Higher order triangular finite elements with mass lumping for the wave equation. - ENSTA Paris - École nationale supérieure de techniques avancées Paris
Article Dans Une Revue SIAM Journal on Numerical Analysis Année : 2001

Higher order triangular finite elements with mass lumping for the wave equation.

Jean E. Roberts
  • Fonction : Auteur
Nathalie Tordjman
  • Fonction : Auteur

Résumé

In this article, we construct new higher order finite element spaces for the approximation of the two-dimensional (2D) wave equation. These elements lead to explicit methods after time discretization through the use of appropriate quadrature formulas which permit mass lumping. These formulas are constructed explicitly. Error estimates are provided for the corresponding semidiscrete problem. Finally, higher order finite difference time discretizations are proposed and various numerical results are shown.
Fichier non déposé

Dates et versions

hal-01010373 , version 1 (19-06-2014)

Identifiants

Citer

Gary Cohen, Patrick Joly, Jean E. Roberts, Nathalie Tordjman. Higher order triangular finite elements with mass lumping for the wave equation.. SIAM Journal on Numerical Analysis, 2001, 38 (6), pp.2047-2078. ⟨10.1137/S0036142997329554⟩. ⟨hal-01010373⟩
232 Consultations
0 Téléchargements

Altmetric

Partager

More