Exact boundary conditions for periodic waveguides containing a local perturbation
Résumé
We consider the solution of the Helmholtz equation $-\Delta u({\bf x}) - n({\bf x})^2\omega^2 u({\bf x}) = f({\bf x})$, ${\bf x}=(x,y)$, in a domain $\Omega$ which is infinite in $x$ and bounded in $y$. We assume that $f({\bf x})$ is supported in $\Omega^0:={{\bf x}\in {\Omega} \; | a^-