Transparent boundary conditions for evolution equations in infinite periodic strips - ENSTA Paris - École nationale supérieure de techniques avancées Paris
Article Dans Une Revue SIAM Journal on Scientific Computing Année : 2012

Transparent boundary conditions for evolution equations in infinite periodic strips

Résumé

We consider the solution of a generic equation $\gamma\rho(\mathbf{x})\partial^p_tu(\mathbf{x},t)-\Delta u(\mathbf{x},t) +V(\mathbf{x})u(\mathbf{x},t) = f(\mathbf{x},t)$, $\mathbf{x} = (x,y)$, for $t>0$, $p=1,2$ in a domain $\Omega$ which is infinite in $x$ and bounded in $y$. We assume that $f(\cdot,t)$ is supported for all $t>0$ in $\Omega_0 = \{\mathbf{x} \in \Omega \; | \; -a_- < x < a_+\}$ and that $\rho(\mathbf{x})$ and $V(\mathbf{x})$ are x-periodic in $\Omega \setminus \Omega_0$. We consider the associated $\theta$-scheme in time, to obtain a semidiscretized problem. We then show how to obtain for each time step exact boundary conditions on the vertical segments, $\Gamma_0^- = \{\mathbf{x}\in \Omega\; | \; x=-a_-\}$ and $\Gamma_0^+ = \{\mathbf{x}\in \Omega \;| \; x=a_+\}$, that will enable us to find the solution on $\Omega_0 \cup \Gamma_0^+ \cup \Gamma_0^-$. Then the solution can be extended in $\Omega$ in a straightforward manner from the values on $\Gamma_0^-$ and $\Gamma_0^+$. The method is based on the solution of local problems on a single periodicity cell, solved during an initialization step. The exact boundary conditions as well as the extension operators can be obtained for each time step through elementary computations using the solution of these local cell problems.
Fichier non déposé

Dates et versions

hal-00969313 , version 1 (02-04-2014)

Identifiants

Citer

Julien Coatléven. Transparent boundary conditions for evolution equations in infinite periodic strips. SIAM Journal on Scientific Computing, 2012, 34 (3), pp.1563-1583. ⟨10.1137/110838030⟩. ⟨hal-00969313⟩
87 Consultations
0 Téléchargements

Altmetric

Partager

More