Nonlinear model order reduction of resonant piezoelectric micro-actuators: An invariant manifold approach - ENSTA Paris - École nationale supérieure de techniques avancées Paris
Article Dans Une Revue Computers & Structures Année : 2023

Nonlinear model order reduction of resonant piezoelectric micro-actuators: An invariant manifold approach

Résumé

This paper presents a novel derivation of the direct parametrisation method for invariant manifolds able to build simulation-free reduced-order models for nonlinear piezoelectric structures, with a particular emphasis on applications to Micro-Electro-Mechanical-Systems. The constitutive model adopted accounts for the hysteretic and electrostrictive response of the piezoelectric material by resorting to the Landau-Devonshire theory of ferroelectrics. Results are validated with full-order simulations operated with a harmonic balance finite element method to highlight the reliability of the proposed reduction procedure. Numerical results show a remarkable gain in terms of computing time as a result of the dimensionality reduction process over low dimensional invariant sets. Results are also compared with experimental data to highlight the remarkable benefits of the proposed model order reduction technique.
Fichier principal
Vignette du fichier
OGFT_PM_HAL.pdf (11.91 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Licence

Dates et versions

hal-04205918 , version 1 (13-09-2023)

Licence

Identifiants

Citer

Andrea Opreni, Giorgio Gobat, Cyril Touzé, Attilio Frangi. Nonlinear model order reduction of resonant piezoelectric micro-actuators: An invariant manifold approach. Computers & Structures, 2023, 289, pp.107154. ⟨10.1016/j.compstruc.2023.107154⟩. ⟨hal-04205918⟩
62 Consultations
30 Téléchargements

Altmetric

Partager

More