Numerical solution to the time-dependent Maxwell equations in axisymmetric singular domains: The Singular Complement Method - ENSTA Paris - École nationale supérieure de techniques avancées Paris
Article Dans Une Revue Journal of Computational Physics Année : 2003

Numerical solution to the time-dependent Maxwell equations in axisymmetric singular domains: The Singular Complement Method

Franck Assous
Simon Labrunie
  • Fonction : Auteur
  • PersonId : 935115
Jacques Segré
  • Fonction : Auteur

Résumé

In this paper, we present a method to solve numerically the axisymmetric time-dependent Maxwell equations in a singular domain. In [Math. Methods Appl. Sci. 25 (2002) 49; Math. Methods Appl. Sci. 26 (2003) 861], the mathematical tools and an in-depth study of the problems posed in the meridian half-plane were exposed. The numerical method and experiments based on this theory are now described here. It is also the generalization to axisymmetric problems of the Singular Complement Method that we developed to solve Maxwell equations in 2D singular domains (see [C. R. Acad. Sci. Paris, t. 330 (2000) 391]). It is based on a splitting of the space of solutions in a regular subspace, and a singular one, derived from the singular solutions of the Laplace problem. Numerical examples are finally given, to illustrate our purpose. In particular, they show how the Singular Complement Method captures the singular part of the solution.

Dates et versions

hal-00989621 , version 1 (12-05-2014)

Identifiants

Citer

Franck Assous, Patrick Ciarlet, Simon Labrunie, Jacques Segré. Numerical solution to the time-dependent Maxwell equations in axisymmetric singular domains: The Singular Complement Method. Journal of Computational Physics, 2003, 191 (1), pp.147-176. ⟨10.1016/S0021-9991(03)00309-7⟩. ⟨hal-00989621⟩
210 Consultations
0 Téléchargements

Altmetric

Partager

More