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Formulations Primales-Duales
pour des Problemes d’Estimation de
Parametres

Résumé : On présente une méthode nouvelle pour la formulation et la résolu-
tion des problemes d’estimation de parametres basée sur la dualité de Fenchel.
L’équation différentielle est traitée comme une contrainte dans une formula-
tion du type moindre carrés et cette contrainte est mise en ceuvre comme
un terme de pénalité construit a partir des fonctionelles d’énergies primale
et duale associées a 1’équation différentielle. Des algorithmes de splitting et
une discrétisation via des éléments finis mixtes sont proposés, et des exemples
numériques sont présentés.

Mots-clé : estimation des parametres, dualité de Fenchel, problemes inverse,
regularisation
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1 Introduction

In this paper, we describe a general framework for a new approach to the for-
mulation of parameter estimation problems. This approach is based on Fenchel
duality and is applicable to linear as well as nonlinear problems of monotone
type.

Let us first describe some concepts involved in formulating parameter esti-
mation problems in a manner that is suitable for computations. Many of the
currently used methods are modifications and/or combinations of the equation
error and the least squares formulations. Within the class of least squares for-
mulations, we can distinguish those which treat the partial differential equation
as an implicit constraint and others which impose the differential equation as
an explicit constraint.

To be more concrete, let e : Q x X — X, with Q, X, and X Banach spaces,
describe the partial differential equation

e(a,u) =0, (1.1)

where a denotes the parameter and u the state variable of the differential
equation. Let z denote the observation (or data) in the data space Z, and let
B : X — Z be the observation operator. With the equation error approach
one replaces u in (1.1) by z and solves

e(a,z) =0, (1.2)

for a. The least squares approach is based on the optimization problem
| 2
minimize §|Bu —z|z over @ (1.3)

(or over some appropriately defined subset of ), where u is a solution to (1.1).
If (1.1) is treated as an implicit constraint, then u = u(a) is a dependent va-
riable in (1.3). Alternatively, (1.1) can be treated as an explicit constraint,
and a as well as u becomes an independent variable in this case. We refer
to [A,BK,C1,C2, KL,IK1,IK2] and the references given therein for a more
detailed discussion.

RR 2891



4 G. Chavent, K. Kunisch and J. E. Roberts

Concerning the equation error approach, (1.2), here we only mention that
this approach requires that distributed data be available and further that the
data be differentiable. However, for linear differential equations with e affine
in @ and in u, (1.2) has the advantage of being affine with respect to the unk-
nown a.

The output least squares approach on the other hand is versatile with res-
pect to the type of data required. If, for example, only point-wise or boundary
data are available one can easily find an appropriate observation B and choose
an appropriate norm for Z. But, the simple structure yielded by the equation
error approach is lost when a least squares formulation is chosen. Even if e is
affine in @ and u, problem (1.3) is highly nonlinear if (1.1) is considered as an
implicit constraint. If (1.1) is realized as an explicit constraint then (1.3) is
quadratic in u with a bilinear constraint.

Because it requires the differentiation of data, a pure equation error tech-
nique will not be the method of choice for most applications. The least squares
approach with explicit constraints appears at present to be one of the most ef-
ficient methods for solving parameter estimation problems numerically. With
this approach, for example, the gradient of the fit-to-data function, which is
required in every iterative technique for solving (1.3) numerically, may be cal-
culated in a straightforward manner. Moreover, since a and u are independent
variables, an equation error method can be used to generate an initial guess
for the parameter a, thus combining the advantages of the equation error and
the least squares formulations.

It seems appropriate to mention here as well the adaptive control technique,
also referred to as the asymptotic embedding method [AHS, BS]. The idea of
this method is to introduce a dynamical system having the fit-to-data-term
Bu — z as inhomogeneity and having the solution to e(u,a) = 0 as stationary
solution. The adaptive control technique can also be interpreted as a conti-
nuous version of a gradient method for solving the least squares problem (1.3).

The new framework that we propose in this paper belongs to the class
of least squares formulations with explicit treatment of the differential equa-

INRIA
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tion as constraint.

In §2 we present the method and give several applications to second order
differential equations of elliptic and parabolic type. The subsequent sections
are devoted to the analysis of a particular formulation for a problem proposed
in §2. Basic properties are developed in §3, splitting algorithms are derived in
84 and a mixed finite element implementation is described in §5. Numerical
results are given in §6.

Acknowledgement The authors would like to express their gratitude to
Guillaume Vigo who very efficiently and graciously carried out the numerical
experiments reported in §6.

2 Primal-dual formulation based on Fenchel
duality

We consider the case of a system whose equilibrium state v € X is obtained
by minimization, over the Hilbert space X of states, of an energy functional

E.(u) :

min E,(u) over u € X. (€)

We suppose that this energy functional depends on an unknown parameter
a in a set C of admissible parameters in a Banach space Q:

aeCCQ.

In order to estimate this unknown parameter, we suppose that we have at
our disposal a measurement z of the observation B(u). Here B € L(X,Z)
is the observation operator, and Z is the observation space which is assumed
to be a Hilbert space. The classical least squares formulation for parameter
identification problems is given by

1
min §|z — Bul, overa € C, (P)

RR 2891



6 G. Chavent, K. Kunisch and J. E. Roberts

where u = u(a) is a solution to (£) with a € C.

Hence (£) appears in (P) as a constraint between a¢ € C and v € X.
In particular, each evaluation of the objective function in (P) requires a full
solution of (£). However, solving (&) precisely in the first steps of an iterative
technique for (P), when the parameter a is still far from its converged value,
may be inefficient. Moreover, in situations where the observation operator B
is rich enough, one can build up, by interpolation or smoothing of the available
data z, a (possibly rough) estimate @ of the state variable u, but the fact that
u = u(a) is a hard constraint in (P) makes it impossible to use this estimate.
One has to chose an initial value aq for the parameter a, which determines the
first approximation u(ag) to the state variable which may be quite far from z.
The idea presented here is to relax, in (P), the constraint that a and u satisfy
the state equation by imposing it through penalization.

A first realization of this idea would consist in taking advantage of the
fact that the state equation is defined via the minimization problem (&), and
to replace (P), for £ > 0, by

1 1 ~
min {§|z — Bul}, + —Ea(u)} over (a,u) e C x X.  (P.)
£

We would expect this problem to be a perturbation of (P) if the set of mini-
mizers of the penalization function E,(u) were made up of all couples (a,u)
which satisfy the constraint a € C,u = u(a). But the energy

min E,(u) = E, (u(a))

of the state u(a) associated to a given parameter a depends, in general, on this
parameter ! Since under appropriate hypotheses

i Ea = mi Ea :Emin
o (u) = min B, (u(a))

the set of minimizers of E,(u) over C' x X is made up of only those couples
(a,u) for which the constraint a € C,u = u(a) is satisfied and which produce
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states with minimum energy E,.i,! So E,(u) is not a penalization function for
the constraint in (P), and (P.) is not an appropriate perturbation of (P).

The above considerations suggest, however, that the penalization approach
would work if we could replace, as characterization of the equilibrium state,
E.(u) by a different energy functional whose minimum with respect to u is
independent of the parameter a. Fenchel duality provides us with a systematic
way of doing this - at the price of an enlargement of the state space - provided
that the energy functional E,(u) can be written as the sum of two convex
functionals. So we shall suppose from now on that

E.(u) = F,(u) + G,(Au) for every u € X, (2.1)

where for each a € C, F, : X — R and G, : Y — R are proper, convex and
lower semi-continuous with R = RU{+o0}, Y is a Hilbert space, A € L(X;Y).
We suppose as well that

for each a € C, there exists u, = u,(a) such that

F.(u,) < 400, G4(Au,) < 400 and G, is continuous at Aw,,. (2.2)
The Fenchel duality theorem [BP, ET| asserts that, with these hypotheses,

for every a € C'

11€1)f( {F,(u) + G.(Au)} + IIéllI/l {F(—=A%q)+ Gi(q)} =0, (FD)
u q
where

A" e L(Y;X)

is the adjoint of A,
Ff:X—R, and G::Y >R
are the convex conjugates of F,, and GG, respectively, defined by

Fi(u)=sup{<u,v>x —F,(v)}, forallue X,
veEX
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8 G. Chavent, K. Kunisch and J. E. Roberts

and

Gh(p) =sup{< p,q >y —G.(q)}, forallpeY.
q€Y

If in addition to (2.1) and (2.2) we suppose that

for every a € C, lim {F,(u)+ G.(Au)} = +o0, (2.3)

u[—00

then the inf in (F'D) becomes a min (which means that the original problem
(E) has at least one solution), and any pair of minimizers (u, ¢), u = u(a),q =
q(a), of the left hand side of (F'D) satisfies the extremality conditions

—A%q € 0F,(u)
(EC)
q € 0G,(Au)

where 0 denotes the sub-differential operator for convex functions.

We refer to u € X as the primal state variable, and to ¢ € Y as the dual
state variable. In view of (F'D) it is natural to associate to the dual variable
q a dual energy function E*(q) defined by

E;(q)=F;(—A"q) +G(q) foreveryqeVY (2.4)

and to consider the dual problem

min E*(q) over ¢ € Y. (&%)

To any couple (u,q) of primal/dual state variables, one associates the to-
tal energy F,(u) + E*(q), and one considers the corresponding minimization
problem

min {E,(u) + E;(q)} over (u,q) € X xY (EEX)

which, due to the Fenchel duality formula (F D), unlike (E), has the property
that

INRIA
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for each a € C, min  {E,(u)+ E;(q)} =0. (2.5)
(u,q)EX XY

We summarize the above discussion in the following proposition.

Proposition 2.1 Let (2.1) (2.2) and (2.3) hold. Then far all a € C one has

i) the primal, dual and total energy minimization problems (£), (£*), and
(EE*) admit solutions

ii) solving (EE*) is equivalent to solving (£) and (E%)
iii) any pair of solutions u and q to (£) and (£*) satisfies (EE*)
iv) the minimum of the total energy is zero.

The problem of the estimation of @ € C from the measurement z € Z of Bu,
can therefore be approximated by penalizing (P) by the total energy, which
has a minimum (equal to zero) if and only if (a,u, q) satisfies the constraint
a € C,u=wu(a) and ¢ = ¢(a). This leads to the sought primal-dual formulation
of the parameter estimation problem:

1 1
min{ = |z — Bul%, + = (E.(v) + E*(q)) ¢ over (a,u,q) € C x X x Y,
2 € (P.)

where £ > 0 is the penalization parameter. Note that when the data z € Z are
attainable - i.e. when there exists ¢ € C such that z = Bu(a) - the problem
(P.) is an ezxact penalty formulation. That is to say that for any £ > 0, the
solutions to (P.) and (P) coincide. Moreover, the minimum value of the cost
functional in (P.) is zero in this case.

We give now some examples of parameter estimation problems for which
the primal-dual formulation can be applied. It is assumed throughout that 2
is a bounded domain in R™ with sufficiently smooth boundary 0f2, and that
Be L(X;2).
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10 G. Chavent, K. Kunisch and J. E. Roberts

Example 2.1 : Estimation of the diffusion coefficient a in

—V(aVu) = fin Q
(2.6)
u = 0 on 0f2

where f € L?*(Q) is given, and where the set C' of admissible parameters
satisfies :

CCl{ael®Q)|0<v<alx)}. (2.7)

Equation (2.6) corresponds to the minimization of

Ey(u) = %/Qa |V |2 —/qu (2.8)

over X = H}(Q). A first way of casting E,(u) in the form (2.1) consists in
choosing :

Y = Au = —Vu for all u € X,

LZ
/ fu GG(Q) = %/ﬂa’ ‘ q ‘?%"7 (29)

which clearly satisfies the hypotheses (2.2) and (2.3). Then
A*q=(—=A)"Vq forg e,

. 0 it —Au+f=0 sy L1 9
F(u) = {+oo if —Au+f#0" GG(Q)—QLa|q|Rn (2.10)

so that the dual energy E¥(q), (2.4), is

1 (1, , .
= =gl f V=1,

E3(q) = Q/MMR ove=s (2.11)
400 if Vg,

INRIA
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and the total energy is

1/ 9 / 1/1 9 .
—|a|Vul"—[ fu+=1[] —|q if Vg=f
E.(u)+ Ei(q)=<¢ 2Ja | | Q 2 Qa‘ |

+00 if Vg#f

(2.12)

which, by the Fenchel duality formula (FD), is necessarily nonnegative, and
is equal to zero if and only if u is the minimizer u(a) of E,(u) (i.e. the solu-
tion of the elliptic equation (2.6) and ¢ is the minimizer ¢(a) of E¥(¢)). The
penalization of (P) by the total energy (2.12) produces the sought primal-dual
formulation (P.) for the estimation of @ € C from a measurement z of Bu :

. 1 11 1 1
m1n{§|z—Bu\QZ + 2 |:§/QCL|VU‘2—/Q]CU+§/QE|Q|2:|}
over (a,u,q) € C x Hy x L2, Vq=f. (2.13)
As expected, this formulation allows us to take advantage of the knowledge
of an a-priori guess @ of the state (for example if the observation z is rich

enough) by starting the inversion process by minimizing, in (2.13) with res-
pect to a and ¢ for u = u fixed. The space @ for a will be specified in Section 3

For Example 2.1, the properties of the total energy summarized in Pro-
position 2.1 can be obtained directly by using (2.12) as a definition, and by
noticing that

if Vg=f, then

1 11 11
5 Vu |* - [ =lqP=5] = Vu 2> 0.
2/9@\ u | /quJrz/Qalql Q/Qa\qua w[*>0. (2.14)

Remark 2.1 The above penalization of equation (2.6) is indeed valid when
the right hand side f is only in H~1(2). We shall use this fact in Example 2.7
for the parabolic case.

RR 2891



12 G. Chavent, K. Kunisch and J. E. Roberts

Example 2.2 : We revisit Example 2.1 with the same set C' of admissible
parameters satisfying (2.7), the same state space X = H;j({2) and the same
energy E,(u) given by (2.8). But here we use a different choice for casting
E,(u) in the form (2.1). We choose

1
Y = HI(Q), A=1, F, = 0,Ga(u) = 5/

al|Vu | dx—/fud:c.
Q Q

The convex conjugates of F, and G, are found to be
oo ifqg#0
Fi(g) =
0 ifg=0
and
1 _
Gulq) = 5 < AT+, f+q > Hl,H1
where A, : Hj(Q) — H7'(Q) is defined by
A,(u) ==V - (aVu).

In this case problem (P.) becomes

1 1
min{—\z—Bu|2—i—1 [l/a|Vu|2dw—/fuda:—k—/A,:l(f)-fdx:H
2 =12 Jq o 2 /o
over (a,u) € C' x Hg. (2.15)

Clearly (2.2) and (2.3) are satisfied. Once again, if an a-priori guess 4 for
u is available, one can make use of it by optimizing first, in (2.15) with respect
to a for v = 4 fixed, which produces a first guess for the parameter which is
coherent with the data.

Example 2.3 : Estimation of the nonlinear diffusion in

—div (00(Vu)) > fin Q
(2.16)
u‘ag = 0.

INRIA
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Here the spaces X and Y and the operator A are chosen as in Example 2.1
above, i.e.

X =Hy(Q), Y=L(Q), Au=-Vau.
The parameter ¢ is chosen from the set

C= {o:R"—=R : o is convex, is continuous and satisfies
Bi |7 |he +61 < a(r) < By | 7 |Ra +0, for all 7 € R™}

for 0 < 1 < 3 < oo and 6; and 6 € R. The parameterized mappings are
defined by

Flu) = —/qudm and G, (q) = %/Qa(q)dx

with the convex conjugate F™* given in Example 2.1 and

1

Go(q) = 5/9(1”‘((1)6156-

The resulting problems (P.) have the form

min{%|z—Bu | +§ B/QU(VU)de—/qudm—ké/ga*(q)dx}}

over (o,u,q) € C x H! x L%, div q = f. (2.17)

An analysis of this formulation of the identification of nonlinear diffusion ope-
rators is given in [BaK]. The motivation for the choice of the cost functional
in [BaK] is based on the convex conjugacy formula. We note that (2.13) is not
a special case of (2.17).

Example 2.4 : Estimation of the potential ¢ in

—Au+cu= fin
(2.18)
u | 02 =0.

RR 2891



14 G. Chavent, K. Kunisch and J. E. Roberts

One can proceed in a manner analogous to Example 2.2, with
C={ceI?(Q):c(x) >0}, withp > min(g,Q)

X=Y=HQ),A=1IF=0, and

Ga(u)=%/§2|Vu |2dx+%/cu2dx—/9fudx.

We find
Gi(q) =< A7 (f+q), f+a>p

where A, : Hj(Q2) — H ! is defined by
A (u) = —Au + cu.

The penalized problems (P.) are

1 1(1 1
min{ - | z — Bu |* = —/|Vu|2d$+—/cu2d:c
2 e 12 /g 2 Jq

_/qudx—i-%/Q(Ac_lf)fdx]} (2.19)

over (c,u) € C' x Hj.

Example 2.5 : We turn to nonlinear potential problems and consider

—Au+9o(u) > fin Q
(2.20)
U|gu = 0

associated with the energy

Eg(u)=%/Q|Vu|2—/qu+/Qa(u)

INRIA
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defined on X = H,(Q). For any parameter ¢ € C with C as in Example 2.3
but with n = 1, we cast E,(u) in the form (2.1) by choosing

Y = L*(Q),A = H} — L? embedding, f € L2
1

F(u)z—/ Vu|2—/fu for u € H; ()
2 Ja Q

|
G, (u) = /Qa(u) for u € L*(9Q).

For the convex conjugate functions we find
1
F*(u*) = 5 | u* + f |5 for u* € H'(Q)
and
* 1 * 2
Gi(u) = 30 (u) for u e L*(2).
Q

Hence the penalized problems (P,) are

1 111
min q = | z — Bu |* +- —/|Vu\2—/fu+/a(u)
2 e |2 Q 0 Q

; / o0+ 5 | —a+ f \H]} (2.21)

over (o,u,q) € C x H} x L*.

Remark 2.2 For the above example, the extremality conditions (FC') have
the form

g=Au+f (2.22)
q € 0o (u) (2.23)

RR 2891



16 G. Chavent, K. Kunisch and J. E. Roberts

Hence if we choose u € Hy(2) with Au € L?(Q) and if we use the value of
q € L*(Q) given by (2.22) in the expression of the total energy, we find that,
foroceC

inf {E;(u)+ E;(q)}

uEH& qeL?

“f{/ el / f“*/ / <Au+f>}-<2.24>

This shows that the functional on the right hand side can be used as a
penalization function for equation (2.17), which gives rise to the following
penalized least squares formulation :

1 1
min{§ | z— Bu | —i—g/ [| Vu |? _fu+0(u)+g*(Au+f)]}
Q
over (o,u) € C x H},Au € L? (2.25)

which was analyzed in [BaK].

Example 2.6 : We revisit the nonlinear potential problem of Example 2.5 but
with a different choice of duality: the dual variable ¢, instead of being linked
to u, at the optimum, by ¢ = Au + f as in the previous Example 2.5, will
satisfy ¢ = —Vu, in a way similar to the mixed finite element formulation of
Example 2.1. This will be achieved by keeping the same X = H{(Q2) and C
as in Example 2.5, and by choosing

Y = L2(Q), Au = —Vu,

= [ (@@=t Gul)=}flaP.
The convex conjugates are found to be

/ o*(u+ f)ifu € L*(Q)
Q
00 if u € H7'(Q) but u is not in L*(Q)

F*(u) =
G* =G.

INRIA
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The corresponding penalized least squares problems (P.) are

min{%|z—Bu|2 [/ 1/|vu|2
+/Qo —div ¢+ f) + /|C]|Rn]} (2.26)

over (o,u,q) € C x H}(Q) x H(div, Q).

One checks easily that, according to the second extremality condition in (EC),
the relationship between primal and dual variables at the minimum is given
by ¢ = —Vu.

Example 2.7 : Here we discuss the applicability of the primal-dual formulation
to a parabolic estimation problem. We treat the estimation of @ in

0

a—?—V(aVu) Fin Q x (0,7)

uw=0 on 99 x (0,T) (2.27)
U = Ug on €2 for t =0,

where uy € L*(Q) and f € L*(0,T; H *(Q)), from data 2. As in Example 2.1
we choose

CC{a€e L™(Q):a(x) >v>0a.e in Q}.

For every a € C equation (2.27) has a unique solution u in W (0,7T), where

W(0,T) = {u € I (0.7 HY(®) - 2 e 12 (0,7 Hl(m)} |

In particular this implies that

g=—-aVu e L*(0,T;L*(Q)) = L2(Q) (2.28)

RR 2891



18 G. Chavent, K. Kunisch and J. E. Roberts

and

du

— E(t) € H *(Q) for almost every t € (0,T).

ft)

Of course, (2.27) does not correspond to the minimization of an energy
functional, and we cannot apply directly the duality results. So we proceed by
treating (2.27) as a family of “elliptic equations” with right-hand side given

d
by f(t) — d—?;(t) and use the total energy functional of Example 2.1.

_ As was seen in Example 2.1, for any (v,s) € Hg(Q) x L2(Q) and any
feH(Q)

-1
/Q(g|Vv|2—fv+%|s\2)20 (2.29)

provided that Vs = f. Moreover equality holds in (2.29) if and only if —aVv =
- d

s. Taking f = f — d_th in (2.29) and integrating with respect to ¢, we obtain

that for every (v,s) € W(0,T) x L2(Q)

B,(v,s) = /OT/Q (% | Vo(t) P — (f - %(t)) v(t) + 2ia | 5(t) |2) 2(3‘30)

provided that Vs = f — i—: in L2 (0,7; H 1(Q)). As in (2.29), equality holds

in (2.30) if —aVv = s. Thus the pair (u, ¢), with u the solution to (2.27) and
q defined in (2.28), is a solution to

min B,(v,s) over (v,8) € W(0,T) x L%(Q), v(0) = uy, v + Vs =f.

dt (2.31)
It is also simple to see that (u,q) is the unique solution to (2.31). In fact,

d
—U—i-Vs:f, then

if v and s are coupled by 7

INRIA



Primal-Dual Formulations for Parameter Estimation Problems 19

IR )
Ba(v,s)=§ i Qa\aVv—i-s\

and uniqueness in the affine variety

X = {(u,s) e W(0,T) x L2(Q) : v(0) = ug, 2—:+Vs= f}

follows. Let us also note that on the tangent space

dé
0X = {(61},63) e W(0,T) x LA(Q) : 6v(0) = 0, d—tv + Viés = 0}
to the affine variety X, the second Frechet derivative of B, with respect to
(v, s) in the direction (v, 6s)? is

T T
U ]_

Ba(év,58)2=/ /a|V5v |2+/ | ov(T) \2+/ /—\58 ?
0o Jo Q 0o Jao@a

1
2 v |6 [pomuy + | 80(T) 120 o 108 200> 2.5
2.32

where it is assumed that a(x) < p a.e. in Q. Due to the fact that there

is no energy associated to the evolution in time for the parabolic equation

/! d(s
(2.27), B, (6v,6s)* cannot be bounded from below by | d—: \QLQ(O,T;H_l). Hence

B, is not uniformly convex with respect to the natural norm induced by
W(0,T) x L2(Q) on X.

Returning to (2.30) we note that it provides the desired property that the
minimal value of the energy functional is zero independently of a € C'. Thus
B,(u,q) = 0 (with (u, ¢) satisfying the constraints of (2.31)) characterizes the
set of pairs (a,u) € C x W(0,T) which satisfy (2.27). This suggests the follo-
wing formulation for the parameter estimation problem :

1 1
min {5 | 2 — Bv |? +gBa(v, s)}

over (v,s) € W(0,T) x L2(Q),v(0) = uy, Z—: + Vs =f.
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3 Convergence as ¢ — (

We return now to the estimation of the diffusion coefficient in an elliptic equa-
tion in the setting of Example 2.1, and consider its regularized version:

min {1|z — Bu|} + Z|a — !} }
(P)
over (a,u) € C' x H} which satisfy equation (2.6),

where a* is an a-priori guess for the true parameter, and £ is a regularization
parameter assumed to satisfy § > 0. This ensures the existence of a solution

to (P).
As was seen in §2, the primal-dual formulation (P.) of (P) is, cf (2.13),
. 1 v 1.1 1 1
min {5\2 — Bul} + §|a —a'y + 2[5 /Qa|Vu\2 — /qu+ 3 /Q EMQ]}
over (a,u,q) € C x Hy x Hy,,Vq= f € L?, (P:)

where

Hy, = {q € L2(Q): divge L*(Q)}

and
C={ae@Q:0<v<a<yp ae onQ}, (3.1)

with v and p known lower and upper bounds for ¢ and @ a Hilbert space that
embeds compactly in L>().

It will be convenient to introduce the following notation:
X = Q X H&(Q) X Hdiv,

Ji: HY () x Hg,y — R, is the least squares functional

1
Ji(a,u) = §|z—Bu|QZ+§\a—aﬁ|2Q, (3.2)
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and J, : Q X Hy(Q) x Hy, — R, is the total energy functional

1 1 1
Tawg) = / o[Vl - / futs / Ljgf. (3.3)

Of course J; is non-negative, and, as we saw in §2, J, is non-negative whenever
(a,u,q) satisfies Vg = f, and vanishes only when (a,u,q) also satisfies ¢ +
aVu = 0, i.e. when the elliptic equation (2.6) is satisfied. The functional in
(P.) may now be written

1
J.(a,u,q) = Ji(a,u) + gJQ(a, U, q). (3.4)

Proposition 3.1 For every ¢ > 0 there exists a solution (ae, u.,q:) € X to

(Pe)-

Proof : Let {(an, Un, ¢n)}ney C X be a minimizing sequence such that for
eachne N

divg, = f
(3.5)
Q S Jl(a'naun) + §J2(an:um Qn) S o+ %a

where a denotes the infimum of the cost in (P.). From (3.5) it is simple to
argue that
{(@n, Un, ¢n)}nen is bounded in X.

Hence, there exists a subsequence still denoted {(an, wn, ¢n) }nen, and (a., u., ¢.) €
X such that
(an> Unp, Qn) - (ag, U, qg) Weakly inX.

In particular this implies that
(G, 1) — (e, ue) strongly in L™ x L,
and moreover divg. = f. It also follows that
Vi, — Vu, weakly in L?,

and hence
V@, Vu, — /a.Vu, weakly in L2,
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as well. Similarly

1 1
\/—a_nqn N ﬁqs weakly in L2.
We therefore find that

/a€|Vug\2 §li_m/ | Vi, |” (3.6)
Q Q

and

(3.7)

! 2 < lim/ !
RV T Ja v,
Using (3.6) and (3.7) in (3.5) we obtain
1
Jl(a/sa us) + EJZ(a/s:a Ue, QE)

1 n
< lim— |z—Bun|Z+hm |a—aﬁ\Q+hm—/a Vu,|?

—lim - /fun—l-hm /—|qn|2

< Lm(Jy(an, un) + = Jz(an, Un, @)
This implies that (a., u., g.) is a solution to P..

We next turn to the convergence of (a.,u.,g.) to a solution of P as ¢ — 07.

Proposition 3.2 For every € > 0 let (a.,uc, q.) denote a solution to (P.).
Then {(ac,us,q:)} contains a weakly convergent subsequence as € — 07, and
every weak cluster point (a,a,q) is a solution to (P).

Proof : Let (a,u,q) € X satisfy divg = f and ¢ = —aVu. Then, Jy(a,u,q) =
0, and, for every € > 0,

1
Jl(a/saus) + 2J2(asau5,qs) S Jl(aa u) (38)
Since div ¢. = f we know that Jy(a, u.,g:) > 0, and hence by (3.8)

1
0< /(%wum + 12— fu)de < ey (a, ). (3.9)
Q 2 2a,
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It follows that {(ac,ue, ¢:)}e>0 is bounded in X'. Hence there exists a weakly
convergent subsequence (denoted by the same symbols) and (@, @, §) € X such
that

(asa Ue, qs) - (C_l, ﬂa q_) S

As in the proof of Proposition 2.1 this implies that
(ac,u.) — (@, ) strongly in L™ x L?,

Va:Vu, — +/aVi weakly in L?

and
1 1

N

Taking the lim inf in (3.9) we obtain

g weakly in L2.

a 1 a 1
0 < | (“valr+ =172 — fa) = | S0val + =162 + ava
< [GIvaP +3zlal — fo) = [ S0Val+ 5t +av0
1
= / —|g+ aVial*dx =0,
Q20
and hence § = —aViu. Consequently (@,1,q) satisfies all constraints of (P).
Moreover by (3.8) we have
Jl(aa ﬂ) S Jl(aa u)

for all (a,u) such that there exists ¢ € C with (a,u, q) admissible for (P). It
follows that (a, @, q) is a solution of (P).

Proposition 3.3 Let f > 0 and let (a,%,q) be a weak cluster point of
{(aE’uE7q€)}E>O as e — 0. Then

(ae, Bu.) — (@, Bu) strongly in Q X Z (3.10)

and

Vu, + —

€

‘ ge

8 *
< Z|B*(Bu. - )|y (3.11)

L

where v is the lower bound of the elements of C.
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In particular:
e if 7 = H} and B is the identity, then u, — % strongly in Hj, and

‘Vug—i-% §£\UE—Z\H3
14

elrn2

e if 7 = L? and B is the canonical injection from Hj into L?, then u, — @
strongly in L? only and, as in this case B* = (—A)~! one has

‘Vu5+&

9
< —|U5 - Z‘Hfl-
€ 14

L2
Proof : From the definition of (a., u., ¢.) we obtain
1 N
Ti(ae, ue) + = Ja(ac, ue, @) < N1(@, @) + - J2(a, @, ).

Proposition 2.1 implies that Jy(a.,u.,q.) > 0 and that Jy(a,a,q) = 0 as
(@, u, q) satisfies the elliptic equation. Hence

Jl(aea ue) S Jl(aa Q_L)

and, taking the lim o
lim J;(ae, u.) < Ji(a,a).

On the other hand, J; is convex and (a., Bu.) is weakly convergent in Q x Z
to (@, Bu) so that
Ji(a,w) < lim Jy(a., u.),

and
Ji(ae,u.) — J(a,u) when e — 0.

This proves that the sequences |a,—a|g and | Bu.—z|z converge to |a—a*|g and
|Bii — z| . Hence the weakly convergent sequence (a, — a*, Bu, — z) converges
strongly in Q X Z to (@ — af, Bii — z), and the first result (3.10) of Proposition
3.3 is verified.
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In order to prove the second result (3.11), we write the first order necessary
conditions which are satisfied by the solution (a., u., ¢.) of (P:):

1 |2
eB(a. — a*, h)g + 5 /[|Vug|2 - ‘iz‘ |h >0, (3.12)
Q €

for a. + Ah € C and X small enough

e(Bu. — z, Bv) + /(CLEVUE, V) — / fv=0, forve H;(Q)
Q

& (3.13)

/(%7]7) = 0) fOI' P € Hdiv with Vp =0 (314)
Q Qe

Vg = f. (3.15)

Transposing B in (3.13), substituting Vg, for f, using (3.15) and integrating
by parts, we obtain

e(B*(Bue — 2),v) g3 + /(agVug,Vv) + /(qg, Vo) =0, v € Hy(Q).
Q Q
As Hj is equipped with the scalar product (u,v)pz = [o(Vu, Vv) we get

/ (eV[B*(Bu. — 2)] + a.Vu, + ¢, Vo) =0, v € Hy(Q).
Q

(3.16)
We use (3.16) in two different ways :
e first, we choose v = u,:
/ (eV[B*(Bu, — 2)] + 0.V, + q., Vi) = 0. (3.17)
Q

e second, we see from (3.16) that the vector field eV[B*(Bu.—z)|+a.Vu.+
¢- has zero divergence. Hence we can chose p in (3.14) equal to this vector
field, which gives

/(5V[B*(BuE - 2)| + a.Vue + ¢, Z—g) = 0. (3.18)

€
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By adding (3.17) and (3.18) we obtain

/(5V[B*(Bu5 - 2)| + a.Vu, + ¢, Vu, + 2) =0;
Q

Qg
ie.
2
qE * qé'
[oe|vu+ & < [ om0 - 2, v+ £ =0
Q Qe Q Qe
and, as a. > v > 0,
v VUE+2 < ¢e|B*(Bu. — 2)|g1,
G| 2 0

which is (3.11). This ends the proof of Proposition 3.3.

We conclude this paragraph with the analysis of the convexity properties of
the cost functional

1
Jg(d,U,Q) = Jl(d,U) + ng(a,u,q)

in (P.). We give first the second derivative of J,.

Proposition 3.4 For any (a,u,q) € X such that Vq = f and any (h,v,p) €
X such that Vp =0 one has

T80, q)(hy v, p)? = /

1 h
E\ — Eq+aVv +p|2+2/ h(Vu + g,Vv).
Q

e ¢ (3.19)

Proof : Differentiating twice in (3.3), the definition of .J;, we obtain

2
Jél(a’aua q)(havap)Z = / |ZL h'2 + 2/
Q

Q

1
+/MWW+/—M?
Q Qa

h
poz—aq—l—aVv—i-p

(Vu, Vo)h — 2/ Mh

a2

Define
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and substitute for p in the third term of the right-hand side

2
Jy(a,u,q)(h,v,p)? = MlﬂJrz/(Vu,W)h
Q

o a3

h |
—2/(%,p0+—q—avv)h+/a\vv|2+/ L2,
Q a a Q Qa

Expanding and rearranging terms we obtain

2 _ |q|2 2 h q
Jél(a,u,q)(h,v,p) = — QF}Z —2/9((],])0)?—{—2/9(Vu+5,VU)h
+/a|W\2+ p|?
Q Q

Noting that the first two terms of the right-hand side form part of a perfect
square, we write

1
Jg(a’aan)(havap)Q :_/_
Q

a

qh

2

1
— +po +/—|p0|2+2/h(Vu+g,Vu)
a Qa Q a

~|p*.
a

+/a|Vv|2+/
Q Q

Using the definition of py, we can rewrite the first term as

1|qh 2 1 1
/— g :/—|aVv+p|2 =/a|Vv|2+/(Vv,p)+/—|p\2-
qa oa Q Q od

— + Do

a
But the central term vanishes, as Vp = 0. Plugging the two remaining terms
into the last formula for J produces the announced result.

We remark that (3.19) is not unexpected given the properties of Jy(a,u,q)
seen in §2: if (a,u,q) is a minimizer of Jy, then ¢ + aVu = 0 (the equation is
satisfied) and (3.19) reduces to

T2, u,q)(hy v, p)? = /

1
~|hVu + aVv + p|?
Qa

which is always positive and vanishes in the directions (h,v,p) in which the
equation ¢ + aVu = 0 is satisfied up to the first order (such directions are
“tangent” to the set of minimizers of J5, on which J; has the constant value
Z€r0).
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Corollary 3.1 (partial convexity of Jo and hence of J.)
e for any fired a € C, Jy and J. are globally convexr with respect to (u,q)

e for any fired w € H}(Q),Jy and J. are globally convexr with respect to
(a,9).
Proof : These results follow immediately from (3.19) and from the fact that

a function whose Hessian is positive everywhere is necessarily convex.

We can now investigate the coercivity of the primal-dual objective function J;
at minimizers (a, u., ¢-) of (P-). We shall need the following hypotheses:

the observation space Z is Hy, hence B = Id, (3.20)

the data z € H; is attainable, i.e. there exists (3.21)
(@,7,q) € C x Hy X Hy, such that Vg = f, §+aVa = 0and 7 = 2.

Before giving the uniform coercivity result for J., let us remark that one could
replace hypothesis (3.20) by the inclusion of a regularization proportional to
|Vu|? in J, (state space regularization).

Proposition 3.5 Let hypotheses (3.20) and (3.21) hold, and let {(ac, uc, ¢:) }e>o
be any sequence of minimizers of (P.). Then there exists 3 > 0 and for every

B €]0,8] an &(8) > 0 such that for every e €]0,2(B)[ there exists a convex

neighborhood V(a.) x V(u.) x V(q.) in Q x H} x L% of (a.,u.,q.) and v > 0

such that

for all (a,u,q) € V(a:) X V(ue) x V(g.)

and for all (h,v,p) € Q x Hy x L2with Vq= f and Vp =0
n 2 2 2 2 (3'22)
Js (a” u, q)(h’ va) > ’7(‘VU‘L% + ‘h’|Q + |p‘L%)

Proof : Due to the attainability assumption, one has for any € > 0 and § > 0:

1 3 1
31V = 2y + Slac = iy + 5 [ aclVu+ EP <
Q
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Thus it is simple to argue that
there exists M > 0, such that for0 < f<land0<e <1,

< < M.

Now Proposition 3.4 implies that, for any a € Bg(a.,1),e >0 and § > 0,

1
2 2 2 2
I (a,u, q)(h,v,p)* > |Volis + Blhlg + m%hg

2
+—/h(Vu+g,Vv), (3.24)
€ Jq a

where
Po = —hd 4 avy +p. (3.25)
a

Using the Cauchy-Schwarz inequality in the last term of (3.24) we obtain
2 q B2, 2k 7210, 2
- [ h(V = V)| < =|h —=|V A%
=2 [ 1T+ L,90)| < Sy + 52 IVu+ L9y

so that (3.24) becomes
2k3 q B
J//(a,u, q)(h, v,p)2 > (1 — W|VU + a|%%)|vv|2L% + §|h|é

1 2
+m|po|ﬁ (3.26)

We now choose 3, ¢ and the neighborhood V(a.) x V(u.) x V(g.) in such
a way that

2k?2 g 1
oo |y 4 <z,
e2f3 ‘ Ut alrz = 2
i.e. such that ok
= ‘VU +4 <1
565 alr?
We have
1 Vu g =~ 1 VUE-I-% + 1 V(u_us)'i_g_% )
ez alrL2 ez Qe |12 ez Qe | 12
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i.e., using Proposition 3.3,
2k oo
eﬂ%

2k

2o V(u—ug)—i-g—— :
vz

‘Vu—i— 2‘ < .
@ ep? @ Gelrz (3.27)

1 |UE—Z|H3+
2

Let (@°,@°) € C x H{ be the solution of the regularized problem:

1 B
min —|V(u — 2)|%: + Zla — af|?
9 2ty + Do et .

over (a,u) € C x Hy and V(aVu) = f.

Due to the attainability assumption (3.21), it is well-known [14] that there
exists a B > 0 such that, for any 3 E]O,B], the solution (a@”,@”) of (3.28) is
unique. Hence we see from Proposition 3.3 that the sequence (a.,u.), itself,
converges to (@, @) in Q x H}. Hence for any 3 €]0, (], there exists a function
pa(e) > 0 with pg(e) — 0 as € — 0, such that

[ue = @°|y < ps(e).

Another classical consequence of the attainability assumption (3.21) is the
following rate of convergence of @’ to z in HZ(Q):

@° — z[ gy = 5 p(B),

where p() > 0 and p(B) — 0 as # — 0. Knowing this, we can write, for any
6 €]0, B[ and £ > 0:

[ue — Z|H(} < |ue — ﬂﬁ‘Hé + |ﬂﬁ - Z‘Hé < /)/3(5) + 51/29(5)-
Thus (3.27) becomes

2k o 2k_oo 2k

Vu+ L) < Z=p08) + = p(8)(e)
o ’ 2k v ¢ ¢ (3:29)
+W|V(U — UE) -+ a — a—g L%-

We can now chose 0 < § < B such that

%TMp(ﬁ) <1/3 for each 8 €]0, ],
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and, for any such (3, choose £(5) such that

2k oo _
ng(e) <1/3 for each ¢ €]0,(3)].

Then, for § and & chosen as above, one can choose the neighborhood
V(a:) x V(us) x V(ge) in such a way that V(a.) C Bg(ae, 1), V(g:) C
Bi2(ge,1), and that

2k B
O Vw—u)+ L - L] <1y3,
g3 a e | p2

for each (a,u,q) € V(a:) x V(us) x V(ge).

Then for 0 < 3 < 3 and 0 < & < &(f), inequality (3.26) may be rewritten as:

153 1
T2 (a,u, q)(h v, p)* 2 S IRfG + 5[ Vulfy + -

L
koo(M-l‘l)pOL%

(3.30)

We now estimate the continuity constant of the mapping (h,v,py) ~
(h,v,p) when a € Bg(a.,1) and ¢ € Bj2(g.,1). It will be convenient to
define the following weighted norm:

()P = BIRIE + [Vl + -

— _p%,. 3.31

From (3.25) we obtain immediately that
plis < 3h2 13 + 3aVolls +3lpoli,
i.e., using (3.23) and the fact that a € C defined in (3.1) and ¢ € By2 (¢, 1),

3k2 (M +1)°
ol < S a2 (a4 1290, + 3imol,

Plugging this estimate for |p[%, into (3.31), we get

k2 (M +1)*
(o < (143500 b 1+ 31200 + 1)V + 3l
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Thus
(R, v, p)|*
< max {2+ 655 /524 6K2 (M +1)2 , Bekoo(M +1) } [(h, 0, po)

or
[(h, v, po)|* > ¥I(h, v, )%,

where

. 3 1 1
7= {2 FORL (M +1)2/02 ) 24+ 6k (M + 1) 3eko(M +1) [
Hence (3.30) becomes
Jél(a>u7q)(havap)2 > 7(“’"2@ + |VU|2L% + |p‘%%)7

which completes the proof of Proposition 3.5.

4 Splitting algorithms for the numerical reso-
lution

The uniform convexity of the cost functional J. in each of the variables sepa-
rately suggests solving (P.) by splitting algorithms. The functional J; is not
jointly convex in the variables (a,u,q), however, and hence the convergence
of the splitting algorithms must be considered locally. We shall carry out the
analysis on the basis of Proposition 3.5 which asserts the local convexity of J.
in some neighborhood of each solution (a., u., ¢:) to (P:).

Throughout this section it is assumed that (3.19) and (3.20) hold and that
and € are chosen such that for a fixed solution (a, u., ¢:) the conclusion (3.21)
of Proposition 3.5 holds. Further U(a.) x U(u.) x U(g.), is a convex neighbo-
rhood of (a., u., ¢.) satisfying U(a.) x U(u.) x U(q.) C V(a:) x V(u.) x V(q.).
In the first algorithm that we analyze, minimization is carried out separately
with respect to a, ¢ and wu.
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Algorithm 4.1

(1)  Setuy =z € U(u.), set n =1 and choose g € U(q.)-
(ii) an, = argmin J.(a,u, 1,4, 1) overa € CNU(a.).
(iii) ¢, = argmin J,(an, u, 1,q) over ¢ € U(g.),divg = f.
(iv) wu, = argmin J.(a,,u,q,) overu € U(u.).

(v)  check convergence, stop or set n =n + 1 and go to (7).

Note that the cost functions in (4i7) and (iv) are quadratic. Also the cost
functional is separable with respect to u and ¢, the only coupling occuring in
the [, a|V u|*term. Hence (#i) and (iv) can be solved in parallel. We shall
prove that (an, un,qn) — (ae,ue,q-) in X so that after finitely many steps
of the iteration the constraints a € U(a.), ¢ € U(q.) and u € U(u.) become
inactive. In the statement of the following theorem the notation of Proposition

3.5 is used.

Theorem 4.1 Assume that (3.20) and (3.21) hold, and let 3 €]0, 5], and = €
10,&(B3)]. Then the sequence (an,un, q,) generated by Algorithm 4.1 converges
in X to (ae, Ue, e ).

Proof : It is simple to argue the existence of unique solutions (a,, un, ¢,) in
(i), (iv) of the algorithm. Concerning the convergence of (ay,, Uy, ¢, ), the proof
relies on arguments that are similar to standard ones in the context of splitting
algorithms [4]. The special structure of the problem, however, does not allow
us to refer directly to known results. The solutions of (ii)-(iv) satisfy

0 1
_Jl(anaun—l)(a - an) + E(JZ(aaunflaanl) - J2(anaun71aanl)) Z 0

da o
foralla e CNU(a:) (4.1)

0

a_qJ2(ana Up—1, q”)(q - QH) 2 0

for all ¢ € U(q.) such that divg = f, (4.2)

0 1
%Jl(ana un)(u - un) + E(JQ(anauaqn) - JQ(anvuna qn)) >0
for all u € U(u.). (4.3)
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Note that for every n = 2,3, ...

Js(an—la un—l) - Js(an,un) = Js(afn—la Un-—1, Qn—l) - Js(an; Un-1, Qn—l)
+ Js(ana Un—1, qnfl) - Js(a'na Un-1, Qn) + Js(ana Un—1, Qn) - Js(ana Up, qn) Z Oa

and therefore J_(ay, u,, ¢,) is monotonically decreasing with respect to n. Since
this sequence is also bounded from below it is necessarily convergent. Moreover
we find from (4.1) - (4.3) that

Js(anfla Un—1, anl) - Js(ana Up, Qn)

= Ji(an-1, Un—1) — J1(Cn, Un—1) — %Jl(an, Un—1)(An_1 — ap)
0 1
+%J1(a'nuun—1)(a'n—1 - a'n) + E(JQ(a'n—lu Un-1, Qn—l)

1
_JQ(anau’n—luq’n—l)) + E(JQ(amun—hQn—l) - JQ(aTlJun—lJQTL))

+J1(an7un—l) - Jl(ana un) - Jl(an7 un)(un—l - un)

. g
+%J1(a'na un)(unfl - un) + E(J2(anu Un—1, Qn) - J2(an7 Un, Qn))
Z Jl(a'n—la un—l) - Jl(ana un—l) - %Jl(anvun—l)(an—l - an)
1 1
42 [t = 0+ i ) = i)
€ Jq an

—%Jl(an, Up)(Up—1 — Unp,)
> Slan = anafly 5V ms — )+ 2 [ s~ anl
In particular it follows that
Hm (@, Uny Gn) — (Gn_1, Un—1, Gn_1)|x = 0. (4.4)

n—oo

In the following step we use (3.21) and the fact that by construction (@, un, gn) €
V(ac) x V(ue) x V(g):

(ng(anauna Qn) - Jé(asausa QE))(a'n — Qg Up — Uegy G — q.s)
1
= / J!(t(ana Uy Qn) + (1 - t) (asa Ug, QE))((ana U, Qn) - (aé‘a Ug, QS))Zdt
0
Z 7|(ana Un, Qn) - ((J/g, Ue, QE)BE-
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Since J.(ac,ue, g ) (@ — Gey U — Ue, @n — ¢-) > 0, this implies that

0
(%Je(ana U, Qn) - %Js(a’m Un—1, anl))(an - as)
+8_J6(ana Up—1, Qn—l)(an - as)

0
+(8_q=]5(an7 U, Qn) - 8_q=]5(an7 Un—1, Qn))(Qn - QE)

g (4.5)
+a_q<]5(ana Up—1, Qn)(Qn - QE) + %Js(a’m Unp, Qn)(un - ua)
Z 7‘(ana Un, Qn) - (aaa U, qa)Bv
But 2J (an,u J(an—a:) <0 3J (G, u N(gn—q:) <0 and
aa e\lny Upn—1, Gn—1 n e) =Yy aq e\lny Un—1,4n qn—Gqs) >

0

%Jg(an,un, ¢n) Uy — u:) <0, so that

i 2 _ 2 _ _i i 2 _ 2 _
s (90 = Vs P an = e = 5 [l = a0 )00 = 0o

> Y|(an, Un, ¢n) — (ag,ug,qs)\gc- (4.6)

The boundedness of {a,} in @ together with (4.4) implies that

lim (ana uTH Qn) = (O/E)/ME? QE) in X'

The second splitting algorithm that we discuss requires only an initial guess
for ug and z is a good choice.

Algorithm 4.2

(i) Setug=z¢€ U(u.)and let n =1
(i) (an,q,) = argmin J.(a,u, 1,q)
over (a,q) € (CNU(u.)) x U(g.), divg=f,
(ii1) wu, = argmin J.(a,,u,q,) overu € U(u,).
(iv) check convergence, stop or set n = n + 1 and go to (7).
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Theorem 4.2 Under the hypotheses of Theorem 4.1 the sequence (ay, Un, ¢n)
generated by Algorithm 4.2 converges in X to (a.,ue,q.).

Proof : Necessary optimality conditions for (a,,¢,) and for u,, respectively,
are given by

Jﬁ(aa Un—1, q) - Ja(ana Un—1, Qn) Z 0
for all (a,q) € (U(a.)NC) xU(q.), divg=f, (4.7)

and

0 1
ajl(am unaqn)(u - un) + g(JQ(ana u, Qn) - JZ(anauna qn)) Z 0
for allu € U(u.). (4.8)
Further, for all n = 1,2, ... we have
Js(an—la Un-1, Qn—1> - Js(ana Up, qn)
Z Js(an—la Un—1, qn—l) - Js(ana Un—1, Qn) + Js(a'rn Un—1, q'n) - Js(ana Un,y Qn)

> Ji(an, un—1) — Ji(an, uy) — %JI(anaun)(unfl — Uy)

0 1
+£J1(an, un)(un—l - un) + E[JQ(a/na Un—1, Qn) - J2(ana Unp,y qn)]

|v(un—1 - un)|2a

lim |, — ty—1]g1 = 0. (4.9)

n—oo

The estimate corresponding to (4.5) is

0
Je(ana U, Qn) - Js(ana Up—1, qn)(a'n - G,E) + _Je(ana Un—1, Qn)(an - ae)

(34

da oda
+(aa_q=]6(an> Unp, Qn) - a_qjs(ana Un—1, Qn))(Qn - QE)
+_Je(anaun—17Qn)(Qn _Qa) + Js(anaumqn)

dq Ou

> V(@ Uy @) — (@c, Ue, G2 ) |5,
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and hence

1
% /(|Vun‘2 - \Vun,1\2)(an - a’s) Z 7‘(anaun7Qn) - (asausa(k”g’(-
¢ (4.10)

It is simple to argue that {a,} is bounded in @ and hence combining (4.9) and
(4.10) it follows that lim, oo (@n, Un, ¢n) = (ae, Ue, Ge ).

5 Mixed finite element implementation

We describe here the numerical discretization used for the implementation of
the primal-dual formulation for the estimation of the diffusion coefficient in
the elliptic equation

—V(aVu)=f inQ
(5.1)
4w =0 on 0.

More precisely, we construct a primal-dual formulation for a discretization of
(5.1) rather than discretize one of the primal dual formulations given in the
examples of §2. We have used for the discretization a mixed finite element
scheme as with such a scheme both the primal and dual energy functionals
are readily calculated. The primal-dual formulation that we shall use for the
discretized problem follows the primal-dual formulation given in Example 2.1
of §2 and analyzed in §3:

(1 3 1/1 1 /1
mln{E\Z—Bu\ZZ+§|a—aﬁ|z+g<§/QCL|VU|2—/qu+§/QE|q\2)}

over (a,u,q) € C x Hy x Hy,,Vq= f € L*. (P:)

We first describe briefly the mixed finite element numerical scheme that
we use to discretize (5.1). For more details concerning the numerical method
see [9] for the implementation or [6, 15] for a more theoretical treatment.
For simplicity we suppose that @ C R?. Extension to higher dimension is
straightforward as is extension to other types of boundary conditions.
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Let 7, be a triangulation of Q by triangles and/or rectangles, and let &,
be the set of edges of elements of 7,. We shall denote by K, respectively E,
the typical element of 7, respectively &,, and by NT, respectively NFE, its
cardinality.

The mixed finite element method that we shall use for the discretization is
based on the following mixed variational formulation of (5.1):

(u,q) € L*() X Hyip
]' ! . ! !
—qq¢ — [ udivg =0, for ¢ € Hy,
a Q
/divqu' = / fu, for v' € L*(Q).
Q Q

We shall thus approximate the state variable u in a finite-dimensional sub-
space of L?(Q). The space of discretized state variables, X}, will be the space
of piecewise constant functions, functions constant on each element K of 7,.
The dual state variable ¢ will be approximated in the lowest-order Raviart-
Thomas space for the approximation of Hgy,-functions, which in keeping with
the notation of §2 we shall denote Y},. A basis for X}, is the set of characteristic
functions x of the elements K of 7.

Xn = span{xx; K € Tp}.

To specify a basis for Y}, we choose for each edge E' € &, a unit vector vg normal
to E' and define the basis function wg to be the unique function satisfying

e cach component of wg is linear on each element K of 7,
® wp € Hyy i.e. wgk Vg = wpk - vg if E is an edge of K and of K’
e for each edge F' € &, wg - Vg is constant on E’

e wy has 0 flux across each edge in &, other than E itself where it has flux

equal to one:
. [ 1ifE=F
LUETVE T L0t E£ B
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Now
Y, = span{wg : F € &,}.

Thus we may write

up = Z UkXxk qn = Z QrwE, (5.2)

KeT, Ee&y,

with Uy giving the constant value of u, on K, and Qg = fE qn - Vg the
flux of ¢, across E in the direction vg. Thus u, is identified with the vector
{Uk}ker, € RYT and ¢, with {Qr}ree, € RN". The source function f and
the diffusion coefficient a will be assumed to be piecewise constant and thus

can be written as
f= Z frXK a = Z O XK-

KETh KETh

The mixed finite element method yields an approximation (un, qs) of (u, q)
satisfying

(Uns qn) € Xn X Y
1 :
/ ~qh @, — / updivg, =0,  for g, €Y, (5.3)
oa Q
/ div g uj, = / I uy, for uj, € Xj.
0 Q
Defining the NE x NE matrix M and the N7 x NE matrix D by
1 .
ME‘,E" = / —Wg WEg! DK,E = / leu)E XK, (54)
Qd Q
and letting F' denote the vector in RV with coordinates
FK = fK|K|a

we may write (5.3) as a linear system

MQ-DTU = 0

DO _r (5.5)

RR 2891



40 G. Chavent, K. Kunisch and J. E. Roberts

The matrix M is symmetric and positive definite. Thus we can use the first
equation of (5.5) to express @ in terms of U, and plug this expression into the
second equation of (5.5) to obtain the problem

DM-'D'U = F. (5.6)

Remark 5.1 The (K, E) entry of the divergence matrix D is 0 unless E is
an edge of K in which case Dk g is 1 if vg points outward from K and is -1 if
Vg points inward.

Remark 5.2 If 7, is a set of triangles, the symmetric matrix M has five
nonzero entries in rows corresponding to interior edges and three for those cor-
responding to boundary edges. In case 7}, is made up exclusively of rectangles,
M is tridiagonal (with any reasonable ordering of the edges). Further, if we
calculate the integrals used to define the matrix M by the numerical quadrature
formula that approximates an integral over an element K by the average of the
values at the vertices multiplied by the area of the element, then M becomes a

1 K K’
u-|—| |), for E an edge of K and of K.

2|E|(QK a g

diagonal matrix with Mg g =

Having described the discretization of (5.1), we turn now to the construc-
tion of the primal-dual formulation of the identification problem. The solution
U of problem (5.6) is characterized as the solution of the minimization problem

UelX,
En(U) = inf Eu(U"), (5.7)
U'eXy,

where the primal energy functional E,, : X, — R is defined by
Eu(U') = sM~'DTU"-D'U' = F - U, (5.8)

and the solution @ of problem (5.5) is characterized as the solution of the
minimization problem

QeY,
(@)= inf (@), (5.9)

Q'E€Xn,DQ=F
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where the dual energy functional £, : Y, — R is defined by
E(Q) =;3;MQ - Q". (5.10)

(Note that the U calculated in (5.5) is considered here simply as a multiplier
used to solve the constrained problem (5.9) and does not appear in either
energy functional.)

In the notation of §2 the space C} of permissible parameters is RNT, the
state space X}, is RNT, the space of dual states Y}, is RNE, and

AU = DTU,
Fu(U)=-F-U,  Gu(Q) =iM7Q Q.
Thus
A5Q = —-DQ,
om0 HU+F=0 (N Lage.
Fah(U)_{-i-OO lfU-I—F;éO ’ Gah(Q)_ZMQ Q

We remark that F,;, and G, are convex functions and that
Q € 0F (DTU )

1.e.

Q= M*D'U).
Further, the Fenchel duality theorem guarantees that

inf E,(U)+ inf E(Q)=0.

UGRNT QERNE,DQ:F
In the mixed formulations (5.2) and (5.3) the diffusion coefficient a appears

only by means of its inverse — and in (5.6) and (5.5) only by means of the ma-
a

trix M which is defined in terms of —. We have thus, for the numerical experi-
a

. . ) 1
ments, chosen to identify not a = ). axxk itself but b= — = E br XK,
a
KeT,
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1
where b = —. The vector B = {bk } ke, like {ax }ker, is in Ryr.
43¢

Remark 5.3 Identifying the riciprocal of a is in fact suggested by the linear
structure in which ¢ and w appear in (5.2) and (5.1). In particular, for the

case in which a is constant, u depends linearly on — not on a.
a

To estimate the diffusion coefficient in (5.3) or (5.5) we must define the ob-
servation space Z;, and the observation operator from the state space X, = RNT
to Z,,. In the examples that we consider Z, is taken to be X, = RNT and the
observation operator to be the identity. The space used for the regularization
(denoted @ is §2 but not denoted @}, here for obvious notational reasons) will
be taken to be RN' but with the semi-norm |B|*> = GB - GB, where G is the
gradient matrix obtained from D’ by eliminating the rows corresponding to
edges F contained in the boundary of 2. Thus the regularized least squares
functional J; : Cp, x X, — R is

B

Hz—mmz—m+§

N(B,U) = 5 G(B - B*)-G(B — BY),

and the total energy functional Jy : Cp X X, X Y, — R is
1 1
Jo(B,U,Q) = 5J\rlDTU DU —-F .U+ 5MQ Q.

The discretized version of (P.) may now be given:

min {%(z ~U)-(Z-U)+ §G(B — B -G(B - B
+§ (%MlDTU DTU - F-U + %MQ : Q) } (Pen)
over (B,U,Q) € C, x X}, x Y, DQ = F.

We write J. for the functional to be minimized in (P.):

Js(Ba U7 Q) = JI(B7 U) + %JQ(Bv Uv Q)
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In all of the experiments that we consider in §6 B* is chosen to be 0; thus,
the regularization penalizes oscillations in B.

To use one of the splitting algorithms of §4 we note that to minimize J.
with respect to B for U and @) fixed is to minimize

1/1 1
J.p = gG(B - BY)-G(B- B+ - (EM‘lDTU -DTU + §MQ : Q)
over B € ()},

To minimize J, with respect to @ for B and U fixed is to minimize
1
JeQ = iMQ ' Q

over @ € Y, DQ = F, which is equivalent to solving the dual problem (5.5).
The linear system (5.5) may be solved by using a hybridization of the mixed
method; see [9]. (Recall that the vector U produced by the resolution of (5.5)
serves only as an auxiliary variable.)

Finally, to minimize J. with respect to U for B and @ fixed is to minimize

1 1/1
JEU=§(Z—U)-(Z—U)+— <§M‘1DTU-DTU—F-U)

9

over U € X}, which is equivalent to solving the following regularization of the
primal problem (5.6):

[DM™IDT +ellU = F+¢Z (5.11)
Thus in the discretized context, Algorithm 4.1, for example, becomes
Algorithm

i) Set Uy=Z € X, = RNT, choose Qp € Y, = RNE| set n =1
i) B, =argmin J.(B,U,_1,Qn-1)

iii) @, = solution to (5.5) with M formed using B,

iv) U, = solution to (5.11) with M formed using B,

v)  check convergence, stop or set n =n + 1 and go to (7).
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6 Numerical results

In the numerical examples presented here we identify the diffusion coefficient,

or rather its reciprocal b = — (see Remark 5.3), in the equation
a

—V(aVu)=f inQ
(6.1)
4w =0 on 0f.

In all of the experiments, {2 is taken to be the unit square in R? : Q = [0, 1] x
[0,1], and the source function is f = A(z(1 — 2)y(1 — y) exp(x y). The same
grid is used for the discretization of the reciprocal of the diffusion coefficient
b, the state variable u, and the dual state variable q. We take a regular grid
of squares of side length 0.05, so 7}, contains 400 squares, (NT = 400), and &,
contains 420 vertical edges and 420 horizontal edges, (NE = 840).

In terms of the preceding section, §5, we solve the discretized minimization
problem

min %(z ~-U)-(Z-U)+ §G(B — BY)-G(B - B
+§ (%MlDTU DTU - F-U + %MQ : Q) } (Pen)

over (B,U,Q) € RN x R"" x RN¥ DQ = F,

where U € RNT is the state variable, Q € RNF is the dual state variable,
B € RNT is the reciprocal of the piecewise constant diffusion coefficient: by =
—. The matrix D is the divergence matrix described in §5 and D7 is its

aK
transpose. The gradient matrix G used in the regularization term is also given

in §5. As we have used a regular square grid, we use the numerical quadrature
rule described in Remark 2.2 to obtain the matrix M. Thus M is a diagonal

matrix with entry corresponding to the edge E between the rectangles K and

b bx
K' equal to |F| % and with entry corresponding to the edge E of K

on the boundary of  equal to |E|bg. The vector FF € RNT has component,
corresponding to the element K € 7, fK fdxdy. Here B* is taken to be 0; the
penalization parameter £2 is 10 1.
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What will change with the experiment are the observation Z, the amount
of noise and the amount of regularization 3. The observation Z will be deter-
mined as follows:

Z = Uezact + 2N ‘Umaz - Umm| R7

where U,y is the solution of (5.6) for F' as given above and M computed
using the sought diffusion coefficient B, the noise level N is taken to be either
0 or 0.1, U,4e and U,,;, are the maximum and minimum values of U,zqct, and
R € RNT is a uniform random distribution of numbers in [—1,1]. The sought
coefficient will be B = {bx } k|7, given by bx = 2 — vk + Yk, where (g, yx)
is the coordinate of the center or K. We also consider the case bx = 1 if
Xk < .5; bg = 6 if Xg > .5 We will show results of experiments with no
regularization 3 = 0, a small amount of regularization, § = 2.5 x 10~?, for the
case in which there is no noise and the sought B is affine, and larger amounts
of regularization, # = 1072 or 3 = 2.5 x 1071, for cases in which there is noise
or the sought B is highly discontinuous.

The algorithm follows Algorithm 4.1 as well as that given at the end of §5.

Algorithm
o initialization

— choose B, arbitrarily

—setUy=2
1
— set Qp = EDTUO

— calculate B using a minimization routine to minimize with respect

to B with U = Uy and @ = Q) fixed.
—setn=1
e main loop

— minimize with respect to B by using a minimization routine to
obtain B,

— minimize with respect to U by solving (5.11) with matrix M calcu-
lated using B,, to obtain U,
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— minimize with respect to @ by solving (5.5) with matrix M calcu-
lated using B,, to obtain @,

— check convergence, stop or set n = n + 1 and continue.

For all of the numerical calculations we used the library SCILAB which
is very convenient to use and produces an efficient code due to its ability to
compile the entire code prior to beginning execution. The minimization routine
used in the initialization and in the main loop to obtain B is the minimization
routine optim of SCILAB. It is used with the quasi-Newton, low memory
option gnm. The number of iterations of the minimization algorithm used
before updating U and @) was fixed and in the results reported here was taken
to be 1.

In the first experiment we seek to identify an affine coefficient function bx =
2—1x+yk. The observation is from noiseless data, N = 0, so that Z is U.zac-
In Figure 1 we see four graphs of the coefficient function B. The two graphs
on the left show B after convergence, after 30 iterations of the main loop. The
upper one is without regularization and we see oscillation around the singular
point near the center of (2. For the lower one, the regularization coefficient
is 3 = 2.5 x 1075, and the oscillation has essentially disappeared. The graph
on the lower right shows By, i.e. B after initialization, (with regularization).
Thirty iterations were allowed in the minimization routine to obtain By. The
graph on the upper right is obtained by a classical least squares method without
regularization, starting from the same initial guess, B, as in the algorithm
above. Again 30 iterations were used to obtain the result. The calculation
time used to obtain each of the three results on a Digital 3000/900 was of the
order of one minute.

In the second experiment we have added noise. The coefficient B which we
seek to identify is the same as in the preceeding experiment so that Uy, is the
same as before but here the noise level N is taken to be 0.1. The two upper
graphs in Figure 2 show B after convergence, the one on the left obtained
without regularization, the one on the right with regularization coefficient
3 =10"2. The graph on the lower left shows the noisy observation Z while the
graph on the lower right shows U, the pressure, calculated with the coefficient
B shown on the upper right; i.e. U after convergence.
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Figure 6.1: Identification of an affine coefficient function by the primal-dual
method, with and without regularization, compared with identification by a
least squares method.
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Figure 6.2: Identification with noisy data.
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In the final experiment, we have tried to identify a strongly discontinuous
function B, b = 1 if Xg < .5; bx = 6 if Xx > .5. Both graphs show B after
convergence. The graph on the left was obtained from an observation with no
noise, N = 0, using a regularization coefficient, 3 = 10~2. The right-hand side
corresponds to a coefficient B obtained from noisy data, N = 0.1, but with
more regularization; S = 25 x 1072, We see the effect of the greater amount
of regularization in the latter case in that the discontinuity is not represented
as well as in the former.

0o no noise

Figure 6.3: Identification of a discontinuous coefficient function.

In conclusion, the primal-dual method works well for the experiments we
have carried out on a model problem and in general is superior to the least
squares method. The fact that information from the observation can be exploi-
ted for initialization as well as for regularization makes the primal-dual method
efficient and robust. In particular, it works well even with noisy data.

References

[1] R. ACCAR, Identification of coefficients in elliptic equations, STAM Jour-
nal on Control and Optimization, 31 (1993), pp. 1221-1244.

RR 2891



50

G. Chavent, K. Kunisch and J. E. Roberts

2]

[10]

[11]

H. T. BANKS AND K. KUNISCH, Estimation Techniques for Distributed
Parameter Systems, in Systems and Control, Foundations and Applica-
tions, Basel, ed., Birkhauser, Boston, 1989.

V. BARBU AND K. KuUNIscH, Identification of non linear elliptic equa-
tions, Applied Mathematics and Optimization. to appear.

V. BARBU AND T. PRECUPANU, Convexity and Optimization in Banach
Spaces, Reidl Publishing, Dodrecht, 1986.

J. BAUMEISTER AND W. SCONDO, Adaptive methods for parameter iden-
tification, in Methoden und Verfahren der Mathematischen Physik Vol. 34,
Verlag P. Lang, 1987, pp. 87-116.

F. BrEzZzI AND M. FORTIN, Mized and Hybrid Finite Element Methods,
Springer series in Computational Mathematics n° 15, Springer-Verlag New
York Inc., New York, 1991.

G. CHAVENT, Identification de Coefficients Répartis dans les Equations
aur Dérwées Partielles, These de Doctorat d’Etat, Faculté des Sciences
de Paris, 1971.

—, On the theory and practice of nonlinear least squares, Advances in
Water Resources, 14 (1991), pp. 55-63.

G. CHAVENT AND J. E. ROBERTS, A unified physical presentation of
mixed, mized-hybrid finite elements and standard finite difference approxi-
mations for the determination of velocities in waterflow problems, Ad-
vances in Water Ressources, 14 (1991), pp. 329-348. (Preprint in report
INRIA n° 1107, Oct. 89).

I. EKELAND AND R. TEMAM, Analyse Convexe et Problemes Variation-
nels, Etudes Mathematiques, Dunod, Paris, 1974.

K. ITo aAND K. KuNIsCH, The augmented Lagrangian method for para-
meter estimation in elliptic systems, STAM Journal on Control and Opti-
mization, 28 (1990), pp. 113-136.

INRIA



Primal-Dual Formulations for Parameter Estimation Problems 51

[12] ——, Sensitivity analysis to optimization problems in Hilbert spaces with
application to optimal control and estimation, J. Differential Equations,
99 (1992), pp. 1-40.

[13] R. KOHN AND B. LOWE, A wariationnal method for parameters estima-
tion, RAIRO, M2AN, 22 (1988), pp. 119-158.

[14] K. KuniscH AND X. TAI, Sequential and parallel splitting methods for
linear control problems in Hilbert spaces, SIAM J. Num. Analysis. to
appear.

[15] J. E. ROBERTS AND J.-M. THOMAS, Mized and hybrid methods, in
Handbook of Numerical Analysis, P. G. Ciarlet and J. L. Lions, eds.,
vol. 2 Finite Element Methods—Part 1, Elsevier Science Publishers B.V.
(North—Holland), Amsterdam, 1991.

RR 2891



/¢

Unité de recherche INRIA Lorraine, Technopdle de Nancy-Brabois, Campus scientifique,
615 rue du Jardin Botanique, BP 101, 54600 VILLERS LES NANCY
Unité de recherche INRIA Rennes, Irisa, Campus universitaire de Beaulieu, 35042 RENNES Cedex
Unité de recherche INRIA Rhone-Alpes, 655, avenue de I'Europe, 38330 MONTBONNOT ST MARTIN
Unité de recherche INRIA Rocquencourt, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex
Unité de recherche INRIA Sophia-Antipolis, 2004 route des Lucioles, BP 93, 06902 SOPHIA-ANTIPOLIS Cedex

Editeur
INRIA, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex (France)
ISSN 0249-6399



