Low-order model for successive bifurcations of the fluidic pinball - ENSTA Paris - École nationale supérieure de techniques avancées Paris
Article Dans Une Revue Journal of Fluid Mechanics Année : 2020

Low-order model for successive bifurcations of the fluidic pinball

Résumé

We propose the first least-order Galerkin model of an incompressible flow undergoing two successive supercritical bifurcations of Hopf and pitchfork type. A key enabler is a mean-field consideration exploiting the symmetry of the mean flow and the asymmetry of the fluctuation. These symmetries generalize mean-field theory, e.g. no assumption of slow growth-rate is needed. The resulting 5-dimensional Galerkin model successfully describes the phenomenogram of the fluidic pinball, a two-dimensional wake flow around a cluster of three equidistantly spaced cylinders. The corresponding transition scenario is shown to undergo two successive supercritical bifurcations, namely a Hopf and a pitchfork bifurcations on the way to chaos. The generalized mean-field Galerkin methodology may be employed to describe other transition scenarios.
Fichier principal
Vignette du fichier
JFM1.pdf (2.23 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03195631 , version 1 (12-04-2021)

Identifiants

Citer

Deng Nan, Bernd R. Noack, Marek Morzyński, Luc R. Pastur. Low-order model for successive bifurcations of the fluidic pinball. Journal of Fluid Mechanics, 2020, 884, pp.A37. ⟨10.1017/jfm.2019.959⟩. ⟨hal-03195631⟩
210 Consultations
176 Téléchargements

Altmetric

Partager

More