On some expectation and derivative operators related to integral representations of random variables with respect to a PII process - ENSTA Paris - École nationale supérieure de techniques avancées Paris
Article Dans Une Revue Stochastic Analysis and Applications Année : 2013

On some expectation and derivative operators related to integral representations of random variables with respect to a PII process

Résumé

Given a process with independent increments $X$ (not necessarily a martingale) and a large class of square integrable r.v. $H=f(X_T)$, $f$ being the Fourier transform of a finite measure $\mu$, we provide explicit Kunita-Watanabe and Föllmer-Schweizer decompositions. The representation is expressed by means of two significant maps: the expectation and derivative operators related to the characteristics of $X$. We also provide an explicit expression for the variance optimal error when hedging the claim $H$ with underlying process $X$. Those questions are motivated by finding the solution of the celebrated problem of global and local quadratic risk minimization in mathematical finance.
Fichier principal
Vignette du fichier
QuadraticRiskPIIFeb2012.pdf (360.35 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00665852 , version 1 (02-02-2012)

Identifiants

Citer

Stéphane Goutte, Nadia Oudjane, Francesco Russo. On some expectation and derivative operators related to integral representations of random variables with respect to a PII process. Stochastic Analysis and Applications, 2013, 31, pp.108--141. ⟨10.1080/07362994.2013.741395⟩. ⟨hal-00665852⟩
347 Consultations
1516 Téléchargements

Altmetric

Partager

More