Multiplicity of Polynomials on Trajectories of Polynomials Vector Fields in C3 - ENSTA Paris - École nationale supérieure de techniques avancées Paris
Article Dans Une Revue Banach Center Publications Année : 1998

Multiplicity of Polynomials on Trajectories of Polynomials Vector Fields in C3

Andrei Gabrielov
  • Fonction : Auteur
Frédéric Jean
Jean-Jacques Risler
  • Fonction : Auteur

Résumé

Let ξ be a polynomial vector field on n with coefficients of degree d and P be a polynomial of degree p. We are interested in bounding the multiplicity of a zero of a restriction of P to a non-singular trajectory of ξ, when P does not vanish identically on this trajectory. Bounds doubly exponential in terms of n are already known ([9,5,10]). In this paper, we prove that, when n=3, there is a bound of the form p + 2 p ( p + d - 1 ) 2 . In Control Theory, such a bound can be used to give an estimate of the degree of nonholonomy for a system of polynomial vector fields (this degree expresses the level of Lie-bracketing needed to generate the tangent space at each point).
Fichier non déposé

Dates et versions

hal-01010760 , version 1 (20-06-2014)

Identifiants

  • HAL Id : hal-01010760 , version 1

Citer

Andrei Gabrielov, Frédéric Jean, Jean-Jacques Risler. Multiplicity of Polynomials on Trajectories of Polynomials Vector Fields in C3. Banach Center Publications, 1998, 44 (1), pp.109-121. ⟨hal-01010760⟩

Collections

ENSTA UMA_ENSTA
100 Consultations
0 Téléchargements

Partager

More