Monge Solutions for discontinuous Hamiltonians - ENSTA Paris - École nationale supérieure de techniques avancées Paris
Article Dans Une Revue ESAIM: Control, Optimisation and Calculus of Variations Année : 2005

Monge Solutions for discontinuous Hamiltonians

Ariela Briani
Andrea Davini
  • Fonction : Auteur

Résumé

We consider an Hamilton-Jacobi equation of the form H ( x , D u ) = 0 x ∈ Ω ⊂ ℝ N , ( 1 ) where H(x,p) is assumed Borel measurable and quasi-convex in p. The notion of Monge solution, introduced by Newcomb and Su, is adapted to this setting making use of suitable metric devices. We establish the comparison principle for Monge sub and supersolution, existence and uniqueness for equation ([see full text]) coupled with Dirichlet boundary conditions, and a stability result. The relation among Monge and Lipschitz subsolutions is also discussed.

Dates et versions

hal-00977661 , version 1 (11-04-2014)

Identifiants

Citer

Ariela Briani, Andrea Davini. Monge Solutions for discontinuous Hamiltonians. ESAIM: Control, Optimisation and Calculus of Variations, 2005, 11 (2), pp.229-251. ⟨10.1051/cocv:2005004⟩. ⟨hal-00977661⟩

Collections

ENSTA UMA_ENSTA
76 Consultations
0 Téléchargements

Altmetric

Partager

More