Amélioration de l'efficacité des accélérateurs laser-plasma - ENSTA Paris - École nationale supérieure de techniques avancées Paris Accéder directement au contenu
Thèse Année : 2022

Improvement of the efficiency of laser-plasma accelerators

Amélioration de l'efficacité des accélérateurs laser-plasma

Kosta Oubrerie

Résumé

To generate high energy electron beams, conventional accelerators use radio frequency waves to accelerate charged particles to relativistic speeds. However, the accelerating electric field produced is limited to a few tens of megavolts per metre, mainly due to a breakdown phenomenon. Very large facilities are therefore needed to reach sufficiently high energies. For example, the Stanford Linear Accelerator (SLAC), which is the world's longest linear accelerator, accelerates electrons up to 50 GeV over a distance of 3.2 km. Laser-Plasma Accelerators can produce electric fields exceeding 100 GV/m, that are about three orders of magnitude larger than those obtained by radiofrequency-cavity accelerators. They could thus allow for a drastic decrease of the size of accelerators for scientific, medical and industrial applications. Yet, several bottlenecks have to be solved before these applications can be really implemented. It is notably necessary to demonstrate the efficient production of high-quality, multi-GeV electron beams at a high-repetition rate.The doctoral project tackles this problem by exploring new methods for increasing the energy of the electron beams thanks to techniques that are compatibles with arbitrarily high laser powers and repetition rates and that can be combined with controlled injection methods. Indeed, high energy or controlled injection electron beams have been obtained separately during the last fifteen years, but never combined. This thesis presents the work carried out on the guiding techniques as well as on the electron injection techniques which allowed to obtain experimentally good quality beams at high energies. This work was done in particular through the optimisation of a new optic designed at the Laboratoire d'Optique Appliquée, the axiparabola, as well as the development of gas jets specific to laser-plasma acceleration.
Pour générer des faisceaux d'électrons à hautes énergies, les accélérateurs conventionnels utilisent des ondes radiofréquences pour accélérer des particules chargées à des vitesses relativistes. Cependant, le champ électrique accélérateur produit est limité à quelques dizaines de mégavolts par mètre, dû notamment à un phénomène de claquage. Il faut donc des installations de très grande taille pour atteindre des énergies suffisamment élevées. Ainsi, l'accélérateur linéaire de Stanford (SLAC), qui est l'accélérateur linéaire le plus long au monde, accélère des électrons jusqu'à 50GeV sur 3.2km. Les accélérateurs laser-plasma peuvent produire des champs électriques dépassant 100 GV/m, soit environ trois ordres de grandeur plus grands que ceux obtenus par les accélérateurs à cavités radiofréquences. Ils pourraient ainsi permettre une diminution drastique de la taille des accélérateurs pour des applications scientifiques, médicales et industrielles. Cependant, plusieurs verrous devront être levés avant que ces applications puissent voir le jour. Il sera notamment nécessaire de démontrer la production efficace de faisceaux d'électrons de haute qualité, à des énergies de plusieurs GeV et à un taux de répétition élevé.Le projet doctoral s’attaque à cette problématique en explorant de nouvelles méthodes pour augmenter l'énergie des faisceaux d'électrons grâce à des techniques qui sont compatibles avec des puissances laser et des taux de répétition élevés et qui peuvent être alliées avec des méthodes d'injection contrôlée. En effet, des faisceaux d'électrons à haute énergie ou avec une injection contrôlée ont été obtenus séparément durant les quinze dernières années, mais jamais de manière combinée. Cette thèse présente les travaux réalisés sur les techniques de guidage ainsi que sur celles d'injection des électrons qui ont permis d'obtenir expérimentalement des faisceaux de bonne qualité à hautes énergies. Ce travail s'est fait notamment au travers de l'optimisation d'une optique nouvellement conçue au Laboratoire d'Optique Appliquée, l'axiparabole, ainsi que sur le développement de jets de gaz spécifiques à l'accélération laser-plasma.
Fichier principal
Vignette du fichier
101392_OUBRERIE_2022_archivage.pdf (9.67 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)

Dates et versions

tel-03644594 , version 1 (19-04-2022)

Identifiants

  • HAL Id : tel-03644594 , version 1

Citer

Kosta Oubrerie. Amélioration de l'efficacité des accélérateurs laser-plasma. Physique des accélérateurs [physics.acc-ph]. Institut Polytechnique de Paris, 2022. Français. ⟨NNT : 2022IPPAE002⟩. ⟨tel-03644594⟩
238 Consultations
122 Téléchargements

Partager

Gmail Facebook X LinkedIn More