Caractérisation de la partie singulière et résolution des équations de Maxwell en géométrie singulière axisymétrique
Résumé
On étudie les équations de Maxwell stationnaires dans un ouvert Ω non régulier, non convexe, à symétrie axiale. L'espace des solutions s'écrit comme la somme orthogonale d'une partie régulière, contenue dans H1(Ω)3 et d'une partie singulière. On montre que, comme dans le cas bidimensionnel, la partie singulière est reliée aux fonctions propres singulières (axisymétriques) du laplacien, et est de dimension finie.