Viability approach to Hamilton-Jacobi-Moskowitz problem involving variable regulation parameters
Résumé
A few applications of the viability theory to the solution to the Hamilton-Jacobi-Moskowitz problems are presented. In the considered problem the Hamiltonian (fundamental diagram) depends on time, position and/or some regulation parameters. We study such a problem in its equivalent variational formulation. In this case, the corresponding lagrangian depends on the state of the characteristic dynamical system. As the Lax-Hopf formulae that give the solution in a semi-explicit form for an homogeneous lagrangian do not hold, a capture basin algorithm is proposed to compute the Moskowitz function as a viability solution of the Hamilton-Jacobi-Moskowitz problem with general conditions (including initial, boundary and internal conditions). We present two examples of applications to traffic regulation problems.