Modeling of dense injection-seeded Ni-like Krypton plasma amplifiers
Abstract
One promising way to reach ultra-short soft X-ray lasers is to guide an intense infrared pulse through a plasma channel generated in a high pressure gas. However, in such a case, strong non-linear effects, as overionization-induced refraction and self-focusing, hinder the propagation of the laser beam and thus the creation of the lasing ion and the population inversion. Using a particle-in-cell (PIC) code and a ray-tracing model, we demonstrate that a stable self-regulation mechanism between self-focusing and overionization appears, which enables guiding the infrared beam over several milimetres, well beyond the saturation length for amplification of the soft X-ray laser.