Non-linear behaviour of free-edge shallow spherical shells: Effect of the geometry
Résumé
Non-linear vibrations of free-edge shallow spherical shells are investigated, in order to predict the trend of non-linearity (hardening/softening behaviour) for each mode of the shell, as a function of its geometry. The analog for thin shallow shells of von Kármán's theory for large deflection of plates is used. The main difficulty in predicting the trend of non-linearity relies in the truncation used for the analysis of the partial differential equations (PDEs) of motion. Here, non-linear normal modes through real normal form theory are used. This formalism allows deriving the analytical expression of the coefficient governing the trend of non-linearity. The variation of this coefficient with respect to the geometry of the shell (radius of curvature R, thickness h and outer diameter 2 a) is then numerically computed, for axisymmetric as well as asymmetric modes. Plates (obtained as R → ∞) are known to display a hardening behaviour, whereas shells generally behave in a softening way. The transition between these two types of non-linearity is clearly studied, and the specific role of 2:1 internal resonances in this process is clarified. © 2006 Elsevier Ltd. All rights reserved.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...