On measures in sub-Riemannian geometry - ENSTA Paris - École nationale supérieure de techniques avancées Paris
Pré-Publication, Document De Travail Année : 2017

On measures in sub-Riemannian geometry

Résumé

In \cite{gjha} we give a detailed analysis of spherical Hausdorff measures on sub-Riemannian manifolds in a general framework, that is, without the assumption of equiregularity. The present paper is devised as a complement of this analysis, with both new results and open questions. The first aim is to extend the study to other kinds of intrinsic measures on sub-Riemannian manifolds, namely Popp's measure and general (i.e., non spherical) Hausdorff measures. The second is to explore some consequences of \cite{gjha} on metric measure spaces based on sub-Riemannian manifolds.
Fichier principal
Vignette du fichier
mesures_grenoble_revised.pdf (509.19 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01452778 , version 1 (02-02-2017)
hal-01452778 , version 2 (15-02-2017)
hal-01452778 , version 3 (06-03-2017)

Identifiants

Citer

R Ghezzi, Frédéric Jean. On measures in sub-Riemannian geometry. 2017. ⟨hal-01452778v2⟩
331 Consultations
472 Téléchargements

Altmetric

Partager

More