

T (¢/:¢*) = (ADVOE, D(VIx) 4
(AD(Vg)poCj, D(Vs)ka)G - (Cj’ EXCk)c: -
= (AD(V9 p2,D(Vox<¥)  + (400, D(Ve)C!, D(Vx<¥)  +

+2(AD(Ve)¢?, D(Ve)x¢F)a — (¢7, £x¢Me -
~0 =0

We have used the equality D(V¢)p0, = {p0, + 1}D(V¢), similar to (199), and we have taken
into account that integration by parts of the latter two scalar products result in the linear
combination of expressions

J o~k T j o~k j T k

@) (£ch,x¢*) , (Dm)TAD(VOE,CF) (¢, Dm)TAD(VCE)

which vanish due to the definitions of ¢¥ and ¢7. So we can complete the transformation
T, (€.¢) = [ 0L ID(VeIX¢") AD(VO) ¢ e =

+(€"nAD(Ve)¢?, D(Ve)¢F)aw — 3(AD(Ve)¢?, D(Ve)x¢F)e -
— 0 by (201)

It remains to evaluate (200), taking into account asymptotic expansion (190) and by inflating
the surface I' to the infinity. From the equalities

PO, U’ () = U (€) , pd,UF(€) = —2U7M(¢)
(U9, U%) = In(U7,U%) =0, In(U7,U*) =26, (U™, U7) =6,

(the latter result from the integration by parts either inside I', or outside I') we obtain
Ir(¢?,¢*) = In(U, m§;U ) + Ir(m§; U %, U*) = 3my; .

Thus (196) is proved. O

The above result shows that the formulae obtained in [38] and derived in [27] and [28§]
coincide.

For the numerical methods, the most suitable representation for the polarisation matrix
seems to be (194), since it uses only the traces on dw of solutions ¢ k' — Uk 42F. The computations
of the decaying in the infinity solutions z* to exterior elasticity problems (191)-(192) can be
performed by solving the associated integral equations or by an application of the transparent
artificial boundary conditions - if the fundamental matrix ® is known. The new concept of
local second order artificial boundary conditions [59] can be used as well, in such a case any
knowledge of the fundamental matrix is not at all required and the improved precision given by
the appropriate Holder norm near to the surface dw is obtained.
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6.5 Topological derivatives

From condition (176) follows that both problems, problem (167)-(169) in the body Q(e) with
the cavity w,, and the first limit problem in the entire body 2,

(202) D(=Vz)TAD(V,)v =0in Q ,
D(n)"AD(Vz)v = ¢ in 09 ,

admit the solutions u(e,z) € C?*((e))? and v € C%*(Q)3, respectively, under the loading
g? € CH(09)3. Freedom in selection of such solutions up to the rigid motions from (173)
has no influence on functionals (184) and (185) and therefore can be neglected (we recall only,
that using the vector functions k', ..., h®, constructed in subsection 6.2 we can pass to uniquely
solvable problems).

We concretize the asymptotic formulae, derived in Theorems 5.2 and 5.3. We start with the
simpler case of functional (185), with the integrand given in (157) of the form

F(0,€°(v) + D(Ve)z(£)e’ (v)) — F(0,€°(v)) =
= F(0,D(Ve)z(§)e’ (v)) = b(0)oss (2 (v); €) -

Here and in the sequel we use the following notations :

€*(v) = €(v;0) = (D(V)v)(0) ; 0°(v) = Ac(v)
a33(u) = (®) "o (u) = (*) T AD(Vy)u

(see (171)-(172)); z = (z', ...,2%) is a row of the energy components of the special solutions; we
define the rows ¢, ¢ and U? in the same way.

Corollary 6.1 The following formula holds true
2(u) = T2(0) — €2b(0) {0l (1) measy (T N w) — / oa3(20(0); €1, 0)de’} + O(e2H9) |
M\w

where the integration is performed over the plane Tl = {£ € R® : £ =0} and &' = (£1,&).

Before presenting the result for functional (184), we recall some facts. First of all, the adjoint
state W € C%%(Q)? is determined from problem (163), i.e

(203) D(=V,)"AD(V,)W = —2D(V,) 'BAD(V,)v in Q,
D(n)AD (V)W = 2D(n)AD(V,)"BAD(V)v on 99 .

Here we observe that functional (184) depends only on D(V)u, therefore,
Fgu(0, D(V2)0(0)) 'V = Fpi), (0, D(V2)o(0)) T D(V,) -
Furthermore, we have the relations

F(0,€°(v) + D(Ve)ze’ (v)) — F(0,€°(v)) = Fp9yu(0,€° () T D(Ve) U™ (§)m e’ (v) =
= 26°(v) " ABAD(V¢)z(€)e’ (v) + (D(Ve)z(€)e’ (v)) T ABAD(Ve)z(¢)e (v) —
(v)TABAD(V)U™ (§)m¥ e’ (v) =

= (D(V¢)2(£)e® (v)) TABAD(V)z(€)e®(v) 4 2°(v) T ABAD(V)C(£)el (v)
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Finally, in view of (190),

o Tan{ [ Apwodee+ [ AD@U Omedsch o) -

=¢'(v) AB ; AD(n)(¢(€) — U™ (€))dsee’(v) =

= —(v) " AB{m* + Ameassw}e’(v) .

The latter equality follows from (194) and (198). Now, an arrangement of the terms in formula
(166) leads to the statement for functional (184).

Corollary 6.2 The following formula holds true

(204) I (u) = Ji(w) + 3{e’(v) TABAE® (v)measzw +
+(ABAD(V¢)ze® (v), D(V¢)ze® (v))ray, +
+('(W) = 2BA (v)) 'm“e(v)} + O(*) |

where €2 (v) = D(V¢)v(O) and 2 (W) = D(V¢)W(O) are strain columns evaluated at the point
x = O for the solutions of problems (202) and (203); m* is the polarisation matriz of size
6 x 6 for the cavity w in the elastic space with the Hooke’s matriz A, and z = (z',...,2%) is
the row of energy components of the special solutions to homogeneous exterior elasticity problem
(191)-(192).

1
In the particular case of B(z) = EA*I functional (184) coincides with the elastic energy
(186). Besides, we have W = v; thus ¢®(W) —2B A€’ (v) = 0 and the last term in the parenthesis
1
in (204) vanishes, and by (195) the sum of the first two terms equals Eeo(v)Tm“’eo(v). Thus,

we have the relation

(205) B 2(6)) = Bu;0) + 7£°(0) m¥e(v) + 0(*)

As it is well known, the potential energy of the strain/stress state

(206) Puie) = B 2e) — [ ule2) g (@)

o
evaluated on the solutions of problem (167)-(169), coincides with —E(u; Q(¢)), so that formula
(205) transforms to the formula

(207) P(u; Q(e)) = P(u: ) — %e?’eo(v)Tm‘”eO(v) + O(3+)

and becomes of the same form as the formulae given in [33], [71], [72], [48], [55], [28], [69].
Theorems 5.1, 135, 136 covers as well some other results on asymptotic analysis of functionals,
in particular the paper [13].

The assumption n > 3 is used only to simplify the presentation of the results derived in the
paper. Since in the case of n = 2 the fundamental matrix ®(z) contains log |z|, the factor loge
appears in formulae (102), (103), however the asymptotic analysis performed in Section 4 is still
significant. We point out that it is already shown in [14], [16], [35], [33], ([38], Chapter 2, 4) that
in the case of two dimensional Dirichlet problem (3)-(4) the coefficients (102) and (103) becomes
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fractional functions of log ¢, but the remainders retain the power order of decaying with ¢ — 0+
(we note that in [13] the error is only O(|loge|~2)). The relation between such asymptotic forms
and the Padé approximation is discussed in [3].

We consider only the operator £(V ;) with the constant coefficients, however the main results
of the paper (in particular Theorems 5.1, 5.2, 5.3 and Corollaries 6.1, 6.2) remain the same for
the operators with variable coefficients. However, dealing with such operators necessitates more
complex notation and requires more refined and sophisticated matching procedures. We refer
the reader to monographs [38]-[39] and paper [20] for such investigations.

6.6 Modelling of small defects in elastic bodies

In the paper [13] an approach is proposed to replace the problem in variable domain Q(e) with
e € (0,1] by a problem in the fixed geometrical domain but with the operator depending on
the small parameter ¢. This approach is introduced in order to apply the standard Lagrangian
formalism in shape optimisation, we refer e.g. to [10] for the description of the formalism. To
this end, an artificial truncation boundary Sp = 0B is introduced around w. with a fixed radius
R, and the boundary condition of integral type is imposed on the sphere Sg,
S z\T e,R
N>R(z,V)u(e,z) := D (—E> AD(Vj)u(e,z) = (I°"u) (¢,z) , = € Sk .

Here 7% % stands for Steklov-Poincaré operator at the exterior surface of the elastic body Bg \w.,
i.e., the mapping

(209) HY2(Sg)? 5w TFw := NSRW € HY/2(SR)? |
where W € H'(Bg \ w.)® denotes the solution of the problem

;CW:O inIBR\w_g,
NW =0on 0w , W =w on Sg .

The operator T absorbs all dependence of problem (167)-(168) on the parameter ¢ and on
the form of the cavity w and enjoys worthy properties which allow to reformulate the problem
exclusively in the domain Q\Bg. Although determination of the influence of ¢ and w on operator
(209) itself needs an asymptotic analysis on the same level of complexity as we performed in
sections 3 and 4, this approach mimics the classical matching procedure and is rather intrinsic for
the method of matched asymptotic expansions (cf. [12]). We emphasise that the polarisation
matrix m“, known explicitly for the isotropic elasticity with the spherical cavity w. = B,
implicitly emerges in work [13].

We outline another mathematical approach [53], [50], [55] of modelling of various small
defects, invoked from the theory of selfadjoint extensions and issuing from the method [5], [60] in
diffraction theory. The same kind of modelling of defects in elastic bodies is performed formally
in [21]. For simplicity and brevity of presentation we limit ourselves, in the same framework as
in [13], to the considerations concerning functional (13), independent of the gradients Vu, with
the Dirichlet condition fulfilled on the whole surface 0€(¢),

(210) L(Vy)u=fin Q) , u =0 on 9Q(e)

which is simple in the sense that we could consider only the first terms of the asymptotic
expansions for the solution. We refer the reader to [50] for the asymptotic approximations of
arbitrary order and, in particular, for the Neumann boundary conditions (169).
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Let us consider the first limit problem
(211) L(Vy)v=finQ, v=0o0n 9N

and associate with the problem the unbounded operator 2 in the Hilbert space Ly(Q)3, with
the given differential expression £(V;) and the domain of definition

(212) D) ={v € H*(Q)® : 1=00n0Q, v(0) =0} .

The condition v(O) = 0 in (212) imitates the boundary condition u = 0 on Ow.. In view of
the embedding H%(Q) C C(f) the operator 2l is closed, since the expression £(V) is formally
selfadjoint, the operator 2 is symmetric.

The following result can be found, e.g. in [50].

Lemma 6.1 1) Adjoint operator A* is defined by the same differential expression L(Vy), with
the domain of definition

(213) D =DR*) ={v e Ly() : v(zx)=1"=)

where ® = (®!, &2, ®3) is the fundamental matriz for the operator L(V) in R3.
2) The restriction A¥ of the operator A* to the linear space

(214) D(AY) ={v € D(AY) : a=empc}
is a selfadjoint extension of A. In (214) m‘("o) stands for the main (upper left) 3 x 3-block of
the polarisation matriz m*, i.e., —m‘("o)) is the elastic capacity matriz for the cavity w in the

elastic space with the Hooke’s matriz A.
The solution v € D(A¥) of the abstract equation
(215) A" = f € Ly(Q)°
takes the form
(216) v*(z) = v(x) + 1) (%)) (€) 5

where 7y = (n',n%,m3) is the Green’s matrix for problem (211) with the poles at the point
z = O (columns 7* are solutions to problem (79)-(80)). From the relations introduced in (214)
it follows

(217) a = aq)(e) € R? , ¢ =v(0)+ mg))a(o) (e) =
ago)(e) = emiy (v(0) + migyae)(e)) =

a)(e) ={Z - em‘(‘a)m%)}_lem‘(‘a)v((’)) .
If we compare (102), (91), taking into account notation (151), it is easy to see that expression

(216) does coincide with the expansion in (91) for the solution to problem (211).
In [50] it is shown that the energy functional

€0, f) = 5@, 0F)a — (0o
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evaluated at the solution of equation (215) approximates potential energy functional (206) for
problem (211) with the precision O(e!*?), § € (0,1/2). Beside that, in [20] (see also [48]) it is
proved that for any ¢ > 0 there exists g9 > 0 such that for ¢ € (0, &) the eigenvalues A\, (¢) € (0,1)
of the operator 2¥ are related to the eigenvalues A, () of the spectral Dirichlet problem for the
operator L(V,) in Q(e) :

|An(e) = Mn(e)| < St .
In other words, the operator A¥ with the abstract equation (215) asymptotically acquires the
attributes of problem (211). The following simple statement confirms that the same holds true
for a class of the shape functionals.
Lemma 6.2 Assume that for ¢ = 0 the functional Jo(u) = [ F( x))dsy, defined in (13)

with E(e) = Q(e), is continuous on the space Ly()7T, p € [1, 3) and for all v € H?>(Q)T,
w € Ly()7T

(218) JO(’U +w /]:" z, ’U (m)dx S C(,U)Hw;Lp(Q)T”H—J ’ 5>0

(such conditions are fulfilled, e.g., for a quadratic functional). Then, for the solution u of
problem (211) and the solution v¢ of abstract equation (215) the inequality is valid

|To(v®) = Je(ule, )| < Cettd .
Proof

Since the Green’s matrix 7 (z) = O(|z|™!) belongs to the space L,(Q)T*T with p € [1,3), by
the condition (218) we have

Jo(v /.7-" z,u( (0)(x)a0(€)dac < C\a0(€)|1+‘5.
On the other hand, from (217)
|ao(€) — emfyv(0)| < Ce? , ag(e)| < Ce

thus by Theorem 19(1)

|Jo(v®) — {Jo —|—€/ Fl(z,v(x z))" (o) (z)dz m‘("o)v(O)}| < Celtd

J

= Je(u) + 0(51”) by (145)

Unfortunately, the domain of definition (214) still depends on e. In order to avoid such
dependence, in [50] is proposed the equivalent formulation of equation (215) in the space ® with
detached asymptotics (see (213)).

To this end, we reduce the first limit problem (211) in the punctured domain Q \ O, enlarge
the solution space to Hilbert space (213) with the norm

lo; D1 = ([[o% HA(Q)I1? + lal* + [c]*)'/2
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and impose the point condition which compensates for this enlargement and involves the pro-
jection ﬂ(io) (see (151)) as well as reflects the relation indicated in (213). As a result we obtain
the boundary value problem

(219) L(Vz)v*(z) = f(z) , z€Q\O,
(220) v () =0, z€ 0N,
(221) 7r(_0)v5 = sm‘(‘i))ﬂ(*('))vg .

which is well posed with the unique solution, and this solution takes form (216). Furthermore,
problem (219)-(221) can be reformulated as a variational problem, i.e., it is equivalent to the
problem of minimisation of a quadratic functional. We refer the reader to [50] for details.
The same kind of construction can be devised for higher order approximations of boundary
value problems in 2(¢), in particular to Neumann problem (167)-(169). The useful comments
on the issue can be found in [55]. Finally we refer to [46] for applications to problems with
unilateral conditions and to [44] for the applications to crack problems. Such modelling in
the fixed geometrical domain setting can be applied in shape optimisation in particular in the
framework of the Lagrangian formalism and therefore to replace ad hoc chosen formulations with
the Steklov-Poincaré operators.

7 Appendix

The following lemma, describes the first term of asymptotic expansion of the integral functional
(133) (cf. (156)).

Lemma 7.1 Assume that § € C?(G x CT), B e CYG)T, Y, 3 € CLYR" \ w), the function 2
is positively homogeneous of degree (—n), i.e.,

(&) = ¢l (¢
and
13(6)| < cle]™™ 7, | Ve3(8)] < clg| T

Then the following inequalities are valid.

5 (e300 49 (2) 3 (2))

‘ =2(e) €

(222) —/:S(:c,‘ﬂ(a:)) dsz + €43(0,(0))measy(w) — " . )Sa(x,‘ll(x))TQ_)(x) dsy

—e" /Rn\ [§(0,0(0) + V(&) + 3(£)) — F(0,B(0)) — ,,(0,B(0)) "V(&)] dé

<

<¢(3,%,9,3,8,w)e,
where § > 0 is small.
2) If d = n— 1, and II denotes the tangent hyperplane to E at the origin O, & is the
projection of & onto II, and in inequality (222) we replace R" \ w by 11 \ w, d¢ by dép, and
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measq(w) by measy(Il Nw), respectively, the following inequality holds,

(223) ‘/E(E) 3 (:E,Q](w) ) (%) +3 (g)) ds,—

3 (z,B(x)) dsg + £2F(0,0(0)) measq(II N w)

o

e / [3(0,0(0) +D(6) + 3(6)) — §(0,0(0))] dér| <
M\w

< ¢(§,9,9,3,5,w)e?,
where § > 0 is small.

Proof
Let B={z : |z| < e}, where p € (0,1) is a number to be selected.

First, we consider the case of d = n. Using the decomposition Z(¢) = (E \ B) U (E(¢) N B),
we start with the estimates for integrals on E\ B and on E(¢) N B. We denote for simplicity

912) = 5 (2B +9 (2) +3 (%)) - 8@, B@) - Fulz.B@)T (9 (£) +3(2)) -

From the second order Taylor expansion, since the derivative g% is bounded, it follows that

R N IORIOIPEE
and
(225) ‘/E\]B% {3’ (:I:,‘B(x) +92 (g) +3 (g)) - S(w,iU(a:))} de

- [ Sl m@nT (9(5) +3 () ar

<o [ o(2) 3 (7)) ae s camares.

Here, the first order term can be estimated

(226) 3 (z, ()3 (%) dz| < Ce™ e =1 where we need p < 1 .
\B

Now, it remains to estimate the integrals on Z(¢) N B, we denote again by

92(2) = § (2,8 +9 (2) +3 (%)) -5 (0,30 +2 () +3())

and apply the Taylor formula to get

/ $Ho(z)dz
2(e)NB
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furthermore
T T
E(s)ﬂlB%S (m,’l](x) +92 (E) +3 (E)) dx
x x
_ /E(g)nmg (0.5(0) +9 (;) +3 (E)) dz
< c/ |z|dz < ce™TVE | where we require p > o
B n+1
and
(228) ‘ / 5 (0,3(0)) dz + £"§ (0,5(0)) meas, w — / 3 (2.90(z)) dz| <
E(e)NB B
< c/ |z|dz < ce™ VR where we require > S
B n+1’
finally
Toy (Z 1 Toy (%
(229) / [3 0.950)™ (£) - $ule, 0@) ™ (£)] do| <
< c/ |z| ( - " dz < ce™MDH - where we require > %

Again, we denote for d = n,
x

9a(2) =5 (0,00) +9 (2) +3(2)) -5 0.2(0)) - 5,0.0)) "D (%)

€

— {3(0,9(0) + D(€) +3(€)) — 3(0,3(0)) — 3.(0,5(0) V() }

and we have

(230) c(eMtle™H 4 g2nemhn)

/ 93(z)dz| <
Z(e)nB

here any p € (0,1) is admissible .

We have also

[ a0 (D) v ()

) /E@mg {80,20) +8.0,20)™ (7) } do—

= ., {B(OB0)+D(6) + 3(6)) ~ 5(0.2(0)) = 5,0, 0(0) V()  de] <

< foa (BOIBE) +2()f) 2

< C/ (En—l—l,r—n—l +62nr—2n) dr <ec ( n+1€ " +62n —;m) ,
R~\B

here any p € (0,1) is admissible .
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1
5 using the relation (%) = e"Y(z), it follows that left hand side of (222) can be

bounded from above using (224)—(230).
In the second case d = n — 1 we repeat (224)—(230) with some simplifications.
We start with

For,u:ni
n

(231) / LG (7)) +3(7)) -s60w) ds

< C/E\E ‘@ (g) +3 (g) ‘stw < Qenegnld—2n) , where we need u < 1,
furthermore
= 5 eme (@) () o

[ sm0 (D)3 (2)
< c/ |z|dsy < ce TR where we require p > d;j—l
BN=

and
(233) /E(E)mﬂg (5 (0,00 +2 () +3(%)) - 50,3(0))) dso—

L GO0 +9(2) +3 (7)) ~50.20)) don
<o, (b (0 (D) o3 2
= c/a(@nm (r r (6717“"% * 6n+17""%)) Ao <

d
<c (6(‘”1)“ + gheldtl—mn 4 5”+16(d_”)“) , here we require y > i

Finally we have

‘ / 3 (0,3(0)) dsy + 5 (0,(0)) measq (TT N w) — / 3 (2,90(z)) dss| <
E(e)NB B

< c/ |z|dz < ce(dtDr
BN=

and

X

/(H\w - (S (O,‘B(O) +2 (g) +3 <E>) - 3(0,23(0))) dog

et /H GO0 +D©) +3(6) ~30,50)) den

S RCICEIC R AT

(234)

<
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Combining the estimates (231)—(234), the inequality (222) follows. Let us point out that in
comparison with the case d = n, the following terms can be neglected in (222) for d =n — 1,

—€" Fu(z,B(x)) ' Y(z) ds
€)

E(

—e? | 3.(0,3(0)) "D() dén -
M\w
Remark In both cases of the dimension d the integral over I \ w in (222) is convergent, where
for d =n we have I1\ w = R" \ w. For d =n, in general the integral

e’ 3(0,0(0) + (&) + 3(£)) dén

M\w

is divergent. The precise analysis of the convergence of this integral allows us to determine the
number of terms depending on the derivatives which should be subtracted from the integrand
F(0,(0) + D(&) + 3(&)) in order to assure the convergence of the resulting integral. The sub-
tracted terms are rewritten in the slow variable &, the integral over E(e) in the second line of
(222) can serve as an example. The number of derivatives depends on the rate of decay of the
function (&) at infinity and on the dimensions d and n. If, for example P (&) = e "Y(z),
then for d = n = 3 we should replace the integrand f(0,0(0) +D(&) + 3(§)) by the integrand in
the form of the difference

(235) §(0,%0(0) +D(£) + 3(£))
—§(0,90(0)) — F,(0,D(0)) T (VD (€) + 3()) — V() "Fuu(0,B(0))V (&)

in order to assure the convergence of the integral over II \ w.
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