On measures in sub-Riemannian geometry
Résumé
In \cite{gjha} we give a detailed analysis of spherical Hausdorff measures on sub-Riemannian manifolds in a general framework, that is, without the assumption of equiregularity. The present paper is devised as a complement of this analysis, with both new results and open questions. The first aim is to extend the study to other kinds of intrinsic measures on sub-Riemannian manifolds, namely Popp's measure and general (i.e., non spherical) Hausdorff measures. The second is to explore some consequences of \cite{gjha} on metric measure spaces based on sub-Riemannian manifolds.
Origine | Fichiers produits par l'(les) auteur(s) |
---|