DSC measurements and modelling of the kinetics of methane hydrate formation in water-in-oil emulsion
Abstract
The kinetics of formation of clathrate hydrates of methane was investigated in a water-in-oil emulsion using high-pressure differential scanning calorimetry in the range 10–40 MPa, at various temperatures. At high driving force, the heat peak related to the formation of hydrates has a regular and symmetric shape, and its height and width depend on the gas pressure and sub cooling degree. At near equilibrium conditions, hydrate formation is delayed by more than 1 h, but is still clearly observable. A model based on crystal growth theory, coupled with a normal distribution of induction times to take into account the germination in a population of micro-sized droplets, is proposed to represent the hydrate formation rate versus time in the particular case of water-in-oil emulsions. It uses four parameters which appear strongly correlated to the experimental conditions: the growth rate constant, the over saturation of gas in the water phase, the average and standard deviation of the induction time distribution.