Mechanism of Ultraviolet-Induced CO Desorption from CO Ice: Role of Vibrational Relaxation Highlighted - PhLAM - Physico-Chimie Moléculaire Théorique Access content directly
Journal Articles Physical Review Letters Year : 2023

Mechanism of Ultraviolet-Induced CO Desorption from CO Ice: Role of Vibrational Relaxation Highlighted

Samuel del Fré
Denis Duflot

Abstract

Although UV photon-induced CO ice desorption is clearly observed in many cold regions of the Universe as well as in the laboratory, the fundamental question of the mechanisms involved at the molecular scale remains debated. In particular, the exact nature of the involved energy transfers in the indirect desorption pathway highlighted in previous experiments is not explained. Using ab initio molecular dynamics simulations, we explore a new indirect desorption mechanism in which a highly vibrationally excited CO (ν = 40) within an aggregate of 50 CO molecules triggers the desorption of molecules at the surface. The desorption originates first from a mutual attraction between the excited molecule and the surrounding molecule(s), followed by a cascade of energy transfers, ultimately resulting in the desorption of vibrationally cold CO (~95% in ν = 0). The theoretical vibrational distribution, along with the kinetic energy one, which peaks around 25 meV for CO with low rotational levels (ν = 0, J<7), is in excellent agreement with the results obtained from VUV laser induced desorption (157 nm) of CO (ν =0, 1) probed using REMPI.
Embargoed file
Embargoed file
0 3 21
Year Month Jours
Avant la publication
Sunday, September 8, 2024
Embargoed file
Sunday, September 8, 2024
Please log in to request access to the document

Dates and versions

hal-04364305 , version 1 (08-03-2024)

Licence

Attribution

Identifiers

Cite

Samuel del Fré, Alejandro Rivero Santamaría, Denis Duflot, Romain Basalgète, Géraldine Féraud, et al.. Mechanism of Ultraviolet-Induced CO Desorption from CO Ice: Role of Vibrational Relaxation Highlighted. Physical Review Letters, 2023, 131 (23), pp.238001. ⟨10.1103/PhysRevLett.131.238001⟩. ⟨hal-04364305⟩
37 View
4 Download

Altmetric

Share

Gmail Facebook X LinkedIn More