La Méthode du Complément Singulier pour des problèmes scalaires 2d
Résumé
Nous présentons une méthode d'approximation qui permet de retrouver l'estimation d'erreur optimale, lorsqu'elle est utilisée avec la méthode usuelle des Eléments Finis de Lagrange P1, dans des domaines bidimensionnels non-convexes. Celle-ci peut-être appliquée aux équations de Poisson, de la chaleur ou des ondes scalaires, ainsi qu'à des problèmes similaires à coefficients constants par morceaux.