Communication Dans Un Congrès Année : 2015

A light-weight real-time applicable hand gesture recognition system for automotive applications

Résumé

We present a novel approach for improved hand-gesture recognition by a single time-of-flight(ToF) sensor in an automotive environment. As the sensor's lateral resolution is comparatively low, we employ a learning approach comprising multiple processing steps, including PCA-based cropping, the computation of robust point cloud descriptors and training of a Multilayer perceptron (MLP) on a large database of samples. A sophisticated temporal fusion technique boosts the overall robustness of recognition by taking into account data coming from previous classification steps. Overall results are very satisfactory when evaluated on a large benchmark set of ten different hand poses, especially when it comes to generalization on previously unknown persons.
Fichier principal
Vignette du fichier
root.pdf (2.13 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01251413 , version 1 (06-01-2016)

Identifiants

Citer

Thomas Kopinski, Stéphane Magand, Alexander Gepperth, Uwe Handmann. A light-weight real-time applicable hand gesture recognition system for automotive applications. IEEE International Symposium on Intelligent Vehicles (IV), Jun 2015, Seoul, South Korea. pp.336-342, ⟨10.1109/IVS.2015.7225708⟩. ⟨hal-01251413⟩
135 Consultations
552 Téléchargements

Altmetric

Partager

More