Particle system algorithm and chaos propagation related to non-conservative McKean type stochastic differential equations - ENSTA Paris - École nationale supérieure de techniques avancées Paris
Article Dans Une Revue Stochastics and Partial Differential Equations: Analysis and Computations Année : 2017

Particle system algorithm and chaos propagation related to non-conservative McKean type stochastic differential equations

Résumé

We discuss numerical aspects related to a new class of nonlinear Stochastic Differential Equations in the sense of McKean, which are supposed to represent non conservative nonlinear Partial Differential equations (PDEs). We propose an original interacting particle system for which we discuss the propagation of chaos. We consider a time-discretized approximation of this particle system to which we associate a random function which is proved to converge to a solution of a regularized version of a nonlinear PDE.
Fichier principal
Vignette du fichier
NonConservativePDEPart2RevisedSPDE_SubmittedAugust2016.pdf (357.94 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01241704 , version 1 (10-12-2015)
hal-01241704 , version 2 (02-08-2016)

Identifiants

Citer

Anthony Le Cavil, Nadia Oudjane, Francesco Russo. Particle system algorithm and chaos propagation related to non-conservative McKean type stochastic differential equations. Stochastics and Partial Differential Equations: Analysis and Computations, 2017, 5 (1), Stochastics and partial differential equations: Analysis and Computation., vol. 5 (1), pp. 1-37, Springer-Verlag, mar, 2017. ⟨10.1007/s40072-016-0079-9⟩. ⟨hal-01241704v2⟩
275 Consultations
292 Téléchargements

Altmetric

Partager

More