Lp-asymptotic stability of 1D damped wave equations with localized and linear damping
Résumé
In this paper, we study the $L^p$-asymptotic stability of the one-dimensional linear damped wave equation with Dirichlet boundary conditions in $[0,1]$, with $p\in (1,\infty)$. The damping term is assumed to be linear and localized to an arbitrary open sub-interval of $[0,1]$. We prove that the semi-group $(S_p(t))_{t\geq 0}$ associated with the previous equation is well-posed and exponentially stable. The proof relies on the multiplier method and depends on whether $p\geq 2$ or $1
Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|
Frédéric Jean : Connectez-vous pour contacter le contributeur
https://ensta-paris.hal.science/hal-03196874
Soumis le : mardi 5 mars 2024-16:42:44
Dernière modification le : mardi 6 août 2024-10:56:04
Dates et versions
Identifiants
- HAL Id : hal-03196874 , version 1
- ARXIV : 2104.05679
- DOI : 10.1051/cocv/2021107
Citer
Meryem Kafnemer, Mebkhout Benmiloud, Frédéric Jean, Yacine Chitour. Lp-asymptotic stability of 1D damped wave equations with localized and linear damping. ESAIM: Control, Optimisation and Calculus of Variations, 2022, ⟨10.1051/cocv/2021107⟩. ⟨hal-03196874⟩
149
Consultations
10
Téléchargements